MCSL Network-on-Chip Traffic Suite
User Manual

Version 1.6
Mobile Computing System Lab
Department of Electronic and Computer Engineering
Hong Kong University of Science and Technology
http://www.ece.ust.hkieexu/
January 2014

Network-on-chip (NoC) traffic patterns are essential tdolsNoC performance assessment and archi-
tecture exploration. The fidelity of NoC traffic patterns lpaefound influence on NoC studies. Random
traffic patterns use probability distributions to randoenan-chip communication traffic characteristics,
such as packet destination and transmission interval. Qaiig parameters properly for random traffic
requires comprehensive knowledge of the correspondifgstiearaffic patterns, and it is in general hard
to truly reflect realistic traffic characteristics. On théaert hand, realistic traffic patterns are based on the
behaviors of real applications, and they can provide moceirate performance and power consumption
results, and more comprehensive information to improve Noshitectures.

We provide a NoC traffic pattern suite for efficient NoC-bassdtiprocessor system-on-chip (MPSoC)
evaluations. The publicly released MCSL NoC traffic patwuite includes a set of realistic traffic patterns
for eight real-world applications and covers popular No€héectures, and can be downloaded from [1].
It captures both the communication behaviors in NoCs andetgoral dependencies among them. Each
traffic pattern in MCSL has two versions, a recorded traffitgga (RTP) and a statistical traffic pattern
(STP). The former provides detailed communication tracesdmprehensive NoC studies, while the latter
helps to accelerate NoC explorations at the cost of acculd®y proposed traffic generation methodology
uses formal computational models to capture both commtioicaand computation requirements of
applications. It optimizes application memory requiretsemapping and scheduling to maximize overall
system performance and utilization before extractinditrgfatterns through cycle-level simulations. The
MCSL NoC traffic pattern suite provides an essential toolNoC architecture exploration and evaluation.
It can be easily incorporated into existing NoC or multi¢corany-core simulators and substantially
improve NoC simulation accuracy.

. TRAFFIC MODELING AND GENERATION METHODOLOGY

An overview of the traffic generation methodology is showrFig. [1. The generation process starts
with an application model and an architecture model. SInESBIC applications are often performance-
sensitive, it is necessary to perform optimizations andoperance evaluation for traffic generation. The
traffic obtained in this way is essentially different fronattobtained via a random approach and is more
realistic to reflect the actual communication behaviors practical MPSoC design. As shown in Fig. 1,
the traffic patterns are generated through four steps: mespmace allocation, mapping and scheduling,
performance evaluation and traffic generation. Two typesaffic patterns are generated, called RTP and
STP. The generation steps interact with each other closblyy are essential for the methodology since
these decisions substantially affect the final traffic patt®©ptimized decisions can take full advantage
of the parallel hardware resources in MPSoC and improveatlveystem performance and resource

http://www.ece.ust.hk/~eexu/

utilization. The methodology is designed with the flexityiliscalability and extensibility on the choice of
these algorithms. More details of the methodology can badadun our previous publication [2].

Application Architecture
model model

(Memory space allocation

Mapping and scheduling

C Performance evaluation)

(Traffic generation

Recorded Statistical
traffic pattern traffic pattern

Fig. 1. An overview of the traffic generation methodology.

A. Memory space allocation

Task communication graphs (TCGs) are used to model the capiplns. In the application model,
each edge has a piece of memory space for data exchange betagks. When the application is
executed repeatedly in an iterative fashion, insufficieeihmary space allocated to the edge can limit
the parallelism of the application and impact its perforoerrherefore, it is important to determine the
memory requirement on the edges to maximize the performance

Basically, we apply genetic algorithms to find the minimummmoey space that will make no negative
impact to the application performance. There are two olwestto be optimized: maximizing application
throughput in higher priority and minimizing total memorizes in lower priority. We apply genetic
algorithms to explore possible memory size allocationgluwate them by calculating the theoretical
throughput of the TCG under the memory constraint, and ccinthese two steps iteratively until a
satisfiable result is obtained.

B. Mapping and scheduling

The traffic generation methodology uses a centralized sdimgdstrategy to manage the entire chip
resources and coordinate processing blocks (PBs). In thig thhe scheduling and control decisions
made are globally optimized for the whole system. We devalépad balanced mapping and static order
scheduling approach. The basic idea is to distribute psicg®nd network transmission workloads evenly
to achieve high utilization of the hardware resources. Tl@pmng strategy is to assign tasks to PBs one
by one in the topological order defined by the dependencyioek in the graph, and the schedule on
each PB is determined by the sequence of the tasks on the sBngerferated during the mapping.

