
MCSL Network-on-Chip Traffic Suite
User Manual

Version 1.6
Mobile Computing System Lab

Department of Electronic and Computer Engineering
Hong Kong University of Science and Technology

http://www.ece.ust.hk/∼eexu/
January 2014

Network-on-chip (NoC) traffic patterns are essential toolsfor NoC performance assessment and archi-
tecture exploration. The fidelity of NoC traffic patterns hasprofound influence on NoC studies. Random
traffic patterns use probability distributions to randomize on-chip communication traffic characteristics,
such as packet destination and transmission interval. Configuring parameters properly for random traffic
requires comprehensive knowledge of the corresponding realistic traffic patterns, and it is in general hard
to truly reflect realistic traffic characteristics. On the other hand, realistic traffic patterns are based on the
behaviors of real applications, and they can provide more accurate performance and power consumption
results, and more comprehensive information to improve NoCarchitectures.

We provide a NoC traffic pattern suite for efficient NoC-basedmultiprocessor system-on-chip (MPSoC)
evaluations. The publicly released MCSL NoC traffic patternsuite includes a set of realistic traffic patterns
for eight real-world applications and covers popular NoC architectures, and can be downloaded from [1].
It captures both the communication behaviors in NoCs and thetemporal dependencies among them. Each
traffic pattern in MCSL has two versions, a recorded traffic pattern (RTP) and a statistical traffic pattern
(STP). The former provides detailed communication traces for comprehensive NoC studies, while the latter
helps to accelerate NoC explorations at the cost of accuracy. The proposed traffic generation methodology
uses formal computational models to capture both communication and computation requirements of
applications. It optimizes application memory requirements, mapping and scheduling to maximize overall
system performance and utilization before extracting traffic patterns through cycle-level simulations. The
MCSL NoC traffic pattern suite provides an essential tool forNoC architecture exploration and evaluation.
It can be easily incorporated into existing NoC or multicore/many-core simulators and substantially
improve NoC simulation accuracy.

I. TRAFFIC MODELING AND GENERATION METHODOLOGY

An overview of the traffic generation methodology is shown inFig. 1. The generation process starts
with an application model and an architecture model. Since MPSoC applications are often performance-
sensitive, it is necessary to perform optimizations and performance evaluation for traffic generation. The
traffic obtained in this way is essentially different from that obtained via a random approach and is more
realistic to reflect the actual communication behaviors in apractical MPSoC design. As shown in Fig. 1,
the traffic patterns are generated through four steps: memory space allocation, mapping and scheduling,
performance evaluation and traffic generation. Two types oftraffic patterns are generated, called RTP and
STP. The generation steps interact with each other closely.They are essential for the methodology since
these decisions substantially affect the final traffic pattern. Optimized decisions can take full advantage
of the parallel hardware resources in MPSoC and improve overall system performance and resource

http://www.ece.ust.hk/~eexu/


utilization. The methodology is designed with the flexibility, scalability and extensibility on the choice of
these algorithms. More details of the methodology can be found in our previous publication [2].

Application 
model

Architecture 
model

Recorded
traffic pattern

Statistical 
traffic pattern

Memory space allocation

Mapping and scheduling

Performance evaluation

Traffic generation

Fig. 1: An overview of the traffic generation methodology.

A. Memory space allocation

Task communication graphs (TCGs) are used to model the applications. In the application model,
each edge has a piece of memory space for data exchange between tasks. When the application is
executed repeatedly in an iterative fashion, insufficient memory space allocated to the edge can limit
the parallelism of the application and impact its performance. Therefore, it is important to determine the
memory requirement on the edges to maximize the performance.

Basically, we apply genetic algorithms to find the minimum memory space that will make no negative
impact to the application performance. There are two objectives to be optimized: maximizing application
throughput in higher priority and minimizing total memory size in lower priority. We apply genetic
algorithms to explore possible memory size allocations, evaluate them by calculating the theoretical
throughput of the TCG under the memory constraint, and conduct these two steps iteratively until a
satisfiable result is obtained.

B. Mapping and scheduling

The traffic generation methodology uses a centralized scheduling strategy to manage the entire chip
resources and coordinate processing blocks (PBs). In this way, the scheduling and control decisions
made are globally optimized for the whole system. We developa load balanced mapping and static order
scheduling approach. The basic idea is to distribute processing and network transmission workloads evenly
to achieve high utilization of the hardware resources. The mapping strategy is to assign tasks to PBs one
by one in the topological order defined by the dependency relations in the graph, and the schedule on
each PB is determined by the sequence of the tasks on the same PB generated during the mapping.



