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Abstract— This work investigates quantitative supervisory
control with a local mean payoff objective for weighted discrete
event systems. Weight flows are generated by the system and a
supervisor must be designed to ensure that the mean payoff of
weights over a fixed number of transitions never drops below a
given threshold while the system is operating. The local mean
payoff may be viewed as a stability measure of weight flows. We
formulate the supervisory control problem and transform it to a
two-player game between the supervisor and the environment.
Next, window payoff functions are defined to characterize the
objective for the supervisor in the game. Then we analyze
the game and develop a method to synthesize game-winning
supervisors, which solve the proposed problem.

I. INTRODUCTION

In the context of discrete event systems (DES), supervisory
control is a widely-studied topic. The plant under control is
usually modeled as a finite discrete structure and a (qualita-
tive) specification is given to model the desired behavior of
the plant. The supervisor restricts the behavior of the plant
so that the specification is achieved [4].

Since the system dynamics may not be perfectly cap-
tured by the monitoring sensors, the problem of supervisory
control under partial observation naturally arises; for recent
references, see, e.g., [1], [3], [7], [11], [12], [16], [17], [19].
In particular, a uniform supervisory control approach was
proposed in [20] to enforce a series of properties on partially-
observed DES. Another important topic is quantitative super-
visory control of DES, where the performance of the system
is evaluated by some quantitative measures in addition to the
qualitative specification, see, e.g., [13], [14], [18]. Specifi-
cally, some recent works investigate supervisory control with
limit average objectives like mean payoff functions, under
either full observation [15] or partial observation [9].

In many applications, the system generates some quan-
titative flows associated with event occurrences during its
operation. Supervisors may be designed to regulate the flows
and ensure that the long-run average rate of the flow lies
in an acceptable interval. The limit mean payoff provides a
suitable metric for the long-run quantitative performance of
the system, however, it suffers from the drawback of ignoring
transient fluctuations of the flows. Suppose that there are
two infinite weight sequences generated by the system: one
is 6,0,0,0,0,0,6,0,0,0,0,0 · · · , (one 6 every 6 transitions),
while the other is 1,1,1, · · · (the same weight 1 all the time).
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Obviously, both sequences have the same limit mean payoff
1, but the first one shows more fluctuations since the weights
alternate between 0 and 6. To be more specific, if we evaluate
mean payoff every three transitions, then it is either 0 or 2 for
the first sequence while it is always 1 for the second. Thus,
we may say that the weight flow in the second sequence is
more stable since the flow rate fluctuates less. A stable flow
is usually preferred since it is easier to regulate and may
cause less damage to the system.

Motivated by the above considerations, we explore super-
visory control under local mean payoff constraints in this
paper. The supervisor ensures safety and liveness, i.e., no
undesired state is reached and the system never terminates.
It also guarantees that the mean payoff over a fixed number
of transitions is within some bounds. The quantitative re-
quirement is termed as a stable-flow constraint. Intuitively,
we may imagine that there exists a “window”, which is
sliding with the occurrence of new events, and the supervisor
regulates the mean payoff within that window. We formulate
this problem as stable-flow supervisory control problem.
Then we transform it to a two-player game between the
supervisor and the environment on a suitable information
structure called weighted bipartite transition system (WBTS).
We give the generic definition of WBTS, then construct the
largest WBTS which contains all control strategies that are
safe and live. Next, we introduce window payoff functions
and properly define an objective for the supervisor on the
game. We illustrate that the supervisor solves the proposed
problem by achieving the objective. Our method is inspired
by conventional mean payoff games [6], [10] and mean
payoff games with window objectives [5]. However, to the
best of our knowledge, this paper is the first one to consider
a local mean payoff supervisory control problem in DES.

The following sections are organized as follows. Sec-
tion II describes the system model and formulates the stable-
flow supervisory control problem. Section III introduces the
weighted bipartite transition system, transforms the proposed
problem in Section II to a two-player game and partially
solves the problem. Then in Section IV, we analyze the game
and synthesize control strategies that completely solve the
problem. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a quantitative discrete event system modeled
by a weighted finite-state automaton G = (X ,E, f ,x0,ω)
where X is the finite state space, E is the finite set of
events, f : X × E → X is the partial transition function,
x0 ∈ X is the initial state and ω : E → Z is the weight
function that assigns an integer to each event. The weight
represents the payoff of the event, which may be positive
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or nonpositive. The domain of f can be extended to X×E∗

in the standard manner [4]. The language generated by G is
L (G) = {s ∈ E∗ : f (x0,s)!} where ! means “is defined”. ω

is additive and its domain can be extended to E∗ by letting
ω(ε) = 0, ω(seo) = ω(s)+ω(eo) for s ∈ E∗ and e ∈ E.

In G, if f (x1,e) = x2 for some x1,x2 ∈ X and e ∈ E, then
we write x1

e−→ x2 for simplicity. A run in G is a finite or
infinite sequence of alternating states and events in the form:
r = x1

e1−→ x2
e2−→ ·· · en−1−−→ xn. A run is initial if its initial state

is the initial state of the system. We denote by Run(G) the
set of runs in system G. Given r, for some 1 ≤ j < m < n,
we call x j

e j−→ x j+1
e j+1−−→ ·· · em−→ xm+1 a run fragment, which

is a run by itself. Furthermore, we denote by r( j,m) = x j
e j−→

·· · em−→ xm+1 the run fragment of r starting from x j and ending
in xm+1. We also call x j

e j−→ ·· · en−1−−→ xn a suffix of run r and
x1

e1−→ ·· ·
e j−1−−→ x j a prefix of r, for some 1≤ j ≤ n.