The objective is to minimize the application’s end-to-enga@ition time with network communication
overhead taken into consideration.

C. Generation of traffic patterns

The RTP contains detailed and accurate trace of task ermesuand communications. It is used
for precise and comprehensive NoC studies. A RTP is gerkidueng cycle-level simulations for an
application model on a NoC simulation platform based on&yu& with the memory space allocation and
mapping and scheduling results. It contains more accu@tguatation and communication traces, where
all the task execution and packet generation events aredetoThe RTPs are reusable on NoCs with
different configurations but the same topology. Since trecepacket delays among PBs are related with
specific NoC configurations, the RTPs keep the packet deperegeinstead of exact timings. When the
traffic patterns are applied to a different NoC configuratahthe temporal relations can be reconstructed
correctly.

The STP gives a concise representation of the informaticoutth mathematical modeling. It can be
used to support long simulation runs, and is useful for sydevel statistical evaluation and analysis.
With the results obtained above, the STPs can be synthefizeapplications that provide statistical
distributions of task executions, packet generations eantstnissions. We design the traffic patterns with
enhanced reusability compared to previous works.

II. THE MCSL NoOC TRAFFIC SUITE

We provide two types of traffic patterns for NoC. RTP is usébuldetailed studies as it provides accurate
information. STP is useful for long simulation runs to find awerage and worst/best characteristics due
to its statistical nature. We will describe each type officgbattern in detail in the following sections.

A. Application and architecture models

Fig. 2: Part of the H.264 video decoder’s task communicagj@aph.

We use the TCG model as the input of the traffic modeling an@gion flow to faithfully capture the
computation and communication requirements of real apfitinos. A TCG is a directed gragh, = (V, E),
where V' is the set of vertices representing computation tasks, /and the set of edges representing
communication links between tasks. A taskhas a normalized execution timte A directed edge: =
(vs,vq, w) has a source task, a destination task, and the amount of data that sends from, to v,.
For example, Figurel2 shows a part of the TCG for H.264 decMierinclude applications from different
domains in the MCSL NoC traffic suite v1.6. Their character$sare listed in Tablg I.

TABLE I: The applications included in the MCSL NoC traffic gl

Number of
Application Description Number of Tasks Communication
Links
Reed-Solomon code encoder with codeword formgat
RS-3228 8 enc RS(32.28,8) 262 348
Reed-Solomon code decoder with codeword formgat
RS-3228 8 dec RS(32.28,8) 182 392
H264-720pdec H.264 video decoder with a resolution of 720p 2311 3461
H264-1080pdec H.264 video decoder with a resolution of 1080p 5191 7781
ROBOT Newton-Euler dynamic control calculatlpn for the 88 131
6-degrees-of-freedom Stanford manipulator
EPPPP SPEC95 Fpppp is a c_hemlcal program performing 334 1145
multi-electron integral derivatives
FFT-1024 complex Fast Fourier transform with 1024 inputs of complex 16384 25600
numbers
SPARSE Random sparse maitrix S(_)Iver for electronic circuif 9% 67
simulations

An architecture model captures the hardware configuratioren MPSoC including PBs and NoC.
Each PB could be a processor core, a cluster of processa®@, @meemory/buffer/cache, or a combination
of them. MPSoCs can have homogeneous as well as heterogeR&suand use different NoCs. For
the traffic suite, we currently target regular NoC topolgsgisuch as mesh, torus and fat tree. MPSoC
architectures with three different regular-topology Nad@s illustrated in Figl]3. The selection tries to
cover the most popular NoC architectures first and will beaexied in the future. The rules of identifying
the PBs with their coordinates (for mesh and torus) and Iseumbers (for fat tree) are also displayed
in Fig.[3. They will be applied in the traffic trace files to peasthe mapping results.

