
1

 JADE Simulation Platform

User Manual

Version 5.0

OPTICS Lab

Big Data System Lab

Hong Kong University of Science and Technology

https://eexu.home.ece.ust.hk

December 2020

https://eexu.home.ece.ust.hk

2

CONTENTS

I Motivation 4

II Introduction 5

II-A New features in JADE Version 5.0 . 6

III JADE organization 7

III-A Root directory . 7

III-B Workspace . 7

IV Installation guideline 9

IV-A Requirements . 9

IV-B Quick compilation . 9

IV-C Advanced compilation . 9

V Recommended workflow 11

VI Running simulation 13

VI-A Quick guideline . 13

VII Benchmark applications 15

VII-A Realistic statistical application model . 15

VII-B Directory organization and naming of application models 15

VII-C Pipeline stage partitioning . 16

VII-D Mapping and scheduling . 17

VII-E Synthetic traffic . 18

VIII Architectures 19

VIII-A Network topology file . 19

VIII-B Custom network topologies . 20

VIII-C Optical switch fabrics . 21

VIII-D Memory hierarchy and cache coherence protocol 22

VIII-E External memory simulation . 22

VIII-F Components configuration file . 24

VIII-G Power models . 24

3

IX Output items 27

Agreement and License 28

Revision History 29

References 30

Appendix-A: Basic Command Line Options 31

Appendix-B: Advanced Command Line Options 35

Appendix-C: List of Applications in COSMIC Benchmark Suite 37

4

I. MOTIVATION

Recent advances in the computing industry towards multiprocessor technologies shifted the dominant

method of performance increase from frequency scaling to parallelism. Due to its huge design space,

evaluating candidate multicore processors and tens or hundreds of such processor architectures in early

design stages, when the number of variables is at its maximum, is challenging. Simulation plays an

important role in estimating architecture performance, and evaluating how the system would perform

on average, as well as boundary cases, would require many iterations to cover various cases in the

application input domain. Since the simulation of heterogeneous systems with enough details are naturally

slow, exhaustively evaluating the system for all possible inputs requires a tremendous amount of time

and resources. While there exist quite a few multiprocessor simulators available, they often rely on

individual input specification, demanding extensive input enumeration and simulation runs, diminishing

their effectiveness for complex systems evaluation. Aiming to fulfill this gap, we publicly release a

heterogeneous multiprocessor system simulation platform called JADE, targeting fast initial architecture

explorations. Opposing to most simulators, JADE uses statistical models that follow distributions extracted

from internal structures of the application, providing a more convenient and systematic exploration

approach to evaluate systems performance. JADE simulation features include detailed electrical and optical

interconnections for both single-chip and multi-chip systems, detailed memory hierarchy infrastructure,

and built-in energy analysis allowing studies of a broad spectrum of systems.

5

II. INTRODUCTION

JADE is a cycle-accurate event-driven simulator, implemented using C++ and most of the configurations

are templates in text form. Figure 1 shows an overview of JADE features. It receives as input the detailed

description of the hardware architecture such as network topology, memory hierarchy, cache coherence

protocol, and specific processor parameters. The statistical models of realistic applications are available

from the heterogeneous COSMIC benchmark [1]. JADE integrates power model libraries to provide holistic

power analysis for various configurations of architecture, and technology nodes. JADE also includes

power management functions: Dynamic Voltage and Frequency Scaling (DVFS), Energy Consumption

Calculation, and Power Delivery Systems (PDS). Along with memory access, holistic performance and

power analysis, it is also possible to extract customized system behavior to monitor specific components.

The following sections detail selected features implemented in JADE.