Conventionally, the safety property in DES is expressed
in a language inclusion manner [4]. Using the refinement
process in [8], we are always able to equivalently discuss it in
a state-based manner. In this work, we assume the refinement
has been done a priori and consider safety in terms of states.
We let Xus be the set of unsafe states and G is safe if no
state in Xus is reached. We also consider the (weak) liveness
property: G is live if ∀s ∈L (G), ∃u ∈ E, s.t. su ∈L (G),
i.e., there is a transition defined out of any state in G. Every
finite run may be extended to be infinite when G is live.

The system is controlled by a supervisor S : L (G)→ Γ,
which dynamically enables and disables events so that some
specification is achieved [4]. We denote by S the set of
supervisors. The event set E is partitioned as E = Ec∪Euc,
where Ec is the set of controllable events and Euc is the set of
uncontrollable events. A control decision γ ∈ 2E is admissible
if Euc⊆ γ , i.e., no uncontrollable event is disabled. Denote by
Γ the set of all admissible control decisions. In the context of
this work, all events are observable. We use S/G to represent
the controlled system under S. Accordingly, we denote by
L (S/G) the language generated in S/G and Run(S/G) the
set of runs in S/G, respectively. We call a supervisor safe
and live if its supervised system is both safe and live.

Given r = x1
e1−→ x2

e2−→ ·· · en−→ xn+1, its (accumulative)
payoff is ∑

n
i=1 ω(ei) while its mean payoff is 1

n ∑
n
i=1 ω(ei).

As illustrated in the introduction section, the mean payoff
within a local “window” provides a measure of fluctuation of
the weight flow generated with the system’s operation. If the
mean payoff changes abruptly with an event occurrence, then
the weight flows are not “stable”. For reliability and stability
of the system, weight flows should remain relatively smooth
without severe fluctuations. So we evaluate the stability of
flows by the mean payoff within a fixed number of events,
i.e., 1

n ∑
n
i=1 ω(ei) should be within some interval [v1,v2]. As

1
n ∑

n
i=1 ω(ei)≤ v is equivalent with 1

n ∑
n
i=1(−ω(ei))≥−v, we

will only focus on one-side inequality ≥ in the rest of the
work. To proceed, we have the following two definitions.

Definition 1 (Stable-Flow Window): Given system G,
window size N ∈ N+ and mean payoff threshold v ∈ Z,
a finite run r = x1

e1−→ x2
e2−→ ·· · eN−→ xN+1 in G forms a

stable-flow window if ∃`≤ N such that 1
` ∑

`
i=1 ω(ei)≥ v.

Definition 2 (Stable-Flow Run): Given system G, win-
dow size N ∈N+ and mean payoff threshold v∈Z, an infinite
run r = x1

e1−→ x2
e2−→ ·· · is a stable-flow run if ∃i ≥ 1 such

that ∀ j ≥ i, r( j, j+N) forms a stable-flow window.
A stable-flow window states that the mean payoff of a

run should stay no less than a given threshold after at most
N event occurrences. It is a local objective defined over a
finite range, in contrast to the limit mean payoff objective
discussed in [9], which may be viewed as a global objective.
We may imagine that the next N events form a window, in
which the mean payoff is evaluated. Since the system is live
and never terminates, it is more reasonable to emphasize the
local mean payoff after the system has been operating for a
while. That is why we require that stable-flow windows be
repeatedly achieved from certain position xi (not necessarily
the initial state) in Definition 2. In other words, a stable-
flow run is independent of finite prefixes. The inequality
in Definition 1 is the same as 1

` ∑
i=`
i=1(ω(ei)− v) ≥ 0, i.e.,

we may subtract v from each event weight and equivalently
evaluate whether the mean payoff is above 0. In the following
discussion, we just assume v = 0 without loss of generality.

Intuitively, the windows are “sliding” with the occurrence
of new events. If there is a deviation violating the bound v,
it should be compensated within at most the next N events.

Example 1: Consider the weighted automaton G in Fig-
ure 1, with the only unsafe state x8. The set of controllable
events is Ec = {a,b,c,d,e, f} and the set of uncontrollable
events is Euc = {u1,u2,u3,u4,u5}. The weight of each event
is shown in the figure. If the window size is N = 3, then a run
traversing between x1 and x2 infinitely often is not a stable-
flow run since ω(a) +ω(d) < 0, while the run traversing
among x1, x6 and x7 infinitely often is a stable-flow run.
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Fig. 1. The weighted automaton G in Example 1
When there exist non stable-flow runs in the system, a

supervisory may be designed to “stabilize” the flows. We for-
mulate Problem 1 to achieve both qualitative specifications
(safety and liveness) and quantitative ones (stable flows).

Problem 1 (Stable-Flow Supervisory Control Problem):
Given system G, window size N ∈ N+, set of unsafe states
Xus, design a supervisor S ∈ S such that: (i) S/G is both safe
and live; (ii) any infinite run in S/G is a stable-flow run.

