
Efficient Synthesis of Edit Functions for Opacity Enforcement Using

Bisimulation-Based Abstractions

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune

Abstract— This paper investigates the synthesis of edit func-
tions for opacity enforcement using abstraction methods to
reduce computational complexity. Edit functions are used to
alter system outputs by erasing or inserting events in order
to prevent violations of opacity. We introduce two abstraction
methods, called opaque observation equivalence and opaque
bisimulation, that are used to abstract the original system and
its observer before calculating edit functions. We present a set
of results on abstraction for opacity and its enforcement by
edit functions that prove that edit functions synthesized from
abstracted models are “equivalent” to ones synthesized from
original ones. Our approach leverages the technique of edit
function synthesis using the All Edit Structure from prior works.

Index Terms— Finite-state automata, abstraction, opacity,
edit function.

I. INTRODUCTION

Opacity is a security property that characterizes whether

the integrity of system secrets can be preserved from the

inference of an outside intruder, potentially with malicious

purposes. The intruder is modeled as an observer with

knowledge of the system’s structure. A system is called

opaque if the intruder is unable to infer any of the system’s

secrets from its observations using model-based inferencing.

For systems modeled as finite state automata or Petri nets,

various notions of opacity have been studied and the survey

paper [1] summarizes recent results on opacity in discrete

event systems (DES). In this paper, we consider automata

models and current-state opacity [2].

When opacity does not hold, it is natural to study its

enforcement. Several mechanisms have been considered for

this purpose; see [1]. We consider the technique of opac-

ity enforcement using insertion or edit functions, initially

proposed in [3] and further developed in [4]–[7]. An edit

function works as an interface between the system’s output

and the intruder’s observations; it may manipulate the output

of the system by erasing events of by inserting fictitious

events to obfuscate the intruder.

Recently, the work [8] revisited the synthesis of edit func-

tions using a three-player game-like discrete structure called

the All Edit Structure (AES), which provably embeds all

opacity-enforcing edit functions. This structure is constructed

as a so-called “three-player observer” from the system model

The work of the first author was supported by the Swedish Research
Council. The work of the second and third authors was supported in part
by US NSF grant CNS-1421122 and CNS-1738103.

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune are with
the Department of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, Michigan, USA.
{saharm;jiyiding;stephane@umich.edu}

and the opacity enforcement problem is viewed as a three-

player game and solved within the AES. The AES of [8]

is the structure that we will abstract in this paper, by using

bisimulation-based abstractions of the system model and of

its observer.

To construct the AES, the observer and the desired ob-

server of the system need be calculated [3]. The desired

observer is obtained by removing the states of the observer

that are subsets of secret states. Calculating the observer can

potentially be computationally costly. To mitigate this issue,

we investigate abstraction methods that can be used to reduce

the size of the system before calculating its observer and

before calculating the AES. Bisimulation and observation

equivalence [9] are well-known abstraction methods to ab-

stract the state space of an automaton. Bisimulation and ob-

servation equivalence in general cannot be used in an opacity

setting; some adjustments must be made. Abstraction-based

bisimulation was used in [10] to reduce the state space of

the system when verifying infinite-step opacity, a property

that is different from current-state opacity. We introduce

special versions of bisimulation called opaque observation

equivalence and opaque bisimulation, which consider the

secrecy status of states in the bisimulation setting.

In our methodology, the system is first abstracted by

merging some states or removing some transitions using

opaque observation equivalence. Next, the observer of the

abstracted system is calculated. Since the abstraction pro-

cedure reduces the size of the system, the computational

complexity of calculating the observer can potentially be

reduced significantly. In addition, the observer of the system

can be abstracted further using opaque bisimulation, before

calculating the desired observer. We show that the abstracted

observer and the abstracted desired observer are bisimilar

to their original counterparts and that they can be used to

obtain an abstracted AES. We prove that the abstracted AES

calculated in this manner still contains all the edit functions

that can be used to enforce opacity. Therefore, the performed

abstractions preserve the full generality of the AES for the

purpose of edit function synthesis.

The presentation of our results is organized as follows.

Sect. II gives a brief background about edit function and

the AES. Next, Sect. III explains how the abstraction-based

AES can be obtained. Then, Sect. IV defines the abstraction

methods that are used and shows how they are leveraged for

AES synthesis. Finally, some concluding remarks are given

in Sect. V. The proof of Theorems 2 and 4 have been omitted

due to space constraints.