iﬂ PB(0,0) PB(0,1) PB(0.2) PB(0.3) PB(0,0) PB(0.1) PB(0.2) PB(0,3)
:]] N N]]]]
PrOC@SSlng R R R R R R R R
Block
PB(1,0) PB(1,1) PB(1.2) PB(1.3) PB(1.0) PB(1.1) PB(1,2) PB(1,3)
@ 1 N N N] N N ~]
R R R R R R R R
Network S
Interface PB(2.0) PB(2.1) PB(2.2) PB(2.3) PB(2,0) PB(2.1) PB(2.2) PB(2,3)
[N} [~ N N [N} [~ N [N}
R R R R R R R R
PB(3,0) PB(3.1) PB(3.2) PB(3.3) PB(3.0) PB(3.1) PB(3.2) PB(3.3)
Router
]] N N [N]]]]
R R R R R R R R

Interconnect (a) 4*4 Mesh (b) 4*4 Torus

(c) Fat tree

Fig. 3: 16-core MPSoCs with three different regular-toggldNoCs.

We define an architecture model as a gr@ph= (P, N), where P is a set of heterogeneous PBs,
and N is an on-chip communication architecture organized in a [ga@digm. A PBp has an attribute,
acceleration factorn, for tasks executed on it, and the actual execution time eftdsk on this PB is
determined both by its normalized execution time and thelacation factor of the PB. Specifically, the
running time is the multiplication of the two values. The Ntpologies and sizes included in the current
version of the traffic suite are listed in Tallé 1. The nunsbier the code column are used to indicate the
topologies in the traffic files.

TABLE II: The NoC configurations included in the MCSL NoC fiiafsuite.

Topology | Code Size (number of processors)

2x2, 2x4, 3x3, 4x4, 5x5, 4x8, 6x6, 7X7,
Mesh 0 8x8, 9x9, 10x10, 11x11, 8x16, 12x12,
13x13, 14x14, 15x15, 16x16

2x2, 2x4, 3x3, 4x4, 5x5, 4x8, 6x6, 7X7,
Torus 1 8x8, 9x9, 10x10, 11x11, 8x16, 12x12,
13x13, 14x14, 15x15, 16x16

Fat tree 2 4, 8, 16, 32, 64, 128, 256

In the MCSL NoC traffic suite v1.6, the two types of traffic gatts for all 8 realistic applications on
the three NoC topologies with different sizes listed in Ellilare provide.

B. The recorded traffic pattern

A RTPis given byT, = {V,(p) | p € P}, whereV,(p) represents the recorded behaviors of the
set of tasks scheduled and executed onPBhe tasksV, = {(s(v),t(v),1S(v),0S(v)) | v € V},
where taskv has execution time, and the unique sequence number for scheduling ip @ s(v). The
execution condition of task is given by its input set of informatiohS(v) = {(v;(e), ni(e),mi(e)) | e €
E;(v),v;(e) € V}, whereE;(v) C E is the set of incoming edges of the data on every incoming edge
n;(e) must be ready for, and the data are obtained from the corresponding predeceskv;(e) and
read from the memory space startednat(e). The result of the task execution is given by the output
set of informationOS(v) = {(v,(€),po(€), mo(€),ds(€)) | € € Ey(v),v,(e) € V,p,(e) € P}, where
E,(v) C E is the set of outgoing edges of and that is to generate data of sizge) to edgee € E,(v),
the destination is the successor tagke) on PBp,(e¢), and the data are written to the same memory
spacem,(e), respectively. Each data is written to and read from the santdeal memory address, i.e.,
m;(e) = m,(e). The data sizel,(e) determines the number of packets that may be delivered ghrthe
network.

Since the absolute timing between task executions and comcations is dependent on the simulation
platform and can be affected by routing algorithm, routehaecture, etc., it could not be used in new
simulations with different settings. The RTP keeps dataeddpncies and temporal relations using relative
timing instead of absolute timing. The relative timing Wk generated according to the real dependencies
in the applications and is guaranteed to be the correct s@saifhis enhances the reusability of our
traffic suite. NoC designs with the same topology and netveir& to the given traffic pattern can use it
to evaluate the performance of their platform.

1) File format: The format of the trace file is shown in Talblel lll. We call a datack generated by
one execution of the source task on the edge “a message” hanchéssage size is given words (32
bits). The task execution time is given by the numberlick cycles Each edge is allocated a dedicated
virtual memory space aligned omords The virtual memory address for every message is given in the
trace usingbyte addressingin addition, the list of starting tasks are the tasks withpneceding tasks or
incoming edges, and the list of finishing tasks are the tass mo succeeding tasks or outgoing edges.
They are also provided in the trace files.