Given a run r = x1
e1−→ x2

e2−→ ·· · , suppose x j with j ≤ N
is the first position where a stable-flow window is formed,
i.e., ∑

j
i=1 ω(ei) ≥ 0 and ∑

j′
i=1 ω(ei) < 0 for all j′ < j. By

some simple derivation, we know that ∑
j
i= j′ ω(ei) ≥ 0 >

∑
j′−1
i=1 ω(ei) holds for any j′ < j, otherwise it contradicts

with x j being the first place where a stable-flow window is
formed. So any run fragment r( j′, j) also forms a stable-flow
window. This fact is called inductive property of stable-flow
windows, which is leveraged later on to solve Problem 1.
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III. WEIGHTED BIPARTITE TRANSITION SYSTEM

In this section, we transform the automaton model to a
two-player game structure and partially solve Problem 1.
For this purpose, we first define the weighted bipartite
transition system (WBTS) to characterize the game between
the supervisor and the system (environment). Then a special
WBTS is introduced to include all safe and live supervisors.

Definition 3 (Weighted Bipartite Transition System): A
weighted bipartite transition system w.r.t. system G is a
tuple T = (QY ,QZ ,E,Γ, fyz, fzy,ω,y0). Here QY ⊆ X is the
set of states where the supervisor plays. QZ ⊆ X ×Γ is the
set of states where the environment plays. Let I(z) and Γ(z)
be the state component and control decision component of
z ∈ QZ , so that z = (I(z),Γ(z)). E is the set of events and
Γ is the set of control decisions. fyz : QY ×Γ→ QZ is the
transition function from QY states to QZ states where for
y∈QY , γ ∈ Γ and z∈QZ , we have fyz(y,γ) = z⇒ [z= (y,γ)].
fzy : QZ ×E → QY is the transition function from QZ states
to QY states where for z = (y,γ) ∈ QZ , e ∈ E and y′ ∈ QY ,
we have fzy(z,e) = y′ ⇔ [e ∈ γ] ∧ [y′ = f (y,e)]. ω is the
event weight function inherited from G and labeling fzy
transitions. Finally y0 ∈ QY is the initial state and y0 = x0.

In essence, a WBTS T presents a game between the
supervisor and the environment. A QY state (Y -state) is where
the supervisor plays by making control decisions. Since
the supervisor has full observation, Y -states are from the
system’s state space X . We call a y ∈ QY safe if y /∈ Xus.
A QZ state (Z-state) consists of a Y -state plus a control
decision, where the environment plays by “selecting” enabled
events to occur. A fyz transition is defined from Y -states
to Z-states to remember the most recent decision of the
supervisor. At y ∈ QY , we use CT (y) to stand for the set
of control decisions defined at y. fzy transitions are defined
from Z-states to Y -states, which are the reachable states
under the executed events. Since the supervisor is unable
to choose which event will occur, all enabled events should
be defined at a Z-state and we put “⇔” in the last third
line of Definition 3 to define fzy. Similarly with G, ω is the
weight function associated with fzy transitions. A run in T
is of the form r = y1

γ1−→ z1
e1−→ y2 · · ·

γn−→ zn
en−→ yn+1 and we

denote by Runy(T ) (respectively Runz(T )) the set of initial
runs whose last states are Y -states (respectively Z-states).

Generally, both players make decisions based on the past
history of control decisions and event occurrences, i.e., runs.
In a WBTS T , we define the supervisor’s strategy (control
strategy) as πs : Runy(T )→ Γ and the environment’s strategy
as πe : Runz(T )→ Eo. We denote the set of all supervisor’s
and environment’s) strategies by Πs and Πe, respectively.

The fyz transitions in a WBTS reflect the events enabled
under control decisions, while fzy transitions reflect the
executions of the enabled events. As is seen, a control
strategy in the WBTS just works in the same way as a
standard supervisor. In the following discussion, we will use
the terms “supervisor” and “supervisor’s strategy (control
strategy)” interchangeably. Intuitively, a strategy has memory
if the player may make different decisions when the same
state is reached again, otherwise, it is memoryless. We refer

the reader to [2] for more detailed discussion of memory.
In a WBTS T , we define the attractor following the stan-

dard definition in [2]. Suppose Q is a set of states in T , then
the supervisor’s attractor AttrT

s (Q) is defined recursively as:
Q0 = Q, Qi+1 = Qi∪{y ∈QY : ∃z ∈QZ ,γ ∈ Γ s.t. fyz(y,γ) =
z} ∪ {z ∈ QZ : ∀y ∈ QY [(∃e ∈ E, s.t. fzy(z,e) = y)⇒ y ∈
Qi]} and AttrT

s (Q) =
⋃

i≥0 Qi. So the supervisor reaches
Qi from Qi+1 within one transition for sure regardless
of the environment’s strategies. Therefore, AttrT

s (Q) is the
largest set of states from which the supervisor is able to
reach Q within finitely many transitions regardless of the
environment’s strategies. On the other hand, the supervisor is
unable to reach Q from states outside of AttrT

s (Q), otherwise
it contradicts the definition of an attractor for the supervisor.
The attractor for the environment is defined analogously.