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1394-8/18/$31.00 ©2018 IEEE 3573

II. OPACITY ENFORCEMENT BY EDIT

FUNCTIONS

We need to introduce a good amount of material about

opacity enforcement before we can present our contributions

in the following sections. We consider discrete event systems

modeled by deterministic or nondeterministic automata.

Definition 1: A (nondeterministic) finite-state automaton

is a tuple G = 〈Σtot ,Q,→,Q◦〉, where Σtot is a finite set

of events, Q is a finite set of states, → ⊆ Q×Σtot ×Q is

the state transition relation, and Q◦ ⊆ Q is the set of initial

states. G is deterministic, if |Q◦| ≤ 1 and x
σ
→ y1 and x

σ
→ y2

always implies y1 = y2.

We assume that the intruder can only partially observe G.

Thus, Σtot is partitioned into two disjoint subsets: Σ the set

of observable events and Σuo the set of unobservable events,

Σtot = Σ ∪̇ Σuo. Moreover, in opacity problems, the set of

states is also partitioned into two disjoint subset: QS the set

of secret states and QNS =Q\QS the set of non-secret states.

Σ∗ is the set of all finite traces of events from Σ, including

the empty trace ε . The natural projection P : Σ∗
tot → Σ∗ is the

operation that removes from traces t ∈Σ∗
tot all events not in Σ,

which means unobservable events. The transition relation is

written in infix notation x
σ
→ y, and is extended to strings in

Σ∗
tot by letting x

ε
→ x for all x ∈ Q, and x

tσ
→ z if x

t
→ y and

y
σ
→ z for some y∈Q. Furthermore, x

t
→ means that x

t
→ y for

some y ∈ Q, and x → y means that x
t
→ y for some t ∈ Σ∗

tot .

These notations also apply to state sets, X
t
→Y for X ,Y ⊆ Q

means that x
t
→ y for some x ∈ X and y ∈Y , and to automata,

G
t
→ means that Q◦ t

→, etc. For brevity, p
s
⇒ q, with s ∈ Σ∗,

denotes the existence of a string t ∈ Σ∗
tot such that P(t) = s

and p
t
→ q. Similarly, p ⇒ q means that there exists t ∈ Σuo

such that p
t
→ q.

The language of an automaton G is L (G)= {s∈Σ∗ |G
s
⇒

} and the language generated by G from q ∈ Q is L (G,q) =
{s ∈ Σ∗ | q

s
⇒}. For nondeterministic automaton G = 〈Σtot ,

Q,→,Q◦〉, the set of unobservably reached states of B ∈ 2Q,

is UR(B) =
⋃

{C ⊆ Q | B ⇒ C}. The observer automaton

det(G) = 〈Σ,Xobs,→obs,X
◦
obs〉 is a deterministic automaton,

where X◦
obs =UR(Qo) and Xobs ⊆ 2Q, and X →obs Y , where

X ,Y ⊆Xobs, if and only if Y =
⋃

{UR(y) | x
σ
→ y for some x∈

X and y ∈ Q}. By convention, in this paper, only reachable

states from X◦
obs under →obs are considered in Xobs.

One common automaton operation is the quotient modulo

an equivalence relation on the state set.

Definition 2: Let Z be a set. A relation ∼⊆ Z×Z is called

an equivalence relation on Z if it is reflexive, symmetric,

and transitive. Given an equivalence relation ∼ on Z, the

equivalence class of z ∈ Z is [z] = {z′ ∈ Z | z ∼ z′ }, and Z̃ =
{ [z] | z ∈ Z } is the set of all equivalence classes modulo ∼.

Definition 3: Let G = 〈Σtot ,Q,→,Q◦〉 be an automaton

and let ∼⊆ Q×Q be an equivalence relation. The quotient

automaton of G modulo ∼ is

G̃ = 〈Σtot , Q̃,→/∼, Q̃◦〉 , (1)

where →/∼ = {([x],σ , [y]) | x
σ
→ y} and Q̃◦ = { [x◦] | x◦ ∈

Q◦ }.

Bisimulation is a widely-used notion of abstraction that

merges states with the same future behaviour.

Definition 4: [9] Assume G1 = 〈Σtot,1,Q1,→1,Q
◦
1〉 and

G2 = 〈Σtot,2,Q2,→2,Q
◦
2〉 are two automata. A relation

≈ ⊆ Q1 ×Q2 is called a bisimulation between G1 and G2

if, for all x1 ∈ Q1 and x2 ∈ Q2 and for all σ ∈ Σ such that

x1 ≈ x2,

if x1
σ
→ y1 then ∃y2 ∈ Q2 such that x2

σ
→ y2 and y1 ≈ y2,

if x2
σ
→ y2 then ∃y1 ∈ Q1 such that x1

σ
→ y1 and y1 ≈ y2.