The objective is to minimize the application’s end-to-end execution time with network communication
overhead taken into consideration.

C. Generation of traffic patterns

The RTP contains detailed and accurate trace of task executions and communications. It is used
for precise and comprehensive NoC studies. A RTP is generated during cycle-level simulations for an
application model on a NoC simulation platform based on SystemC with the memory space allocation and
mapping and scheduling results. It contains more accurate computation and communication traces, where
all the task execution and packet generation events are recorded. The RTPs are reusable on NoCs with
different configurations but the same topology. Since the exact packet delays among PBs are related with
specific NoC configurations, the RTPs keep the packet dependencies instead of exact timings. When the
traffic patterns are applied to a different NoC configuration, all the temporal relations can be reconstructed
correctly.

The STP gives a concise representation of the information through mathematical modeling. It can be
used to support long simulation runs, and is useful for system-level statistical evaluation and analysis.
With the results obtained above, the STPs can be synthesizedfor applications that provide statistical
distributions of task executions, packet generations and transmissions. We design the traffic patterns with
enhanced reusability compared to previous works.

II. THE MCSL NOC TRAFFIC SUITE

We provide two types of traffic patterns for NoC. RTP is usefulfor detailed studies as it provides accurate
information. STP is useful for long simulation runs to find out average and worst/best characteristics due
to its statistical nature. We will describe each type of traffic pattern in detail in the following sections.

A. Application and architecture models

… A

E

B G

J

P

S

F K

M

N

…
 

…
 … 

C H Q

D I R

L

O

…
 

WAB

WAC

WAD

WAE

WDF

WCF

WEF

WBF

WEJ

WDI

WFK

WCH

WBG WGP

WHQ

WIR

WJS

WOS

WKO

WKN

WNR

WKL

WKM

WMQ

WLP

Fig. 2: Part of the H.264 video decoder’s task communicationgraph.

We use the TCG model as the input of the traffic modeling and generation flow to faithfully capture the
computation and communication requirements of real applications. A TCG is a directed graphGt = (V,E),
whereV is the set of vertices representing computation tasks, andE is the set of edges representing
communication links between tasks. A taskv has a normalized execution timet. A directed edgee =
(vs, vd, w) has a source taskvs, a destination taskvd and the amount of dataw that sends fromvs to vd.
For example, Figure 2 shows a part of the TCG for H.264 decoder. We include applications from different
domains in the MCSL NoC traffic suite v1.6. Their characteristics are listed in Table I.



TABLE I: The applications included in the MCSL NoC traffic suite.

Application Description Number of Tasks
Number of

Communication
Links

RS-32 28 8 enc
Reed-Solomon code encoder with codeword format

RS(32,28,8)
262 348

RS-32 28 8 dec
Reed-Solomon code decoder with codeword format

RS(32,28,8)
182 392

H264-720pdec H.264 video decoder with a resolution of 720p 2311 3461

H264-1080pdec H.264 video decoder with a resolution of 1080p 5191 7781

ROBOT
Newton-Euler dynamic control calculation for the

6-degrees-of-freedom Stanford manipulator
88 131

FPPPP
SPEC95 Fpppp is a chemical program performing

multi-electron integral derivatives
334 1145

FFT-1024 complex
Fast Fourier transform with 1024 inputs of complex

numbers
16384 25600

SPARSE
Random sparse matrix solver for electronic circuit

simulations
96 67

An architecture model captures the hardware configurationsin an MPSoC including PBs and NoC.
Each PB could be a processor core, a cluster of processor cores, a memory/buffer/cache, or a combination
of them. MPSoCs can have homogeneous as well as heterogeneous PBs and use different NoCs. For
the traffic suite, we currently target regular NoC topologies, such as mesh, torus and fat tree. MPSoC
architectures with three different regular-topology NoCsare illustrated in Fig. 3. The selection tries to
cover the most popular NoC architectures first and will be expanded in the future. The rules of identifying
the PBs with their coordinates (for mesh and torus) and serial numbers (for fat tree) are also displayed
in Fig. 3. They will be applied in the traffic trace files to present the mapping results.