Output

COSMIC
Benchmark

Statistical
Application

Model

Pipeline State
Partition

Performance
Analysis

System
Behavior

Memory
Access Trace

Power Analysis

Network
subsystem

Processor
subsystem

Memory
subsystem (RUBY)

Power Architecture Template

Processor Library
Memory and Cache
Coherence Library

Optical and Electrical
Network Library

Hardware Architecture

Processor
Architecture

Memory
Hierarchy

Coherence
Protocol

Network Architecture

Optical Electrical

Simulation Environment

Fig. 1: Overview of JADE.

By performing cycle-level simulations, JADE can model the detailed behaviors of each module and

comprehensively profile the characteristics of the system components. A set of templates are already

provided with different network-on-chip (NoC) and common communication topologies, such as Crossbar,

Ring, Torus, Mesh, Folded-Torus, and Fat-tree with a various count of cores, caches, and memories.

These templates can be easily modified or extended to accommodate a wide range of simulation schemes,

allowing high flexibility of components placement and the creation of new regular and irregular topologies.

6

JADE uses the COSMIC Heterogeneous Multiprocessor Benchmark as a stimulus. COSMIC provides

application models profiled in two different instruction set architectures: ARM-v8 and x86-64. The

application models statistically mimic the behavior of the original application by profiling the memory

and synchronization traces. Though a few application benchmarks are packed along with JADE 5.0,

readers are referred to the COSMIC release page at https://eexu.home.ece.ust.hk/COSMIC.html for more

application benchmarks.

A. New features in JADE Version 5.0

The new version of JADE includes important improvements in benchmark applications as well as their

models, the mapping and scheduling algorithm, the execution mode, and the inter-chip network.

The newest version of JADE includes more applications from some widely-used benchmark suites,

including APEX [2], NAS [3], SPEC2006 [4], SPLASH-3 [5] and PARSEC 3.0 [6]. Applications are

modeled by the fork/barrier/join model. In this model, the execution flow of the application is divided into

parallel sections (PSs) whenever threads are created, merged, or synchronized. We insert instrumentation

calls in the source code and use QEMU to get the application and memory traces automatically. In the new

application model, each PS consists of multiple basic thread blocks (BTBs). We extract the main behavior

statistics with micro-architecture independent metrics for each BTB, including memory locality for data

and instruction and the distribution of the request type. The locality model does not only consider local

memory accesses but also takes data sharing among threads into consideration to capture the memory

behaviors more accurately. During the simulation, the memory trace is reproduced according to the new

application model.

In JADE 5.0, the mapping and scheduling is done at runtime hierarchically, i.e., first at chip-level and

then at core-level. We offer several commonly-used algorithms in JADE 5.0, but users can modify the

source code to specify their preferred mapping and scheduling approaches. JADE 5.0 offers two simulation

modes: multi-threading and pipelined execution. For pipelined execution, we provide a tool to partition

applications into multiple pipeline stages. The execution of one stage can be constrained to a specific

machine, a specific chip, or a specific region of the chip during the simulation.

The new version of JADE can simulate computing systems in which chips are interconnected by optical

links. The inter-chip optical interconnect can be implemented as one of the following switch fabrics:

Crossbar, DRAGRON, Spiral, PILOSS, Benes, Baseline, FODON, and AWGR. Simulating the system

based on a variety of synthetic traffic is another new feature of JADE 5.0. It can generate one of the

following synthetic traffic: uniform, tornado, hotspot, hotpair, transpose, bit complement, bit reverse, bit

rotation and shuffle. Using synthetic traffic promises to analyze a large-scale computing system with a

high-radix optical switch.

https://eexu.home.ece.ust.hk/COSMIC.html

7

III. JADE ORGANIZATION

This section briefly describes the directory organization of JADE.

A. Root directory

In table I JADE directory organization is briefly explained. In this manual, it is supposed that the JADE

root folder is located at /home/JADE-v5.0 and all commands would be executed from this directory.

The relevant directories for users are classified as User space and there reside all files required to

realize simulations with different topologies, applications, and components. Additional directories include

the source codes of JADE, and a set of tools provided task manipulations and file generation.