G1 and G2 are bisimilar if there exists a bisimulation ≈
between G1 and G2 such that Q◦

1 ≈ Q◦
2.

When def. 4 is applied on a single automaton (i.e., over

state space Q×Q), the bisimulation seeks to merge sates

with the same outgoing transitions into equivalence classes,

including outgoing unobservable events. If the unobservable

events are disregarded in bisimulation, a more general ab-

straction method called weak bisimulation or observation

equivalence is obtained.

Definition 5: [9] Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton. An equivalence

relation ∼ ⊆ Q×Q is called an observation equivalence

on G, if the following holds for all x1,x2 ∈ Q such that x1 ∼
x2: if x1

s
⇒ y1 for some s ∈ Σ∗, then there exists y2 ∈ Q such

that x2
s
⇒ y2, and y1 ∼ y2.

A system is opaque if an intruder cannot determine with

certainty, from the observed behavior, if the system has

entered a secret state. Different notions of opacity have been

introduced in literature [1]. In this paper only current-state

opacity is considered [2].

Definition 6: A nondeterminitic automaton G with set of

observable events Σtot = Σ ∪̇ Σuo and set of secret states QS

is current-state opaque with respect to QS if and only if

(∀q0 ∈ Qo,∀s ∈ L (G,q◦) : q◦
s
⇒ QS)

then (∃q′◦ ∈ Qo) such that [q′◦
s
⇒ QNS]

The system is current-state opaque if for any string reaching

a secret state, there is a string with the same sequence of

observable event reaching a non-secret state.

It is well-known [1] that current-state opacity can be

verified by building the observer automaton of G.

Definition 7: Let G = 〈Σtot ,Q,→,Q◦〉 be a nondetermin-

istic automaton with set of secret state QS. Let det(G) =
〈Σ,Xobs,→obs,X

◦
obs〉 be the observer of G. Then G is current-

state opaque with respect to QS if and only if [det(G)→obs

[s]X implies that X 6⊆ QS].
If all the states of the observer det(G) that are violating

current-state opacity are removed, the accessible part of

the resulting subautomaton of det(G) is called the desired

observer, denoted by detd(G). The language generated by

the desired observer is referred to as safe language (w.r.t.

opacity): Lsa f e = L (detd(G)). Accordingly, we define the

unsafe language, Lunsa f e = L (G)\Lsa f e.

If a system is not current-state opaque, then it is possible

to add an output interface called an edit function to enforce

opacity [4], [5], [8]. An edit function can both insert and

erase events and the intruder cannot distinguish between

3574

inserted events and their genuine counterparts. We denote

by Σε = {σ → ε : σ ∈ Σ} the set of “event-erasure” events.

Definition 8: A deterministic edit function is defined as

fe : Σ∗×Σ → Σ∗Σ∪{ε}. Given s ∈ L (G), σ ∈ Σ,

fe(s,σ) =











sIσ if sI is inserted before σ
ε if σ is erased

sI if sI is inserted and σ is erased

In [5] private safety for an edit function is defined,

when the intruder does not know about the edit function’s

implementation.

Definition 9 (Private Safety): [5] Given G and its ob-

server detd(G), an edit function fe is privately safe if ∀s ∈
L (G), fe(s) ∈ Lsa f e, i.e. fe(L (G))⊆ Lsa f e.

Recently, an approach to calculate the All Edit Structure,

or AES, which contains all the opacity-enforcing edit func-

tions, was investigated in [8], building on the work in [3],

[5]. In this approach, a so-called three-player observer of the

system is first calculated, then pruned to obtain the AES. In

this paper, we will follow the approach of the three-player

observer (TPO) to obtain the AES.

Definition 10 (Three-Player Observer): [8] Given a sys-

tem G, its observer det(G) and desired observer detd(G),
let I ⊆ Xobsd × Xobs be the set of information states.

A three-player observer is a tuple of the form T =
(QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz,→zw,→wy,y0), where:

• QY ⊆ I is the set of Y states.

• QZ ⊆ I ×Σ is the set of Z states. Let I(z), E(z) denote

the information state component and observable event

component of a Z state z respectively, so that z =
(I(z),E(z)).

• QW ⊆ I × (Σ ∪ Σε) is the set of W -states. Let I(w),
A(w) denote the information state component and action

component of a W state w respectively, so that w =
(I(w),A(w)).