PB(0,0) PB(0,1) PB(0,2) PB(0,3)

PB(1,0) PB(1,1) PB(1,2) PB(1,3)

PB(2,0) PB(2,1) PB(2,2) PB(2,3)

PB(3,0) PB(3,1) PB(3,2) PB(3,3)
Router

Processing

Block

Network

Interface

N

Interconnect

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

PB(0,0)

N

R

PB(0,1)

N

R

PB(0,2)

N

R

PB(0,3)

N

R

PB(1,0)

N

R

PB(1,1)

N

R

PB(1,2)

N

R

PB(1,3)

N

R

PB(2,0)

N

R

PB(2,1)

N

R

PB(2,2)

N

R

PB(2,3)

N

R

PB(3,0)

N

R

PB(3,1)

N

R

PB(3,2)

N

R

PB(3,3)

N

R

R R R RR R R R

R R R R

R R R R

R R R R

PB0

N

PB1

N

PB3

N

PB5

N

PB7

N

PB2

N

PB4

N

PB6

N

PB8

N

PB9

N

PB11

N

PB13

N

PB15

N

PB10

N

PB12

N

PB14

N

R R R R

R R R R

R R R R

(a) 4*4 Mesh (b) 4*4 Torus (c) Fat tree

PB
N

Fig. 3: 16-core MPSoCs with three different regular-topology NoCs.

We define an architecture model as a graphGp = (P,N), whereP is a set of heterogeneous PBs,
andN is an on-chip communication architecture organized in a NoCparadigm. A PBp has an attribute,
acceleration factora, for tasks executed on it, and the actual execution time of the task on this PB is
determined both by its normalized execution time and the acceleration factor of the PB. Specifically, the
running time is the multiplication of the two values. The NoCtopologies and sizes included in the current
version of the traffic suite are listed in Table II. The numbers in the code column are used to indicate the
topologies in the traffic files.



TABLE II: The NoC configurations included in the MCSL NoC traffic suite.

Topology Code Size (number of processors)

Mesh 0
2x2, 2x4, 3x3, 4x4, 5x5, 4x8, 6x6, 7x7,
8x8, 9x9, 10x10, 11x11, 8x16, 12x12,
13x13, 14x14, 15x15, 16x16

Torus 1
2x2, 2x4, 3x3, 4x4, 5x5, 4x8, 6x6, 7x7,
8x8, 9x9, 10x10, 11x11, 8x16, 12x12,
13x13, 14x14, 15x15, 16x16

Fat tree 2 4, 8, 16, 32, 64, 128, 256

In the MCSL NoC traffic suite v1.6, the two types of traffic patterns for all 8 realistic applications on
the three NoC topologies with different sizes listed in Table II are provided1.

B. The recorded traffic pattern

A RTP is given by Tr = {Vr(p) | p ∈ P}, whereVr(p) represents the recorded behaviors of the
set of tasks scheduled and executed on PBp. The tasksVr = {(s(v), t(v), IS(v), OS(v)) | v ∈ V },
where taskv has execution timet, and the unique sequence number for scheduling it onp is s(v). The
execution condition of taskv is given by its input set of informationIS(v) = {(vi(e), ni(e), mi(e)) | e ∈
Ei(v), vi(e) ∈ V }, whereEi(v) ⊆ E is the set of incoming edges ofv, the data on every incoming edge
ni(e) must be ready forv, and the data are obtained from the corresponding predecessor taskvi(e) and
read from the memory space started atmi(e). The result of the task execution is given by the output
set of informationOS(v) = {(vo(e), po(e), mo(e), do(e)) | e ∈ Eo(v), vo(e) ∈ V, po(e) ∈ P}, where
Eo(v) ⊆ E is the set of outgoing edges ofv, and that is to generate data of sizedo(e) to edgee ∈ Eo(v),
the destination is the successor taskvo(e) on PB po(e), and the data are written to the same memory
spacemo(e), respectively. Each data is written to and read from the samevirtual memory address, i.e.,
mi(e) = mo(e). The data sizedo(e) determines the number of packets that may be delivered through the
network.

Since the absolute timing between task executions and communications is dependent on the simulation
platform and can be affected by routing algorithm, router architecture, etc., it could not be used in new
simulations with different settings. The RTP keeps data dependencies and temporal relations using relative
timing instead of absolute timing. The relative timing willbe generated according to the real dependencies
in the applications and is guaranteed to be the correct semantics. This enhances the reusability of our
traffic suite. NoC designs with the same topology and networksize to the given traffic pattern can use it
to evaluate the performance of their platform.