Given two WBTSs T1 = (Q1
Y ,Q

1
Z ,E,Γ, f 1

yz, f 1
zy,ω

1,y1
0) and

T2 = (Q2
Y ,Q

2
Z ,E,Γ, f 2

yz, f 2
zy,ω

2,y2
0), we say T1 is a subgame

of T2, denoted by T1 v T2, if Q1
Y ⊆ Q2

Y , Q1
Z ⊆ Q2

Z and for
all y ∈ Q1

Y , z ∈ Q1
Z , γ ∈ Γ, e ∈ E, we have f 1

yz(y,γ) = z⇒
f 2
yz(y,γ) = z and f 1

zy(z,e) = y⇒ f 2
zy(z,e) = y. Given a WBTS

T and a set of states Q⊆QY ∪QZ , we denote by T ′ = T � Q
if T ′ v T and Q is the state space of T ′, i.e., the game on T
is restricted to a subgame with states in Q.

In a WBTS, a Y -state is called a terminal state if it has no
successor states. Then T is called complete if ∀y∈QY , y has
successors. A Z-state z is deadlocking if @e∈E, s.t. fzy(z,e)!.
Deadlocking states should be avoided to solve Problem 1.

In Algorithm 1, we construct the maximum complete
WBTS without deadlocking Z-states or unsafe Y -states,
with respect to automaton G. It is denoted by Tm =
(Qm

Y ,Q
m
Z ,E,Γ, f m

yz , f m
zy ,ω,y0). The “maximum” is in the graph

merging sense, i.e., for any complete WBTS T without
deadlocking Z-states or unsafe Y -states, we have T v Tm.

Algorithm 1: Build Tm

Input : G
Output : Tm = (Qm

Y ,Q
m
Z ,E,Γ, f m

yz , f m
zy ,ω,y0) w.r.t. G

1 Qm
Y = {y0}, Qm

Z = /0;
2 DoDFS(y0,G);
3 while there exist Y -states that have no successor do
4 Remove all such Y -states and their predecessor

Z-states, take the accessible part;
5 return Tm;

Procedure: DoDFS(y,G)
6 for γ ∈ Γ do
7 z = fyz(y,γ);
8 if I(z) /∈ Xus and z is not deadlocking then
9 add transition y

γ−→ z to f m
yz ;

10 if z /∈ Qm
Z then

11 Qm
Z = Qm

Z ∪{z};
12 for e ∈ γ do
13 y′ = fzy(z,e);
14 add z e−→ y′ to f m

zy , its weight is ω(e);
15 if y′ /∈ Qm

Y then
16 Qm

Y = Qm
Y ∪{y′};

17 DoDFS(y′,G);
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The main idea of Algorithm 1 is to recursively build the
state space of Tm in a depth-first search manner until no
more states are added. Notice that we only include non-
deadlocking Z-states without unsafe state components, as in
line 8. We prune away Y -states without successors as well as
their preceding Z-states in line 4, so that the final structure
is complete. Following a similar argument with Theorem V.I
in [20], we show the correctness of Algorithm 1 as follows,
while the detailed proof is omitted due to space limitations.

Proposition 1: Any control strategy in Tm is safe and live.
Example 2: We revisit Example 1 and build Tm for the

system, following Algorithm 1. First, the DoDFS procedure
returns the WBTS shown in Figure 2. The rectangular states
are Y -states while the round rectangular states are Z-states.
As is seen, dashed Z-states (x3,γ

′
5), (x2,γ

′
6) and (x6,γ

′
7) are

not included during the procedure DoDFS at line 8 since
they are deadlocking. The shaded Z-state (x8,γ11) is not
included either (at line 8) since x8 is an unsafe state. Due to
the absence of (x8,γ11), Y -state x8 has no successor. After
that, x8 is removed by the while loop in Algorithm 1, so is
(x7,γ

′
10). If we ignore all dashed/shaded states, (x7,γ

′
10) and

transitions leading to them, the remaining structure is Tm.
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Fig. 2. The resulting structure after DoDFS (without dashed/shaded states)

IV. SUPERVISOR SYNTHESIS UNDER LOCAL MEAN
PAYOFF CONSTRAINTS

In the previous section, we have obtained safe and live su-
pervisors. Based on those partial solutions to Problem 1, we
further investigate how to synthesize supervisors satisfying
the local mean payoff requirement. For this purpose, we first
transform this requirement to a proper objective on the game
structure Tm. Then we analyze the game and completely solve
Problem 1 by finding winning strategies for the supervisor.

A. Find the Supervisor’s Winning Region
On the game graph Tm, given the window size N ∈ N+,

we define the stable-flow window objective as W s f
mp(Tm,N) =

{r ∈ Run(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · ·
eN−→ yN+1,∃` ≤

N s.t. 1
` ∑

`
i=1 ω(ei) ≥ 0} and the window mean payoff ob-

jective as Wmp(Tm,N) = {r ∈ Run(Tm) : r = y1
γ1−→ z1

e1−→
y2 · · · ,∃i ≥ 1 s.t. ∀ j ≥ 0,∃` ≤ N, 1

` ∑
`−1
p=0 ω(e j+i+p) ≥ 0}.