• Σ ⊆ Σtot is the set of observable events.

• Σε is the set of event-erasure events.

• Θ ⊆ Σ∪{ε}∪Σε is the set of edit decisions at Z states.

(i) →yz: QY ×Σ×QZ is the transition function from Y

states to Z states. For y = (xd ,x f) ∈ QY , eo ∈ Σ, we

have: y
eo→yz z ⇒ [x f

eo→obs]∧ [I(z) = y]∧ [E(z) = eo].
(ii) →zz: QZ ×Θ×QZ is the transition function from Z

states to Z states. For z = ((xd ,x f),eo) ∈ QZ , θ ∈ Θ,

we have: z
θ
→zz z′ ⇒ [θ ∈ Σ] ∧ [I(z′) = (x′d ,x f)] ∧

[xd
θ
→detd x′d]∧ [E(z′) = eo].

(iii) →zw1: QZ ×Θ×QW is the ε insertion transition func-

tion from Z states to W states. For z = ((xd ,x f),eo)∈

QZ , θ ∈ Θ we have: z
θ
→zw1 w ⇒ [θ = ε]∧ [I(w) =

I(z)]∧ [A(w) = eo]∧ [xd
eo→detd]∧ [x f

eo→obs].
(iv) →zw2: QZ × Θ × QW is the event erasure transi-

tion function from Z states to W states. For z =

((xd ,x f),eo)∈ QZ , θ ∈ Θ, we have: z
θ
→zw2 w ⇒ [θ =

eo → ε]∧ [I(w) = I(z)]∧ [A(w) = eo → ε]∧ [x f
eo→obs].

(v) →wy1: QW ×Σ×QY is the transition function from W

states whose action component is in Σ to Y states. For

w = ((xd ,x f),eo) ∈ QW , we have: w
eo→wy1 y ⇒ [y =

(x′d ,x
′
f)]∧ [xd

eo→detd x′d]∧ [x f
eo→obs x′f].

(vi) →wy2: QW ×Σ×QY is the transition function from W

states whose action component is in Σε to Y states.

For w = ((xd ,x f),eo → ε) ∈ QW , we have: w
eo→wy2

y ⇒ [y = (xd ,x
′
f)]∧ [x f

eo→obs x′f].

• y0 ∈ QY is the initial Y state where y0 = (xobsd,0,xobs,0).
xobsd,0 and xobs,0 are initial states of detd(G) and det(G),
respectively.

In order to characterize the information flow in a TPO,

the notion of run is defined [8].

Definition 11 (Run): [8] In a three-player observer T , a

run is defined as: ω = y0
e0−→ z1

0

θ 1
0−→ z2

0

θ 2
0−→ ·· ·

θ m0−1

0−−−→ z
m0
0

θ m0
0−−→

w0
e0−→ y1

e1−→ z1
1

θ 1
1−→ z2

1

θ 2
1−→ ·· ·zm1

1

θ m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n

θ 1
n−→

·· ·zmn
n

θ mn
n−−→ wn

en−→ yn+1, where y0 is the initial state of T ,

ei ∈Σ, θ j
i ∈Θ(z j

i), ∀0≤ i≤ n, 1≤ j ≤mi and n∈N, mi ∈N+.

For simplicity, similar notation as for automata are used

for TPOs and thus T
ω
→ x denotes existence of a run in T .

Next, we need to define edit projection and string generated

by a run before we can state the key results we will leverage.

Definition 12 (Edit Projection): [8] Given a run ω =

y0
e0−→ z1

0

θ 1
0−→ z2

0

θ 2
0−→ ·· ·

θ m0−1

0−−−→ z
m0
0

θ m0
0−−→ w0

e0−→ y1
e1−→ z1

1

θ 1
1−→

z2
1

θ 2
1−→ ·· ·zm1

1

θ m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n

θ 1
n−→ ·· ·zmn

n

θ mn
n−−→ wn

en−→
yn+1, edit projection Pe : Ω → P[L (G)] is defined such that

Pe(ω) = e0e1 · · ·en.

Definition 13 (String Generated by a Run): [8] Given a

run ω = y0
e0−→ z1

0

θ 1
0−→ z2

0

θ 2
0−→ ·· ·

θ m0−1

0−−−→ z
m0
0

θ m0
0−−→ w0

e0−→ y1
e1−→

z1
1

θ 1
1−→ z2

1

θ 2
1−→ ·· ·zm1

1

θ m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n

θ 1
n−→ ·· ·zmn

n

θ mn
n−−→

wn
en−→ yn+1, the string generated by ω is defined as:

l(ω) = θ 1
0 θ 2

0 · · ·θ
m0−1
0 θ m0

0 e0θ 1
1 · · ·θ

m1
1 e1 · · ·en−1θ 1

n · · ·θ mn
n en,

where ∀i ≤ n, θ mi
i ei = ε if θ mi

i = ei → ε .