1) File format: The format of the trace file is shown in Table III. We call a datablock generated by
one execution of the source task on the edge “a message”, and the message size is given inwords (32
bits). The task execution time is given by the number ofclock cycles. Each edge is allocated a dedicated
virtual memory space aligned onwords. The virtual memory address for every message is given in the
trace usingbyte addressing. In addition, the list of starting tasks are the tasks with nopreceding tasks or
incoming edges, and the list of finishing tasks are the tasks with no succeeding tasks or outgoing edges.
They are also provided in the trace files.

Note that there are multiple entries for the items starting with “ list of” and the number of entries is
equal to the number of iterations. In the traffic suite, 20 iterations are recorded starting from an MPSoC

1traffic patterns of H264-1080pdec on fat tree NoC with 256 PUs are not included in the currentsuite



TABLE III: The format of the recorded traffic trace file.

Header block (5 line) 1

trace type

topology number of PBs number of rows number of columns

number of tasks number of edges number of iterations

number of starting tasks list of starting tasks

number of finishing tasks list of finishing tasks

Task execution block (number of tasks lines, each of which is as follows) 2,3

task id mapped PB id / coordinate

list of schedule sequence numberslist of recorded execution times

Task communication block (number of edges lines, each of which is as follows) 4

edge id source task id destination task id

list of memory addresses list of recorded message sizes

1 The number of rows and columns are both 0 in fat tree
2 The mapping result is given by a two-dimensional coordinate(x, y) in mesh and torus, and a single PB ID number in fat

tree. The rule for processor identification is illustrated in Fig. 3.
3 Unit of task execution time: clock cycle
4 Unit of message size: word or 32 bits

executing the first tasks to the execution of the last tasks. We divide the total 20 iterations into 3 stages,
namely Ramp-Up stage (the first five iterations), Stable stage (the 6th-15th iteration) and Ramp-Down
stage (the last five iterations).

2) Data structure: We define the data structure for the RTP. Using the included traffic loader, the
traffic can be easily used in various simulators. As shown in Table IV, the trace is recorded according to
a vector of PBs, each of which contains recorded informationfor the task invocations, memory addresses
and packet transmissions on the PB. The schedule of the task instances on each PB is explicitly marked
in each task and implicitly included by the sequence of the tasks stored in the task list vector.

C. The statistical traffic pattern

A STP is given byTs = {Vs(p) | p ∈ P}, whereVs(p) represents the statistical behaviors of the set
of tasks scheduled and executed on PBp. The task setVs = {(s(v), Dt(v), IS(v), OS(v)) | v ∈ V },
where the schedule of taskv is given by a unique sequence numbers(v) ≥ 0, and the execution time
of the task in different instances follow the Gaussian distribution with meanµt and standard deviation
σt, Dt(v) = (µt(v), σt(v)), µt(v) ≥ 0, σt(v) ≥ 0. Suppose taskv is executed onp for l times. Let the
execution time of thej-th (j ∈ [1, l]) execution betj . The mean and standard deviation for the Gaussian
distribution ofv’s execution can be computed as follows:

µt(v) =
1

l

l∑

j=1

tj (1)

σ2

t (v) =
1

l

l∑

j=1

(tj − µt(v))
2 (2)



TABLE IV: The data structure of the recorded traffic trace.

class RecEdge {
int id; // the id of the edge
RecTask* src_task; // the source task
RecTask* dst_task; // the destination task

vector<int> mem_addr_list; // the list of memory addresses
vector<double> rec_msg_size_list; // the list of recorded message sizes

};

class RecTask {
int id; // the id of the task
RecProc* proc; // the PB the task is assigned
vector<int> schedule_list; // the list of task schedule sequence numbers
vector<int> rec_time_list; // the list of recorded execution times

vector<RecEdge*> incoming_edge_list; // each entry is an incoming edge
vector<RecEdge*> outgoing_edge_list; // each entry is an outgoing edge

};

class RecProc {
int id; // the id of the PB
int row_index; // the row index in mesh/torus
int col_index; // the column index in mesh/torus
vector<RecTask*> task_list; // the list of scheduled tasks