TABLE I: JADE-v5.0 root directory organization and description

Class Directory Description

User space

applications

Folder to place applications-related files, such as application statistical models,
pipeline stage partitioning results and COSMIC APIs. To download a full list of
application benchmarks, check the COSMIC page at
https://eexu.home.ece.ust.hk/COSMIC.html .

architectures Holds hardware models, for instance architecture description, network topology, and
components configurations

workspace Keeps all binary files and results generated from the simulation.
documents JADE user instructions.

Source code

common Global headers and main definitions.
network Network related files.

processor Processing elements source code.
ruby Cache subsystem model.
slicc Code generation for cache controllers.

protocols Coherence protocol files.
support Power management files.

dramsim2 Detailed memory activity.

Tools scripts Helper scripts for compilation.
utils Utility tools.

B. Workspace

The user workspace is composed of multiple directories for each JADE compilation and it depends on the
components configuration and the coherence protocol, see section V for further details. For each coherence
protocol and configuration file, a new workspace directory is created under the directory workspace in
which the final binary file jade.exec will reside. The workspace would have a name following the
configuration file used, and the coherence protocol. Down below is the syntax adopted:

<config>-<coherence_protocol>

Table II details more the purpose of each directory under the workspace.

https://eexu.home.ece.ust.hk/COSMIC.html

8

TABLE II: Workspace directory description.

Class Directory
Name

Description

User Environment bin Keeps the compiled JADE executable file.

result Default destination for statistics results and system behavior output.
Compilation Output src Source code generated with respect to the protocol specified.

9

IV. INSTALLATION GUIDELINE

A. Requirements

In order to compile JADE successfully, a few software and libraries should be present in your system.
Most recent Linux distributions would attend these requirements, we provide here a reference just in case
you encounter any problem. Table III shows a summarized list of dependencies of JADE divided into
two classes: those mandatory and those optional. Make sure all of the mentioned external software are
properly set in your environment variables (PATH).

TABLE III: External dependencies

Software Version Purpose Quick reference
GCC 5.2 Compilation https://gcc.gnu.org/

CMAKE 3.15.2 Compilation https://cmake.org/

Python 2.7.5 Code generation helper https://www.python.org/

dos2unix 6.0.3 Convert text files from DOS format to Unix http://www.gzip.org/

Boost 1.53.0 Provide useful data structure and functions https://www.boost.org/

libglib2.0-dev 2.54.2 Provide general-purpose C library https://pkgs.org/download/libglib2.0-dev/

zlib-devel 1.2.7 Data-compression library https://www.zlib.net/

B. Quick compilation

All of the steps explained here suppose that the root JADE folder is located at /home/JADE-v5.
0. The easiest way to compile JADE is to enter the JADE root directory and type make. This will
compile using the default coherence protocol (MSI MOSI CMP directory) and the default components
configuration (generic) and the binary would be located at: /workspace/generic-3level_msi_
mosi_cmp_directory/jade.exec.

$ cd /home/JADE-v5.0

$ make

When the compilation is over, a message similar to the one shown below should appear in the terminal:

[100%] Built target jade.exec

From this point, JADE is ready to be used and one may jump to section VI to have more details about
how to simulate applications.

C. Advanced compilation

There are three variables that can be configured at compilation time:

• SYSTEM_SETTINGS: sets the default system system parameters;
• PROTOCOL: sets the cache coherence protocol;
• DEBUG: enable compilation with debugging symbols and no optimization, e.g., make DEBUG=1.

Configuration files are located under the directory /home/JADE-v5.0/architectures/config.
The detailed configurations for each SYSTEM_SETTINGS can also be changed in configuration files as

https://gcc.gnu.org/
https://cmake.org/
https://www.python.org/
http://www.gzip.org/
https://www.boost.org/
https://pkgs.org/download/libglib2.0-dev/
https://www.zlib.net/

10

discussed in subsection VIII-F. Available protocols are located under the directory /home/JADE-v5.