Definition 14 (Edit Function Embedded in TPO): [8]

Given TPO T , a deterministic edit function fe is embedded

in T , denoted by fe ∈ T , if ∀s ∈ P[L (G)], ∃ω ∈ ΩT , s.t.

Pe(ω) = s and l(ω) = fe(s).

In this sequel, the only TPO T we will consider is the

largest TPO that satisfies the above definition; i.e., all defined

transitions are included at each state. This structure is well

defined in terms of graph union [8]. After calculating the

largest three-player observer T , the next step is to remove

deadlocking Z-states and W -states, where no transition is

defined [8]. Those deadlocking states are due to infeasible

insertion choices as well as edit decisions that are not allowed

by edit constraints [8]. The three-player observer with no

deadlocking W or Z states is called complete. Since in this

paper we do not have any constraint and the edit function is

always allowed to erase events in its operation, there are no

deadlocking states in the largest three-player observer, which

is identical to the All Edit Structure.

Definition 15 (All Edit Structure): [8] Given system G,

observer det(G), desired estimator detd(G), the All Edit

Structure (AES) is the largest complete three-player observer.

3575

It is shown in [8] that all the edit functions that satisfy private

safety are embedded in the AES. This is analogous to the

result in [3] for insertion functions (i.e., no erasures).

Theorem 1: [4], [5] Given a system and its observer, an

edit function fe is privately safe if and only if fe ∈ AES.

Henceforth, our goal is to build the AES starting from

suitable abstractions of G and det(G).

III. ABSTRACTED ALL EDIT STRUCTURE

This section describes the abstraction-based All Edit Struc-

ture. We show in Corollary 3 below that AESs of bisim-

ilar observers and desired observers embed the same edit

functions. To establish this, Theorem 2 first establishes that

bisimilar observers and desired observers have AESs with

the same runs.

Theorem 2: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q \QS.

Let Hdet and Hdes be two deterministic automata such that

det(G)≈Hdet and detd(G)≈Hdes, where ≈ is a bisimulation

relation. Let AES be the All Edit Structure of G and let AES′

be the All Edit Structure of Hdet and Hdes. Then AES
ω
→ q

if and only if AES′
ω
→ q̃.

As was reviewed earlier, the AES is the largest three-

player observer under our assumption, and it contains all the

edit functions that can be used to enforce opacity. The fol-

lowing corollary shows that AESs of bisimilar observers and

bisimilar desired observer contain the same edit functions.

Corollary 3: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q \QS.

Let Hdet and Hdes be two deterministic automata such that

det(G)≈Hdet and detd(G)≈Hdes, where ≈ is a bisimulation

relation. Let AES be the All Edit Structure obtained from

det(G) and detd(G) and let and AES′ be the All Edit

Structure obtained from Hdet and Hdes. Then fe ∈ AES if

and only if fe ∈ AES′.

Proof (⇒) Assume fe ∈ AES. From fe ∈ AES it holds

that ∃s ∈ L (G), ∃ω ∈ AES such that Pe(ω) = s and l(ω) =
fe(s). Then based on Theorem 2 it holds that ω ∈ AES′ and

Pe(ω) = s and l(ω) = fe(s). Thus, fe ∈ AES′.

(⇐) The same argument as (⇒) holds. �

The following example is provided to clarify how the AES

is calculated. It will be re-used later.

Example 1: Consider automaton G with secret state QS =
2, Σ = {α,β ,γ} and Σuo = {τ}. Automaton G and its

observer are shown in Fig. 1. The system is not current-state

opaque as by executing event γ the intruder will know that

system is in the secret state 2. Thus, an edit function needs to

be calculated to enforce opacity. State 2 in det(G) is violating

current-state opacity, {2} ⊆ QS, and it is removed when

calculating the desired observer, detd(G). After removing

{2} state {4} becomes unreachable and should also be

removed. The desired observer is shown in Fig. 1. The next

step is to calculate the largest three-player observer, which is

shown in Fig. 1. In the figure Y , Z and W states are shown by

rectangular, oval and diamond, respectively. For simplicity

G

PSfrag replacements

0

4

12

3

5

α

β

β

γ

τ

det(G)