};

class RecNOCTraffic {
int topology; // the topology code
int num_row; // the number of rows in mesh/torus
int num_col; // the number of columns in mesh/torus
int num_iter; // the number of iterations the graph executes for
vector<RecProc> proc_list; // the list of PBs
vector<RecTask> task_list; // the list of tasks
vector<RecEdge> edge_list; // the list of edges

vector<RecTask*> starting_task_list; // the list of starting tasks
vector<RecTask*> finishing_task_list; // the list of finishing tasks

};

The execution condition of taskv is given by its input set of informationIS(v) = {(vi(e), ni(e), mi(e)) |
e ∈ Ei(v), vi(e) ∈ V }, whereEi(v) ⊆ E is the set of incoming edges ofv, the data on every incoming
edgeni(e) must be ready forv, and the data are obtained from the corresponding predecessor taskvi(e)
and read from the memory space started atmi(e). The result of the task execution is given by the output
set of informationOS(v) = {(vo(e), po(e), mo(e), Dd(e), Di(e)) | e ∈ Eo(v), vo(e) ∈ V, po(e) ∈ P},
whereEo(v) ⊆ E is the set of outgoing edges ofv, and that is to generate some amount of data to each
edgee ∈ Eo(v), the destination is the successor taskvo(e) on PB po(e), and the data are written to the
memory space started atmo(e), respectively. We provide virtual memory address in the traffic suite. Each
data is written to and read from the same virtual memory address regardless of the memory architecture,
i.e., mi(e) = mo(e). The data size generated on an edge can be described by the Gaussian distribution
Dd(e) = (µd(e), σd(e)), µd(e) ≥ 0, σd(e) ≥ 0. Suppose the data sizes generated on edgee in the l times
of v’s executions ared1 . . . dl, respectively. The data size generated on each outgoing edge of taskv can
be calculated as follows:

µd(e) =
1

l

l∑

j=1

dj (3)

σ2

d(e) =
1

l

l∑

j=1

(dj − µd(e))
2 (4)



With a given memory architecture, if the data generated by a task is going to be sent to a different PB
via the on-chip communication network, they will be assembled into packets as they are generated during
the execution of the task. The traffic suite is compatible with different packet definitions, and we assume
a fixed packet size is used as an example in the STPs. Therefore, a number of packets are generated to
assemble the data. The packet generation interval, which isthe relative distance between two consecutive
generated packets, follows the negative exponential distribution Di(e) with rate parameterλi(e) ≥ 0 for
v’s executions. To make it realistic, we restrict the upper bound of the packet generation times to the
finish time of the source task, i.e., the task will generate all the remaining output data at the end of the
execution. Suppose the fixed packet size isz. The rate parameter for the negative exponential distribution
of the packet generation intervals can be computed as follows:

λi(e) =
µd(e)

z · µt(v)
(5)

We use a fixed packet size of 8 flits and 32 bits per flit in the STPsincluded in the traffic suite. The
defined traffic pattern describes the statistical behaviorsof the application running on the platform. We
specify the deterministic task dependency relations in thegenerated traffic by the input and output sets
IS(v) andOS(v), and include the task mapping and scheduling results as wellas memory space allocated
to the edges and distributed among the network. Three key components, the task execution times, the sizes
of the data produced by the tasks and the relative time intervals that these data are assembled into packets,
are described by statistical formulations. The generated pattern is useful for evaluating NoC designs with
the same topology and network size, while other NoC configurations (such as routing algorithm, flow
control strategy, link bandwidth and so on) can be flexibly chosen.

TABLE V: The format of the statistical traffic trace file.

Header block (5 line) 1

trace type

topology number of PBs number of rows number of columns

number of tasks number of edges

number of starting tasks list of starting tasks

number of finishing tasks list of finishing tasks

Task execution block (number of tasks lines, each of which is as follows) 2,3

task id mapped PB id / coordinate schedule sequence number

µt σt

Task communication block (number of edges lines, each of which is as follows) 4

edge id source task id destination task id

memory starting address memory size

µd σd λi

1 The number of rows and columns are both 0 in fat tree
2 The mapping result is given by a two-dimensional coordinate(x, y) in mesh and torus, and a single PB ID number

in fat tree. The rule for processor identification is illustrated in Fig. 3.
3 Unit of task execution time: clock cycle
4 Unit of message size: word or 32 bits

1) File format: The format of the trace file is shown in Table V. The basic settings are similar with
those in the RTP as presented in Section II-B1. A difference is that the virtual address of the memory



space is given by a pair: the starting address and the memory size. Byte addressingis used, but each
message occupies the space for an integer number of words.