0/protocols.

Example IV.1. JADE with generic components and MSI MOSI CMP directory:

$ cd /home/JADE-v5.0

$ make SYSTEM_SETTINGS=generic PROTOCOL=MSI_MOSI_CMP_directory DEBUG=1

For each pair <configuration, protocol>, a new folder will be created inside the workspace
directory and be named as <configuration>_<protocol>, following the component configuration
file name and the cache coherence protocol used. In example IV.1, the destination folder is at /home/
JADE-v5.0/workspace/generic_msi_mosi_cmp_directory. And the debug version will be
built.

11

V. RECOMMENDED WORKFLOW

JADE allows customization of the components configuration such as cache size, memory latency, cache
latency, and many others. The default configuration are based on a generic configuration, derived from
the classical 5-stage MIPS pipeline. A few other configurations are provided under the directory /home/
JADE-v5.0/architecture/config. Table IV lists some of the important configurations. A brief
description of other important parameters of the configuration file is shown in section VIII-F. To use a
different component configuration, user should compile JADE again using the flag SYSTEM_SETTINGS,
refer to section IV for usage.

TABLE IV: Some memory configurations provided in config. files (two-level cache).

generic aarch64 x64
Main Memory Size (total) 8GB 8GB 8GB
L2 Cache Config. (per-core) 512KB, 8-way 512KB, 8-way 512KB, 16-way
L1 Cache Config. (per-core) 32KB, 4-way 32KB, 4-way 64KB, 8-way
Cache Line Size 64 bytes 64 bytes 64 bytes

For each coherence protocol and configuration file, a new workspace directory is created under the
directory workspace in which the final binary file jade.exec will reside. The workspace would have a
name following the configuration file used, and the cache coherence protocol. Down below is the syntax
used:

<config>_<coherence_protocol>

Example V.1. For generic components configuration using MSI MOSI CMP directory coherence proto-
col, the workspace would be named generic_msi_mosi_cmp_directory

Coherence
Protocol

Components
Configuration

JADECompilation

Application
Model

Pipeline
Partitioning

Network
Topology

Power &
Performance

System
Behavior

AnalysisSimulationBuild
Before

Compilation

-w

--mtsyn
--pipeline-

partitioning

-O

JADE/workspace/resultsapplications/partitionapplications/shalom

architectures/net

JADE/architectures/config

JADE/protocols

Switch Parameter

architectures/config

-C

Fig. 2: Recommended workflow.

Figure 2 shows the recommend outlined workflow of JADE. The first stage is to choose which coherence
protocol and components configuration is more appropriate for the simulation, compile it using make and
the appropriate coherence protocol and components configuration file, then execute JADE passing the
appropriate command line arguments for different architectures, network topologies, and application. After

12

analyzing the results, if any changes need to be made for the protocol or the components configuration re-
compilation of JADE is required. To simulate with different architecture, network topology or application
does not require recompiling the code, and users can freely select different inputs by using corresponding
flags as given in Figure 2. It is worth noting that benchmark files are distinguished by instruction set
architectures; check your JADE compilation configuration before downloading your right benchmark file
at https://eexu.home.ece.ust.hk/COSMIC.html.

https://eexu.home.ece.ust.hk/COSMIC.html

13

VI. RUNNING SIMULATION

This section is dedicated to clarifying how to simulate your desired system and applications using
JADE. It has been divided into two parts, the first explains the simplest way to get JADE running for the
first time, and later a more detailed description of each part is provided.

TABLE V: Simulation command line argument description

Class Flag Required Description

General

-h No Print help information.

-H No Print the advanced command line options to tune architecture
parameters.

-v No Print JADE version.

Simulation
control

-r No Set the random seed. If not specified, value from configuration will
be used. Use 0 for time() and larger than 0 for a fixed value.

-N No Set the number of iterations to be performed by repeatedly
executing the statistical application.