PSfrag replacements
0
4
1
2
3
5

α

β β

γτ {0}

{4}

{1}
{2} {1,3}

{5}

detd(G)

PSfrag replacements
0
4
1
2
3
5

α

β

γ
τ

{0}

{4}
{1}
{2}

{1,3}

{5}

(0,0)(0,0),γ

(0,0),
γ → ε

(0,2)

(0,2),β

(13,2),β(0,2),
β → ε

(13,2),β (13,2),
β → ε

(0,4)

(5,4)

(0,0),α

(0,0),
α → ε

(0,13)

(0,13),β

(0,13),
β → ε

(0,5)

(0,0),α

(13,13)

(13,13),β

(13,13),
β → ε

(13,5)

(13,13),β

(5,5)

γ → ε

γ α

β

γ

β → ε
α α

β
ε

β

β → ε

α → ε

α

β

β → ε

β

ε

α

β

β → ε

β

ε

β

β

Fig. 1. Automata of Example 1 and its corresponding AES.

the observer states in the three-player observer are shown

by their elements, i.e, 0 refers to the state {0}, 13 refers

{1,3}, etc. The initial state of the three-player observer is

y0 = (0,0). At (0,0) the dummy player execute event γ or

α . After executing α , Z state ((0,0),α) is reached. At state

((0,0),α) the edit function can either erase event α , where

the W state ((0,0),α → ε) can be reached, or take no action,

where the W state ((0,0),α) is reached. When the system

executes event α at the W state ((0,0),α) the Y state (13,13)
is reached. The whole structure is interpreted in a similar

way. The AES is the same as the calculated largest three-

player observer T and can be observed that all the Z and W

states have outgoing transitions.

IV. OPAQUE OBSERVATION EQUIVALENCE

In the previous section it was shown that bisimilar

observers and desired observers produce AESs with the same

edit functions. Following the results of Sect. III, in this

section abstraction methods are introduced to abstract the

system such that the observer and the desired observer of the

abstracted system are bisimilar to their original counterparts.

The abstraction methods are based on bisimulation and

observation equivalence, which are computationally efficient

and can be calculated in polynomial-time. In order to use

observation equivalence for abstraction in the setting of

opacity, the secrecy status of states needs to be considered. In

the following, a restricted version of observation equivalence

called opaque observation equivalence is defined.

Definition 16: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q \QS.

An equivalence relation ∼o ⊆ Q × Q is called an opaque

3576

input : G

G̃

det(G̃)

Hob Hb

Hobd

AESabs

opaque observation

equivalence, Theorem 4

observer

opaque bisimulation,

Theorem 4 and 5 bisimulation

desired observer

AES of Hb and Hobd , Theo-

rem 2, 6 and Corollary 3

Fig. 2. The steps of calculating an abstracted AES of system G.

observation equivalence on G with respect to QS, if the

following holds for all x1,x2 ∈ Q such that x1 ∼o x2:

(i) if x1
s
⇒ y1 for some s∈ Σ∗, then there exists y2 ∈Q such

that x2
s
⇒ y2, and y1 ∼o y2,

(ii) x1 ∈ QS if and only if x2 ∈ QS.

In this paper bisimulation is used to abstract the observer

of a nondeterministic system. Similarly to opaque observa-

tion equivalence, opaque bisimulation is defined.

Definition 17: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q \QS.

Let det(G) = 〈Σ,Xobs,→obs,X
◦
obs〉 be the observer of G. An

equivalence relation ≈o⊆ Xobs × Xobs is called an opaque

bisimulation equivalence on det(G) with respect to QS, if

the following holds for all X1,X2 ∈ Xobs such that X1 ≈o X2:

(i) if X1
s
→obs Y1 for some s∈ Σ∗, then there exists Y2 ∈Xobs

such that X2
s
→obs X2, and Y1 ≈o Y2,

(ii) X1 ⊆ QS if and only if X2 ⊆ QS.