TABLE VI: The data structure of the statistical traffic trace.

class StatEdge {
int id; // the id of the edge
StatTask* src_task; // the source task
StatTask* dst_task; // the destination task

int mem_start_addr; // the starting address of the memory
int mem_size; // the size of the memory
double mu_msg_size; // the mean of the message size
double sigma_msg_size; // the sd of the message size
double lambda_pkt_interval; // the rate parameter, the inverse of

// the average packet generation interval
};

class StatTask {
int id; // the id of the task
StatProc* proc; // the PB the task is assigned
int schedule; // the task schedule sequence number
double mu_time; // the mean of the task execution time
double sigma_time; // the sd of the task execution time

vector<StatEdge*> incoming_edge_list; // each entry is an incoming edge
vector<StatEdge*> outgoing_edge_list; // each entry is an outgoing edge

};

class StatProc {
int id; // the id of the PB
int row_index; // the row index in mesh/torus
int col_index; // the column index in mesh/torus
vector<StatTask*> task_list; // the list of scheduled tasks

};

class StatNOCTraffic {
int topology; // the topology code
int num_row; // the number of rows in mesh/torus
int num_col; // the number of columns in mesh/torus
vector<StatProc> proc_list; // the list of PBs
vector<StatTask> task_list; // the list of tasks
vector<StatEdge> edge_list; // the list of edges

vector<StatTask*> starting_task_list; // the list of starting tasks
vector<StatTask*> finishing_task_list; // the list of finishing tasks

};

2) Data structure: We define the data structure for the statistical traffic pattern. Using the included
traffic loader code, traffic can be easily used in various simulators. As shown in Table VI, the trace
is recorded according to a vector of PBs, each of which contains statistical information for the task
invocations, memory addresses and packet transmissions onthe PB. The schedule of the tasks on each
PB is explicitly marked in each task and implicitly includedby the sequence of the tasks stored in the
task list vector.

D. Memory information

The traffic suite provides the memory addresses for the storage of the data generated on the edges in
the form of virtual memory addresses. The use of virtual memory addresses allows users to experiment
different memory organizations and physical memory allocations. The addresses are given in a single
continuous virtual memory space, and each edge is assigned with a dedicated section of the space. The
source task of the edge will write data to the given address and the destination task will read data from
the same address. The sequence of address assignment is given PB by PB that starting from 0x0. Byte



addressing is applied, i.e., each memory address identifiesone particular byte. Note that the size of a data
block is aligned on words (32 bits), so the memory space for each edge is always an integer number of
words.

The STPs are intended for long simulation runs. In the STP, the size of the data block on each edge
is described by a Gaussian distribution. The allocated memory space should be able to support the worst
case in which a data block has the largest possible size. Therefore, the size of the data block in the worst
case is used to calculate the memory size for the edge in the STP to guarantee correct executions. In
the recorded traffic patterns, the exact size is given for each data block generated by one execution of a
task. The memory address is given in this regard and a vector of memory addresses are available for the
iterative generation of data blocks on the edge when the taskexecutes for multiple instances.

E. Application performance measurement

The applications in the MCSL traffic suite are run iteratively and different iterations are overlapped to
achieve higher performance. The performance metric of “Application execution time per iteration” is the
average time used for one iteration of an application’s execution. We have listed the starting task set and
finishing task set for each application in the traffic patterns. The starting time of an iteration is determined
by the earliest starting time of the tasks in the starting task set, the finishing time of an iteration is
determined by the latest finishing time of the tasks in the finishing task set, and the difference of these
two metrics for one iteration is the execution time of that iteration of the application. The Application
execution time per iteration is the average time over all theiterations of the application’s execution, and
can be obtained by monitoring the starting and finishing tasksets.

REFERENCES

[1] www.ece.ust.hk/∼eexu.
[2] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and Z. Wang, “A noc traffic suite based on real applications,” inVLSI

(ISVLSI), 2011 IEEE Computer Society Annual Symposium on, july 2011, pp. 66 –71.

www.ece.ust.hk/~eexu

	Traffic modeling and generation methodology
	Memory space allocation
	Mapping and scheduling
	Generation of traffic patterns

	The MCSL NoC traffic suite
	Application and architecture models
	The recorded traffic pattern
	File format
	Data structure

	The statistical traffic pattern
	File format
	Data structure

	Memory information
	Application performance measurement

	References