–max-sim-time No Maximum simulation time. Given in time unit(ps).

–trace-reduction No Will simulate with 1/X of original memory traces, X is the value
set.

–ignore-pipeline-fill No Will not simulate the initial phase when the pipelining is filling /
draining (applicable in pipelined simulation mode).

Software
and
mapping

–mtsyn YES Statistical application model file. Under directory:
JADE/applications/shalom.

–pipelined-application No Pipelined execution simulation. Should give number of stages.

–pipeline-partitioning No Application pipeline stage partitioning telling which PS belongs to
which stage.

–chip-region No Create regions within a single chip.

–static-pipeline-stage-
to-region

No Will map pipeline stage 0 to chip region 0, stage 1 to region 1, and
so on.

Hardware

-w YES Network topology file. Under directory: JADE/architecture/net.

-A No Set the technology node (nm). Default is 7nm FINFET.

-L No Set the power library file. Default power library is located at
architectures/pwr/pwr lib.

-S No Optical switch type. Examples: DRAGON, FODON, Benes.

-C No Optical switch configuration file (.cfg). Examples are under
directory JADE-v5.0/architecture/config.

Output -O No Specify the desired output directory and file name.

A. Quick guideline

The simplest command line is shown below, where NETWORK and APP are the file locations for the
network topology and the statistical application model, respectively. OUTPUT is the location of the output
file. Note that if a different configuration file is used, the workspace directory will be changed as explained
in the subsection IV-C.

$./workspace/generic-3level_msi_mosi_cmp_directory_3level_inclusive/bin/jade.exec

-w NETWORK --mtsyn APP -O OUTPUT

14

The network file is the first thing users have to decide and it determines the number of cores in the
system and the network topology. Several widely-used topologies are provided in the directory /home/

JADE-v5.0/architectures/net. Users can also create their network files or modify the existing
ones to simulate more specific systems.

The second step is to decide which application should be used for simulation. A few example application
benchmarks are included in /home/JADE-v5.0/applications/shalom for users to test out their
simulation environment. To download a full list of application benchmarks, readers are referred to the
COSMIC page at https://eexu.home.ece.ust.hk/COSMIC.html. It is worth noting that benchmark files are
distinguished by instruction set architectures; check your JADE compilation configuration before picking
a right benchmark file. For each application, we profile it with a different number of threads, and a file
named i.txt means that the statistical application model is obtained by profiling using i threads.

Example VI.1. Simulating FFT in a 4x4 mesh topology with 16 threads, assuming a ARM build has
been already set up:
./workspace/aarch64_msi_mosi_cmp_directory/bin/jade.exec -w ./architectures/net/mesh_4x4.txt

--mtsyn ./applications/shalom/aarch64/splash/fft/16.txt

Example VI.2. Simulating H.264 video encoder in a 64-core system with fattree topology:
./workspace/aarch64_msi_mosi_cmp_directory/bin/jade.exec -w ./architectures/net/fattree_64.txt

--mtsyn ./applications/shalom/aarch64/parsec/x264/64.txt

Using the approaches presented in example VI.1 and example VI.2, the results will be stored at /home/
JADE-v5.0/workspace/aarch64_msi_mosi_cmp_directory/result/results.txt and
it will overwrite any previously obtained result. To set a different location to store results, one should use
special arguments when launching JADE with the -O option. A brief description of the most commonly
used command line arguments is shown in table V. The detailed usage is shown in appendix IX.

https://eexu.home.ece.ust.hk/COSMIC.html

15

VII. BENCHMARK APPLICATIONS

JADE takes either a realistic application or synthetic traffic as input. The synthetic traffic is based
on the Poisson process. The realistic applications are provided by the COSMIC application benchmark
suite, which includes applications from some widely-used benchmark suites, including APEX [2], NAS [3],
SPEC2006 [4], SPLASH-3 [5] and PARSEC 3.0 [6]. In COSMIC, applications are modeled by the fork/bar-
rier/join model. In this model, the execution flow of the application is partitioned into multiple parallel
sections (PSs), and transitions between PSs happen when threads are created, joined, or synchronized.