Further observation shows that if the supervisor achieves
Wmp(Tm,N), then it perpetually achieves W s f

mp(Tm,N) from

a certain point on. Also Wmp(Tm,N) is equivalent to the
local mean payoff requirement in Problem 1, so if a control
strategy achieves Wmp(Tm,N) on Tm, then it solves Problem 1.
Next, we define the window payoff function in Tm for the sake
of further characterizing W s f

mp(Tm,N) and Wmp(Tm,N).
Definition 4 (Window Payoff Function): In Tm with win-

dow size N ∈ N+, for 0 ≤ i ≤ N, define the window
payoff function recursively as hi : Qm

Y ∪ Qm
Z → Z where

∀q ∈ Qm
Y ∪Qm

Z : h0(q) = 0; ∀q ∈ Qm
Y ,∀1 ≤ i ≤ N: hi(q) =

max
z∈Qm

Z ,γ∈Γ

{hi(z) : f m
yz(q,γ) = z} and ∀q ∈ Qm

Z ,∀1 ≤ i ≤ N:

hi(q) = min
y∈Qm

Y ,e∈E
{ω(e)+hi−1(y) : f m

zy(q,e) = y}.

The window payoff function tracks the best worst-case
accumulative weights that the supervisor may achieve from
a state in Tm within at most N event occurrences. From
the value of hi(q), we may backtrack a run from q, whose
control decisions and event occurrences lead to hi(q). The
supervisor aims to obtain a nonnegative accumulative payoff
(also mean payoff) within the next N enabled events, while
the environment aims to spoil that goal by enforcing negative
payoffs. If the current state q is a Y -state (supervisor’s
position), we maximize the value of hi(q) for each 1≤ i≤N
by choosing successor states. Notice that we do not increase
the index i since an f m

yz transition corresponds to a control
decision but not an event occurrence. Otherwise, if q is a Z-
state (environment’s position), we minimize the accumulative
payoff to-go so as to calculate hi(q), where we also increase
the index as an f m

zy transition indicates one event occurrence.
This “min-max” way of defining hi(q) is due to calculating
the worst possible sum of weights after the occurrence
of enabled events, and choosing the best possible sum of
weights for the supervisor to achieve Wmp(Tm,N).

The supervisor should repeatedly reach states q where
hi(q) ≥ 0 for some 1 ≤ i ≤ N, after the game has been
played for a while. Next, we introduce the supervisor’s
winning region, denoted by Ws, as the set of states where
the supervisor has a strategy to achieve Wmp(Tm,N). While
the environment’s winning region is the set of states from
which it prevents the supervisor from achieving Wmp(Tm,N).
A state in Ws is winning while a state not in Ws is losing for
the supervisor. Due to the determinacy of Büchi/co-Büchi
games [2], a state is either winning or losing for a player.

Algorithm 2 recursively computes the supervisor’s win-
ning region for Wmp(Tm,N). It generalizes the standard
divide-and-conquer algorithm of solving Büchi/co-Büchi
games [2]. Initially at line 1, each state in Tm is viewed
as potentially losing for the supervisor. In line 3, we call
procedure WinLocal to compute the set of states W n

p from
which the supervisor achieves Wmp(Tm,N). Then in line 4,
we add new winning states to the supervisor’s winning region
Ws. Since whether the supervisor achieves Wmp(Tm,N) does
not depend on the finite prefixes of runs, if the supervisor
is winning from W n

p , it also wins from the attractor of W n
p .

Hence, the environment must avoid entering W n
attr and remain

in the subgame described by line 5 to preserve the chance
of winning the game. After that, we iterate on the remaining
subgame and recall procedure WinLocal to find more win-
ning states for the supervisor; note that Tm gets updated in
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Algorithm 2: Obtain the supervisor’s winning region
Input : Tm, N
Output : supervisor’s winning region Ws

1 Ws = /0, n = 1, W 0
p = Qm

Y ∪Qm
Z ;

2 while Ws 6= Qm
Y ∪Qm

Z and W n−1
p 6= /0 do

3 W n
p =WinLocal(Tm,N);

4 W n
attr = AttrTm

s (W n
p ), Ws←Ws∪W n

attr;
5 Tm← Tm � [(Qm

Y ∪Qm
Z )\Ws], n = n+1;

6 Return Ws;
Procedure: WinLocal(Tm,N)

7 Wg = StableWindow(Tm,N);
8 if Wg = Qm

Y ∪Qm
Z or Wg = /0 then

9 Wp = Wg;
10 else
11 Tm← Tm � Wg, Wp =WinLocal(Tm,N);
12 return Wp;

Procedure: StableWindow(Tm,N)
13 for q ∈ Qm

Y ∪Qm
Z in the current structure do

14 h0(q) = 0;
15 for i = 1 : N do
16 for q ∈ Qm

Z do
17 hi(q) = min

y∈Qm
Y ,e∈E

{ω(e)+hi−1(y) : f m
zy(q,e) = y};

18 for q ∈ Qm
Y do

19 hi(q) = max
z∈Qm

Z ,γ∈Γ

{hi(z) : f m
yz(q,γ) = z};

20 return Wg = {q ∈ Qm
Y ∪Qm

Z : ∃1≤ i≤ N s.t. hi(q)≥ 0};

lines 5 and 11. In this manner, if the supervisor has strategies
to win the game from a state in Ws, then it also has strategies
to win the game from its successor states, which are also
contained in Ws. The whole algorithm essentially computes
the greatest fixed point, and when it terminates, the states
not in Ws are where the environment can falsify the window
mean payoff objective, so the algorithm is correct.