Note that there are multiple entries for the items startintp Wiist of” and the number of entries is
equal to the number of iterations. In the traffic suite, 2@aitiens are recorded starting from an MPSoC

Mraffic patterns of H264-1080plec on fat tree NoC with 256 PUs are not included in the curseite

TABLE lll: The format of the recorded traffic trace file.

Header block (5 line) *

trace type
topology number of PBs number of rows number of columns
number of tasks number of edges number of iterations
number of starting tasks list of starting tasks
number of finishing tasks list of finishing tasks

Task execution block (number of tasks lines, each of which is as follows) 2*
task id mapped PB id / coordinate

list of schedule sequence numberdist of recorded execution times

Task communication block (number of edges lines, each of which is as follows) *

edge id source task id destination task id

list of memory addresses list of recorded message sizes

! The number of rows and columns are both 0 in fat tree

2 The mapping result is given by a two-dimensional coordirfatgy) in mesh and torus, and a single PB ID number in fat
tree. The rule for processor identification is illustratadFig.[3.

3 Unit of task execution time: clock cycle

4 Unit of message size: word or 32 bits

executing the first tasks to the execution of the last tasksdivde the total 20 iterations into 3 stages,
namely Ramp-Up stage (the first five iterations), Stableesf@ige 6th-15th iteration) and Ramp-Down
stage (the last five iterations).

2) Data structure: We define the data structure for the RTP. Using the includeffidrloader, the
traffic can be easily used in various simulators. As shownahbld[1V, the trace is recorded according to
a vector of PBs, each of which contains recorded informaiorhe task invocations, memory addresses
and packet transmissions on the PB. The schedule of theriasknces on each PB is explicitly marked
in each task and implicitly included by the sequence of tls&dastored in the task list vector.

C. The statistical traffic pattern

A STPis given byT, = {Vi(p) | p € P}, whereV,(p) represents the statistical behaviors of the set
of tasks scheduled and executed on PBThe task set/; = {(s(v), D;(v),IS(v),0S(v)) | v € V},
where the schedule of taskis given by a unique sequence numBér) > 0, and the execution time
of the task in different instances follow the Gaussian dhation with meany; and standard deviation
ot Di(v) = (ue(v), oe(v)), ue(v) > 0,04(v) > 0. Suppose task is executed orp for [times. Let the
execution time of thg-th (j € [1,1]) execution be;. The mean and standard deviation for the Gaussian
distribution ofv's execution can be computed as follows:

l

ple) = 734 @
1];

W) = 70— () @

<
I
—

TABLE IV: The data structure of the recorded traffic trace.

cl ass RecEdge {

int id; /1 the id of the edge
RecTask=* src_task; /'l the source task
RecTask* dst _t ask; /1 the destination task
vect or <i nt > mem addr _| i st; /1 the list of menory addresses
vect or <doubl e> rec_nsg_size_list; /1 the list of recorded nessage sizes
b
cl ass RecTask {
int id; /1 the id of the task
RecProc* proc; /1 the PB the task is assigned
vect or <i nt > schedul e_li st; /Il the list of task schedul e sequence nunbers
vect or<i nt> rec_time_list; /Il the list of recorded execution tines
vect or <RecEdgex > i ncom ng_edge_list; /'l each entry is an incom ng edge
vect or <RecEdgex > out goi ng_edge_li st; /1 each entry is an outgoing edge
b
class RecProc {
int id; /1 the id of the PB
int row_i ndex; /1 the row index in nesh/torus
int col _i ndex; /1 the colum index in nmesh/torus
vect or <RecTask*> task_list; /1 the list of schedul ed tasks
b
cl ass RecNCCTraffic {
int t opol ogy; /'l the topol ogy code
int num r ow; /1 the number of rows in mesh/torus
int num col ; /1 the nunber of columms in nmesh/torus
int num.iter; /1 the nunber of iterations the graph executes for
vect or <RecPr oc> proc_list; /1 the list of PBs
vect or <RecTask> task_list; /1l the list of tasks
vect or <RecEdge> edge_list; /1 the list of edges
vect or <RecTask*> starting_task_list; /1 the list of starting tasks
vect or <RecTaskx > finishing_task_list; /1 the list of finishing tasks
b