Fig. 2 gives an overview of the methodology to construct

an abstraction-based AES. The input to the algorithm is a

nondetermistic automaton G. The algorithm first abstracts

G using opaque observation equivalence. This results in

G̃, which has fewer (or the same) states and transitions

as compared with G. Since the computational complexity

of calculating the observer of G is 2Q, merging states can

potentially reduce the complexity significantly. Next, opaque

bisimulation and bisimulation are applied to the observer

of G̃, det(G̃), resulting in abstracted deterministic automata

Hob and Hb, respectively. Next, Hob is used to calculate the

desired observer of the abstracted system, Hobd . The final

step is to calculate the AES from the abstracted observer Hb

and the abstracted desired observer Hobd . It will be shown

G̃

PSfrag replacements

0

4
1

2

[4]

[1]
[4]

α

β β

γ

τ

Hd

PSfrag replacements

0

4
1
2

[4][1]

[4]
α

βγ
τ

Hb

PSfrag replacements

0
4
1
2

[4][1]

[4]

α

β

γ

τ

(A,A)(A,A),γ

(A,A),
γ → ε

(A,B)

(A,B),β

(A,B),
β → ε

(B,B),β

(B,B),β (B,B),
β → ε

(A,C)

(C,C)

(A,A),α

(A,A),
α → ε

(A,A),
α

(B,B)

(B,C)

γ α

β β

γ → ε

γ

β → ε

β

α

α → ε α

α

ε β → ε

β β

α

Fig. 3. Automata of Examples 2-3.

that the abstracted AES embeds all the possible edit functions

that enforce opacity of the system.

The first step of the abstraction-based AES algorithm is to

abstract the system using opaque observation equivalence. It

has been shown in [11] that if two automata are bisimilar,

then their observers are also bisimilar. In this paper this result

is extended: abstracting a nondeterministic automaton using

opaque observation equivalence results in an observer and a

desired observer which are bisimilar to the original system’s

observer and the desired observer, respectively.

Theorem 4: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q\QS. Let

∼0 be an opaque observation equivalence on G resulting in

G̃ and let ≈ be a bisimulation. Let detd(G) and detd(G̃) be

the desired observer of G and G̃. Then det(G)≈ det(G̃) and

detd(G)≈ detd(G̃).
The need for using opaque observation equivalence and

considering the secrecy status of the merged states is essen-

tial to guarantee bisimilarity between the abstracted desired

observer and the original desired observer.

Example 2: Consider automaton G with set of secret

states QS = {2} and Σ = {α,β ,γ} and Σuo = {τ}, shown

in Fig. 1. States 1 and 3 are opaque observation equivalent

as they are both non-secret states and state 5 can be reached

from both by ignoring the unobservable event τ . Thus, 1

and 3 can be merged. A similar argument holds for states 4

and 5. Merging the equivalent states results in G̃ shown in

Fig. 3. Since G̃ is deterministic, then det(G̃) is isomorphic to

G̃. Since {2} ⊆ Q̃S it should be removed when calculating

detd(G̃). The desired observer detd(G̃) is shown in Fig. 3

as Hd . It can be observed that Hd is bisimilar, in fact

isomorphic, to detd(G), shown in Fig. 1.

Opaque observation equivalence seeks to merge the states

of a nondeterministc automaton before the construction of

3577

the observer. After calculating the observer it is possible

to abstract the observer further using opaque bisimulation.

This can guarantee construction of the smallest observer that

generates the same language as the original observer. Then

Theorem 5 shows that if opaque bisimulation is used to

abstract the observer of an automaton then the abstracted

desired observer is bisimilar to the original desired observer.

Theorem 5: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret

states QS ⊆ Q and set of non-secret states QNS = Q \QS.

Let ≈o be an opaque bisimulation on det(G) resulting in

d̃et(G). Let detd(G) and Hd be the desired observers of

det(G) and d̃et(G), respectively. Then detd(G)≈ Hd , where

≈ is a bisimulation relation.

Proof Since det(G)≈o d̃et(G), based on Def. 17 it holds

that det(G)
s
→obs X if and only if d̃et(G)

s
→ [X ′] and X ∈ [X ′].

Thus, it is enough show that X 6∈ Xobs,detd(G) if and only if

[X ′] 6∈ Xobs,Hd
, where X ∈ [X ′].

First assume X ⊆ QS, which mean X 6∈ Xobs,detd(G). Then

since X ∈ [X ′] based on Def. 17 it holds that ∀X ′ ∈ [X ′], X ′ ⊆
QS. This means [X ′]⊆ QS and consequently [X ′] 6∈ Xobs,Hd

.

Now assume [X ′] ⊆ QS, which mean [X ′] 6∈ Xobs,Hd
. Then

since X ∈ [X ′] based on Def. 17 it holds that X ⊆ QS. This

means X 6∈ Xobs,detd(G). �

So far, we have shown that after opaque observation

equivalence, the resulting observer and desired observer

are bisimilar to the original observer and desired observer,

respectively. Moreover, in Theorem 5, it was proven that

opaque bisimulation can be used to abstract an observer and

then the abstracted desired observer will be bisimilar to the

original desired observer. Therefore, based on Corollary 3,

it can be established that opaque observation equivalence

and opaque bisimulation can be used to abstract a nonde-

terministic system and its observer to reduce computational

complexity. This result is shown in the following theorem.