The values of window payoff functions are computed in
StableWindow, which returns states q with hi(q) ≥ 0 for
1 ≤ i ≤ N in line 20. If the supervisor repeatedly achieves
a nonnegative hi from a state and its successors, then it
repeatedly achieves W s f

mp(Tm,N) and Wmp(Tm,N) from them.
Since we need to ensure that W s f

mp(Tm,N) is always satisfied,
we recursively call line 11 and WinLocal actually computes
a least fixed point. Then the supervisor may always play
the strategy prescribed by hi(q)≥ 0 (following the decisions
leading to hi(q)) to ensure a nonnegative sum of weights
within N event occurrences from its current state. In general,
the supervisor has memory as it needs to “remember” how
hi(q)≥ 0 is achieved from certain state q each time it makes
a decision, while it suffices to record at most N states.

Theorem 1: Algorithm 2 correctly computes the supervi-
sor’s winning region for Wmp(Tm,N).

Proof: Proof omitted here due to space limitations.
By Theorem 1, we further claim that if the initial state

of Tm is contained in AttrTm
s (Ws), then the supervisor has

strategies to reach states in Ws and win the game from y0.
That is, there exist solutions to Problem 1. If this is the case,

we denote by Twin = Ac(Tm � AttrTm
s (Ws)) where Ac stands

for taking the accessible part from the initial state, otherwise,
we let Twin be empty. We will discuss supervisor synthesis
on Twin in the next subsection if Twin is not empty.

Remark 1: We briefly discuss the complexity of Algo-
rithm 2. Here we denote by |Tm| the number of states in
Tm and ne the number of edges in Tm. For StableWindow,
each edge is visited at most N times in computing window
payoff functions, so its complexity is O(ne · N). Then in
WinLocal, we call StableWindow for at most |Tm| times, so
its complexity is O(|Tm|·ne ·N). Finally, we call WinLocal for
at most |Tm| times in Algorithm 2 and computing the attractor
is linear in ne. Therefore, the total (worst case) complexity of
the algorithm is O(|Tm| ·(ne+ |Tm| ·ne ·N)))=O(|Tm|2 ·ne ·N).

Example 3: We continue Example 2 and follow Al-
gorithm 2 to find the winning region of the supervi-
sor for Wmp(Tm,N), where the window size is N = 3.
First, we calculate the values of window payoff functions
for each state in Tm and the results are shown as fol-
lows. For simplicity, here we associate a 4-dimensional
vector with each state q ∈ Qm

Y ∪ Qm
Z and the values

are h0(q) through h3(q). x0 : [0,−5,−4,−1], (x0,γ0) :
[0,−5,−4,−1], x1 : [0,1,4,4], (x1,γ1) : [0,1,3,4], (x1,γ2) :
[0,−1,−6,−5], (x1,γ3) : [0,−1,−6,−5], (x1,γ4) : [0,1,4,4],
x2 : [0,−5,−4,−1], (x2,γ6) : [0,−5,−4,−1], x3 : [0,2,6,2],
(x3,γ5) : [0,2,6,2], x4 : [0,4,0,1], (x4,γ8) : [0,4,0,1], x5 :
[0,−4,−3,0], (x5,γ9) : [0,−4,−3,0], x6 : [0,3,3,4], (x6,γ7) :
[0,3,3,4], x7 : [0,0,1,4] and (x7,γ10) : [0,0,1,4].

After one iteration of StableWindow, states (x1,γ2),
(x1,γ3), x2 and (x2,γ6) are not in Wg since the values of their
window payoff functions are negative for all i≥ 1. All states
reachable from x1 in Figure 3 are returned by StableWindow,
thus included in Wp after WinLocal. Although both x0 and
(x0,γ0) have negative hi for all i≥ 1, they are still included in
Ws since they are in the supervisor’s attractor of x1. Finally
Twin is shown in Figure 3. Here, Ws = AttrTm

s (Ws).
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Fig. 3. Twin with the supervisor’s winning region in Example 3

B. Synthesize Winning Supervisors
For supervisor synthesis, we define first stable-flow deci-

sion sequences to characterize how the supervisor achieves
a nonnegative sum of weights within N event occurrences.
Here we denote by Wlocal = ∪n≥0W

n
p which is the union of

each W n
p obtained from line 3 of Algorithm 2.

Definition 5 (First Stable-Flow Decision Sequences):
At a Y -state y ∈ Wlocal , a sequence of control decisions
γ1γ2 · · ·γ j with j≤N forms a a stable-flow decision sequence
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if there exists a run r = y
γ1−→ z1

e1−→ y2 · · ·
γ j−→ z j

e j−→ y j such that
∑

j
k=1 ω(ek) = h j(y) where j = min{1≤ i≤ N : hi(y)≥ 0}.
A supervisor achieves the window mean payoff objective

in two steps. First it plays strategies to reach some state
in Wlocal . Then it may repeatedly play strategies prescribed
by StableWindow in Algorithm 2 to perpetually ensure
a nonnegative sum within N event occurrences. Due to
the inductive property mentioned at the end of Section II,
the supervisor may play another first stable-flow decision
sequence from y j in Definition 5. So the supervisor keeps
a memory bounded by N at each state to select successors
(control decisions) and achieve h j(y)≥ 0. The memory may
be released immediately after a nonnegative sum of weights
is achieved within the next N event occurrences.