The execution condition of tagkis given by its input set of informatiohS (v) = {(v;(e), ni(e), m;(e)) |
e € E;(v),vi(e) € V}, whereE;(v) C E is the set of incoming edges of the data on every incoming
edgen;(e) must be ready for, and the data are obtained from the corresponding predeceskov;(e)
and read from the memory space startedhdte). The result of the task execution is given by the output
set of informationOS(v) = {(v.(e), po(€), mo(€), Dy(e), Di(e)) | e € E,(v),v,(e) € V,p,(e) € P},
where E,(v) C E is the set of outgoing edges of and that is to generate some amount of data to each
edgee € E,(v), the destination is the successor tagke) on PBp,(e), and the data are written to the
memory space started at,(e), respectively. We provide virtual memory address in th#fitrauite. Each
data is written to and read from the same virtual memory addregardless of the memory architecture,
i.e., m;(e) = m,(e). The data size generated on an edge can be described by tlssig@adistribution
Dy(e) = (nale), oa(e)), nale) > 0,04(e) > 0. Suppose the data sizes generated on edgethe | times
of v's executions aré; . .. d;, respectively. The data size generated on each outgoing @digskv can
be calculated as follows:

pale) = 134, @
l
o) = (s~ pale)? @

<
I
-

With a given memory architecture, if the data generated lgsk ts going to be sent to a different PB
via the on-chip communication network, they will be assesdbihto packets as they are generated during
the execution of the task. The traffic suite is compatiblehwiifferent packet definitions, and we assume
a fixed packet size is used as an example in the STPs. Theraefonember of packets are generated to
assemble the data. The packet generation interval, whittteiselative distance between two consecutive
generated packets, follows the negative exponentialilblision D;(e) with rate parametei;(e) > 0 for
v's executions. To make it realistic, we restrict the uppeurizb of the packet generation times to the
finish time of the source task, i.e., the task will generatdéha remaining output data at the end of the
execution. Suppose the fixed packet size.i¥he rate parameter for the negative exponential distahut
of the packet generation intervals can be computed as fsilow

pale)
M) =)

We use a fixed packet size of 8 flits and 32 bits per flit in the SifPlsided in the traffic suite. The
defined traffic pattern describes the statistical behawbrhe application running on the platform. We
specify the deterministic task dependency relations ingieerated traffic by the input and output sets
IS(v) andOS(v), and include the task mapping and scheduling results asawefiemory space allocated
to the edges and distributed among the network. Three keyponents, the task execution times, the sizes
of the data produced by the tasks and the relative time ialethat these data are assembled into packets,
are described by statistical formulations. The generagtem is useful for evaluating NoC designs with
the same topology and network size, while other NoC configana (such as routing algorithm, flow
control strategy, link bandwidth and so on) can be flexiblgsen.

TABLE V: The format of the statistical traffic trace file.

Header block (5 line) *

trace type
topology number of PBs number of rows number of columns
number of tasks number of edges
number of starting tasks list of starting tasks
number of finishing tasks list of finishing tasks

Task execution block (number of tasks lines, each of which is as follows) 2*
task id mapped PB id / coordinate schedule sequence number

ot Ot

Task communication block (number of edges lines, each of which is as follows) *

edge id source task id destination task id
memory starting address memory size
Hd Od)\1

! The number of rows and columns are both 0 in fat tree

2 The mapping result is given by a two-dimensional coordiratey) in mesh and torus, and a single PB ID number
in fat tree. The rule for processor identification is illaged in Fig[B.

8 Unit of task execution time: clock cycle

4 Unit of message size: word or 32 bits

1) File format: The format of the trace file is shown in Table V. The basic sg#tiare similar with
those in the RTP as presented in Secfion 1I-B1. A differemscthat the virtual address of the memory

space is given by a pair: the starting address and the menm®yBy/te addressings used, but each
message occupies the space for an integer number of words.