Theorem 6: Let G be a nondeterministic automaton with

set of secret states QS. Let det(G) and detd(G) be the

observer and the desired observer of G, respectively, and

let AES be the All Edit Structure of G. Let ∼o be an opaque

observation equivalence on G resulting in G̃. Let ≈o and ≈
be opaque bisimulation and bisimulation on det(G̃), resulting

in Hob and Hb, respectively, such that Hob ≈o det(G̃) and

Hb ≈ det(G̃). Let Hobd be the desired observer obtained from

Hob and let AESabs be the All Edit Structure obtained from

Hobd and Hb. Then fe ∈ AES if and only if fe ∈ AESabs.

Proof The proof follows directly from Theorem 4 and 5

in combination with Corollary 3.

Example 3: Consider automaton G with set of secret

states Q̃S = {2}, Σ = {α,β ,γ} and Σuo = {τ}, shown in

Fig. 1. As it was shown in Example 2, G can be ab-

stracted using opaque observation equivalence. The resulting

abstracted automaton G̃ is shown in Fig. 3. The next step

is to calculate the observer of G̃. Since G̃ is determinisitic

det(G̃) is isomorphic to G̃. Next, opaque bisimulation is

applied to det(G̃), resulting in automaton Hob. States 2 and

[3] are bisimilar but not opaque bisimilar as [3] 6⊆ Q̃S and

2 ⊆ Q̃S. Thus, Hob and det(G̃) are the same. Next, the

desired observer Hobd is obtained by removing state 2 from

Hob. Hobd is shown in Fig. 3 as Hd . After calculating the

desired observer automaton, det(G̃) can be abstracted further

using bisimulation, resulting in Hb, shown in Fig. 3. The

final step is to calculate AESabs from Hobd and Hb. Fig. 3

shows AESabs, and Fig. 1 shows AES, which is the All Edit

Structure of the original system. Comparing AES and AESabs,

it can be observed that AESabs and AES embed the same edit

functions while AES has 24 states and AESabs has 16 states.

V. CONCLUSION

We investigated abstraction-based synthesis of edit func-

tions for opacity enforcement based on the All Edit Structure.

The AES is a game-like structure that embeds all valid

edit functions that can be used to make a non-opaque

system opaque. To mitigate the computational complexity

of constructing the AES, we defined two bisimulation-based

abstractions that account for the secrecy status of states:

opaque observation equivalence and opaque bisimulation.

We presented a methodology that employs these abstractions

to reduce the size of the original system model and of its

observer, in the process of synthesizing a reduced AES that

still embeds all valid edit functions. It would be of interest to

investigate in the future how abstraction methods should be

adapted when there are constraints on edit functions that arise

when synthesizing the AES. Moreover, developing scalable

benchmarks to quantify the performance gains from these

abstraction methods is also of interest.

REFERENCES

[1] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Re-

views in Control, 2016.
[2] A. Saboori and C. Hadjicostis, “Notions of security and opacity in

discrete event systems,” in Decision and Control, 2007 46th IEEE

Conference on. IEEE, 2007, pp. 5056–5061.
[3] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for

enforcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[4] Y. Ji and S. Lafortune, “Enforcing opacity by publicly known edit
functions,” in Proc. 56th IEEE Conf. Decision and Control, CDC ’17,
Dec. 2017, pp. 4866–4871.

[5] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,” J.

Automated Reasoning, vol. 60, pp. 107–131, 2018.
[6] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public

and private insertion functions,” Automatica, accepted, to appear 2018.
[7] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement by insertion

functions under energy constraints,” in Proceedings of the 14th Inter-

national Workshop on Discrete Event Systems, 2018, pp. 291–297.
[8] ——, “Opacity enforcement using edit functions,” IEEE Transactions

on Automatic Control, under review, 2017.
[9] R. Milner, Communication and concurrency, ser. Series in Computer

Science. Prentice-Hall, 1989.
[10] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic

finite transition systems: A bisimulation relation approach,” in Proc.

56nd IEEE Conf. Decision and Control, CDC 2017, Dec. 2017, pp.
5615–5619.

[11] J. Rutten, “Automata and coinduction (an exercise in coalgebra),” in
Proc. 9th Int. Conf. Concurrency Theory, CONCUR ’98, ser. LNCS,
vol. 1466. Springer, 1998, pp. 194–218.

3578