Consequently, we “unfold” the WBTS and introduce the
extended weighted bipartite transition system (EWBTS) w.r.t.
a WBTS T as: TE = (QE

Y ,Q
E
Z ,E,Γ, f e

yz, f e
zy,λ ,ω,ye

0). Here
QE

Y = QY ×N and QE
Z = QZ×N are the (extended) Y -states

and Z-states, respectively. f e
yz : QE

Y × Γ → QE
Z is the state

transition from extend Y -states to extended Z-states and f e
zy :

QE
Z ×E→QE

Y is the state transition from Z-states to Y -states.
Specifically, f e

yz((y,n),γ) (respectively f e
zy((z,n),e)) is of the

form ( fyz(y,γ),λ (y,n,γ)) (respectively (( fzy(z,e),λ (z,n,e)),
where λ : (QE

Y ∪QE
Z )×N×(Γ∪E)→N is some function that

updates the integer component of the states. The exact form
of λ is left unspecified here and will be defined when we
introduce a special EWBTS. ye

0 = (y0,0) is the initial state.
TE also describes a game between the supervisor and the
environment, thus the strategies for both players are defined
analogously. TE is complete if ∀(y,n) ∈ QE

Y , CTE ((y,n)) 6= /0.
From the definition of the EWBTS, if we restrict f e

yz and
f e
zy transitions to domains QY and QZ , respectively, then

they are consistent with fyz and fzy transitions in a WBTS.
However, function λ has not been defined yet and it is left to
count the number of times a state in the WBTS is revisited
in unfolding the game graph. We introduce the unfolded
weighted bipartite transition system (UWBTS) as follows.
For simplicity, we write (y,n) ∈ QE

Y as yn and (z,n) ∈ QE
Z

as zn. Given a state qe in a EWBTS TE , we let PreTE
Y (qe)

and PreTE
Z (qe) denote, respectively, the set of Y -states and

the set of Z-states that may reach qe, excluding qe itself. We
also let | · | be the number of elements in a set.

Definition 6: An unfolded weighted bipartite transition
System (UWBTS) is an EWBTS of a complete WBTS T .
It is a tuple U = (QU

Y ,Q
U
Z ,E,Γ, f u

yz, f u
zy,λu,ω,yu

0) where (i)
∀yn ∈ QU

Y :|CU (yn)| = 1; (ii) ∀zn ∈ QU
Z , ∀e ∈ E: fzy(z,e)!⇒

f u
zy(z

n,e)!; (iii) ∀yn ∈QU
Y : n = |{yñ ∈ PreTU

Y (yn) : ñ ∈N}| and
∀zn′ ∈ QU

Z : n′ = |{zñ ∈ PreTU
Z (zn) : ñ ∈ N}|.

Given a UWBTS U , item 1 in Definition 6 states that there
is a unique control decision defined at each Y -state yn in U
and we use cU (yn) to stand for it. Item 2 illustrates that if
an fzy transition is defined at z ∈QZ in the complete WBTS
T , then it should also be defined at zn ∈QU

Z . Item 3 specifies
how function λu is updated with state transitions, i.e., the
integer component of a state is n if there are n states in its
predecessors that have the same Y -or Z-state component.

As is seen, there is a unique control strategy (supervisor) in

a UWBTS U . We denote the supervisor by SU , which is real-
ized by an automaton GU = (QU

Y ,E,ξ ,y
n
0). Here y0

0 is the ini-
tial Y -state of U ; ξ : QU

Y ×E→QU
Y is the transition function

such that ∀yn ∈QU
Y , ∀e ∈ E: ξ (yn,e) = f u

zy( f u
yz(y

n,cU (yn)),e)
if e ∈ cU (y). The language of the supervised system is
L (SU/G) = L (GU ×G) where × is the product operation.

Algorithm 3: Synthesize a supervisor solving Problem 1
Input : Twin, Wlocal , N
Output : a supervisor SU solving Problem 1

1 QU
Y = {y0

0};
2 U ←Un f old(Twin,N);
3 Return SU ;

Procedure: Un f old(Twin,N)
4 while [∃yn ∈QU

Y s.t. CU (yn) = /0] ∨ [∃zn′ ∈QU
Z such that

∃e ∈ Γ(z) : f m
zy(z,e)! in Twin but f u

zy(z
n′ ,e)¬! in U ] do

5 for yn ∈ QU
Y s.t. CU (yn) = /0 do

6 if y /∈Wlocal then
7 Let n1 = n, augment U with

yn1
γ1−→ zn′1

1
e1−→ yn2

2 · · ·
γN−→ zn′m

m
em−→ ynm+1

m+1 where
ym+1 ∈Wlocal , and for 1≤ i≤ m+1, we
have n′i = |{z̃ñ

i ∈ PreU
Z (y

ni
i ) : z̃i = zi, ñ≥ 0}|,

ni = |{ỹn
i ∈ PreU

Y (z
n′i
i ) : ỹi = yi, ñ≥ 0}|;