TABLE VI: The data structure of the statistical traffic trace

cl ass Stat Edge {

i nt id; /1 the id of the edge
St at Task=* src_task; /1 the source task
St at Task=* dst _task; /1 the destination task
int mem st art_addr; /1 the starting address of the nenory
i nt mem si ze; /'l the size of the menory
doubl e mu_nsg_si ze; /1 the nean of the nmessage size
doubl e si gna_nsg_si ze; /1 the sd of the nessage size
doubl e | anbda_pkt _i nterval ; /Il the rate paraneter, the inverse of
/1 the average packet generation interval
b
cl ass StatTask {
int id; /1 the id of the task
St at Procx proc; /1 the PB the task is assigned
int schedul g; /1 the task schedul e sequence nunber
doubl e mu_tine; /1 the nean of the task execution tine
doubl e sigma_tine; /'l the sd of the task execution tinme
vect or <St at Edgex* > i ncom ng_edge_list; /'l each entry is an incom ng edge
vect or <St at Edge*> out goi ng_edge_li st ; /'l each entry is an outgoing edge
b
class StatProc {
int id; /1 the id of the PB
int row_i ndex; /1 the row index in nesh/torus
int col _i ndex; /1 the colum index in nmesh/torus
vect or <St at Taskx> task_list; /1 the list of schedul ed tasks
b
class StatNOCTraffic {
int t opol ogy; /'l the topol ogy code
int num r ow; /1 the number of rows in nmesh/torus
int num col ; /1 the nunber of columms in nesh/torus
vect or <St at Proc> proc_list; /'l the list of PBs
vect or <St at Task> task_list; /1 the list of tasks
vect or <St at Edge> edge_list; /1 the list of edges
vector<Stat Task*> starting_task_list; /1 the list of starting tasks
vector<Stat Task+*> finishing_task_list; /Il the list of finishing tasks
b

2) Data structure: We define the data structure for the statistical traffic patt€sing the included
traffic loader code, traffic can be easily used in various &tous. As shown in Table_VI, the trace
is recorded according to a vector of PBs, each of which costatatistical information for the task
invocations, memory addresses and packet transmissiotiseoRB. The schedule of the tasks on each
PB is explicitly marked in each task and implicitly includbeg the sequence of the tasks stored in the
task list vector.

D. Memory information

The traffic suite provides the memory addresses for the ggooé the data generated on the edges in
the form of virtual memory addresses. The use of virtual mgnaaldresses allows users to experiment
different memory organizations and physical memory aliocs. The addresses are given in a single
continuous virtual memory space, and each edge is assigitedavdedicated section of the space. The
source task of the edge will write data to the given addresisthe destination task will read data from
the same address. The sequence of address assignmentnsP@viey PB that starting from 0x0. Byte

addressing is applied, i.e., each memory address identifieparticular byte. Note that the size of a data
block is aligned on words (32 bits), so the memory space foh eslge is always an integer number of
words.

The STPs are intended for long simulation runs. In the STésthe of the data block on each edge
is described by a Gaussian distribution. The allocated mgmsgace should be able to support the worst
case in which a data block has the largest possible sizeefdrer the size of the data block in the worst
case is used to calculate the memory size for the edge in tiet@Quarantee correct executions. In
the recorded traffic patterns, the exact size is given foh elata block generated by one execution of a
task. The memory address is given in this regard and a vettimemory addresses are available for the
iterative generation of data blocks on the edge when thedaskutes for multiple instances.

E. Application performance measurement

The applications in the MCSL traffic suite are run iteratyvahd different iterations are overlapped to
achieve higher performance. The performance metric of [l&ppon execution time per iteration” is the
average time used for one iteration of an application’s ettes. We have listed the starting task set and
finishing task set for each application in the traffic patseifhe starting time of an iteration is determined
by the earliest starting time of the tasks in the starting tset, the finishing time of an iteration is
determined by the latest finishing time of the tasks in theslfimg task set, and the difference of these
two metrics for one iteration is the execution time of tharation of the application. The Application
execution time per iteration is the average time over allitheations of the application’s execution, and
can be obtained by monitoring the starting and finishing k.

REFERENCES

[1] www.ece.ust.hkfeexu.
[2] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, drz. Wang, “A noc traffic suite based on real applications, VinSI
(ISVLSI), 2011 IEEE Computer Society Annual Symposiunjubn2011, pp. 66 —71.

www.ece.ust.hk/~eexu

	Traffic modeling and generation methodology
	Memory space allocation
	Mapping and scheduling
	Generation of traffic patterns

	The MCSL NoC traffic suite
	Application and architecture models
	The recorded traffic pattern
	File format
	Data structure

	The statistical traffic pattern
	File format
	Data structure

	Memory information
	Application performance measurement

	References