8 if y ∈Wlocal then
9 Find a first stable-flow decision sequence

γ1 · · ·γ j from y, let n1 = n ;
10 if @` < j, s.t. there exists a run

yn`
`

γ`−→ z
n′`
`

e`−→ yn`+1
`+1 · · ·

e j−→ y
n j
j in U then

11 Augment the current U with

yn1
γ1−→ zn′1

1
e1−→ yn2

2 · · ·
γ j−→ z

n′j
j

e j−→ y
n j+1
j+1

where for 1≤ i≤ j, we have
n′i = |{z̃ñ

i ∈ PreU
Z (y

ni
i ) : z̃i = zi, ñ≥ 0}|,

ni = |{ỹn
i ∈ PreU

Y (z
n′i
i ) : ỹi = yi, ñ≥ 0}| ;

12 else
13 Find ` < j such that there exists

yn`
`

γ`−→ z
n′`
`

e`−→ yn`+1
`+1 · · ·

e j−→ y
n j
j in U ;

14 Augment the current U with

yn1
γ1−→ zn′1

1
e1−→ yn2

2 · · ·
γ`−1−−→ z

n′`−1
`−1

e`−1−−→ yn`
`

where for 1≤ i≤ `, we have
n′i = |{z̃ñ

i ∈ PreU
Z (y

ni
i ) : z̃i = zi, ñ≥ 0}|,

ni = |{ỹn
i ∈ PreU

Y (z
n′i
i ) : ỹi = yi, ñ≥ 0}|

(the augmented part is subsumed into
the existing structure at yn`

` ) ;
15 for zn′ ∈ QU

Z s.t. ∃e ∈ Γ(z) : f m
zy(z,e)! in Twin but

f u
zy(z

n′ ,e) is not defined in the current U do
16 for e ∈ Γ(z) such that f m

zy(z,e) is defined in
Twin but f u

zy(z
n′ ,e) is not defined in U do

17 Agument the current U with zn′ e−→ yn where
y = f m

zy(z,e) and
n = |ỹñ ∈ PreU

Y (z
n′) : ỹ = y, ñ≥ 0| ;

Algorithm 3 constructs a UWBTS U from Twin and re-
turns the supervisor SU . The procedure Un f old constructs
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a UWBTS recursively by adding new states and transitions
from the initial state y0

0. As discussed earlier, a supervisor
achieves Wmp(Tm,N) by first entering Wlocal and then tries to
repeatedly achieving W s f

mp(Tm,N). So if a Y -state yn has no
successors and it is not in Wlocal , we augment the current U
in line 7 to make the supervisor reach Wlocal . Otherwise,
we find a first stable-flow decision string γ1γ2 · · ·γ j from
h j(y) ≥ 0 in line 9. Since all states in Wlocal are winning
for the supervisor, such a sequence always exists.

Afterwards, we continue to augment U and there are two
cases. First, if the whole sequence γ1γ2 · · ·γ j is not in U , we
augment U in line 11. Second, if part of the decision string
γ`γ`+1 · · ·γ j (` < j) already exists in U , we augment U in
line 14 so that the augmented part is finally subsumed into
U . Meanwhile there may be Z-states whose successors are
not fully included in U , then we augment U in line 17. We
also update the index of states in the process, which repeats
until no more states are added to U . The number of states
in U reflects the supervisor’s memory, bounded by |Twin| ·N.

Theorem 2: If a supervisor is synthesized by Algorithm 3,
then it solves Problem 1.

Proof: Proof omitted here due to space limitations.
Example 4: We continue Example 3 and synthesize a

winning supervisor from Twin following Algorithm 3. First,
the supervisor plays γ0 from the initial state x0. By the
occurrence of u1, we reach Y -state x1 in Wlocal . Next we
choose a first stable-flow decision sequence γ1 at x1 (h1(x1)>
0), γ5 at x3 (h1(x3) > 0), γ8 at x4 (h1(x4) > 0), γ7 at x6
(h1(x6) > 0) and γ10 at x7 (h1(x7) = 0). We also augment
U with the corresponding Y -states and Z-states.

Notice that at Y -state x5, the only first stable-flow decision
string is γ9γ4γ7 by which the supervisor achieves h3(x5) =
0. This further implies that when x1 is visited again, the
supervisor has to make a different decision γ4. Hence, we
augment U with x5

γ9−→ (x5,γ9)
u6−→ x2

1
γ4−→ (x1,γ4)

u2−→ x6 since
x6

γ7−→ (x6,γ7)
e−→ x7 already exists after the augmentation from

x6. We continue construction until no more states are added.
Finally, a UWBTS U is in Figure 4 and the supervisor SU
solving Problem 1 is in Figure 5. As is seen, SU has memory
since it alternates between enabling b and disabling b at x1.
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Fig. 5. A supervisor SU solving Problem 1

V. CONCLUSION

We investigated, for the first time, a quantitative supervi-
sory control problem requiring that the mean payoff within
a fixed number of events satisfy a given threshold. After the
problem formulation, we introduced the weighted bipartite
transition system (WBTS) and transformed the problem to a
two-player game on a special WBTS with the window mean
payoff objective. Then we analyzed the game and proposed a
supervisor synthesis algorithm to solve the problem. In future
work, we will explore local mean payoff objectives where the
window length is bounded, but not necessarily fixed.
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