A. Realistic statistical application model

We represent the fork/barrier/join model using what we refer to as a basic thread block (BTB) graph,
as shown in Fig. 3. This example shows four PSs, each of which is composed of one or more BTBs. We
define BTB as a sequential execution section that is executed by one physical thread. The edges in the
BTB graph represent the flow dependency between each of the BTBs. Single-threaded application will be
represented as a single BTB. We profile the application during runtime to obtain a BTB graph as well as
the profiling information for each BTB. There are two types of information we need to observe during
profiling. One type is function calls to synchronizations (i.e. fork, join, and barrier), and we refer to this
type as synchronization trace. The second type is the actual memory traces for instructions and data.

Fork Barrier

BTB1

BTB2

BTB3

BTB4

BTB5BTB0

Join

PS1 PS2 PS3PS0

PS = Parallel section BTB = Basic thread block

Fig. 3: Application model based on fork/barrier/join.

Applications are profiled using two different instruction sets and processor configurations: ARM-v8 and
x86-64. Users should select the appropriate application model for the given components configuration
selected during compilation time.

The COSMIC benchmarks are also provided as a stand-alone suite. Please visit https://eexu.home.ece.
ust.hk/COSMIC.html for a more detailed description of COSMIC.

B. Directory organization and naming of application models

The application files are located under /home/JADE-v5.0/applications/shalom, and profil-
ing results based on x86-64 and arm-v8 are put in the /x64 and /aarch64, respectively. For each
application, we profile it with a different number of threads, and a file named i.txt means that the
statistical application model is obtained by profiling using i threads.

Example VII.1. Statistical application model for FFT (in SPLASH-3) with 8 threads for arm-v8

https://eexu.home.ece.ust.hk/COSMIC.html
https://eexu.home.ece.ust.hk/COSMIC.html

16

Application file: JADE-v5.0/applications/shalom/aarch64/splash/fft/8.txt

C. Pipeline stage partitioning

During the simulation, we can partition the application into several stages for pipelined execution. As
the system scale increases, the performance improvement brought by thread-level parallelism is vanishing
due to high synchronization overhead. The introduction of pipelining provides an additional level of
parallelism and can potentially lead to a more efficient use of hardware resources. When evaluating the
performance of large-scale systems, pipelined execution could be the preferred simulation mode. The
related python scripts are located in /home/JADE-5.0/utils/shalom_tools/pipeline.

After partitioning, each pipeline stage consists of one or multiple PSs of the application. During the
simulation, the application starts at stage 0 and execute each stage sequentially (0, 1, 2, 3 ...). As soon
as one stage finishes we re-start that stage. The execution of one stage can be constrained to a specific
machine, a specific chip, or a specific region of the chip.

The algorithm for the application partitioning takes into consideration the computation (i.e., number
of instructions) and the communication traffic among stages. It is a simple greedy algorithm that tries to
minimize the standard deviation of the load for each of the stages. In other words, the algorithm tries
to search for a partitioning that attempts to distribute the load evenly across chips or chip regions while
considering the communication traffic.

An example on how to use the mapping tool is shown in VII.2.

Example VII.2. Partition the FFT application profiled with four threads into at most 8 stages.

./pipelinePartitioning.py ../../../applications/shalom/aarch64/splash/fft/4.txt

../../../applications/partition/aarch64/splash/fft/4.txt 8

In the command above, the statistical application model shalom/aarch64/splash/fft/4.txt
is the input, partition/aarch64/splash/fft/4.txt is the output file, and 8 is the maximum
number of stages users would like to have. In this case, we will generate partitions with 2, 4, and 8 stages.
If the application has fewer PSs than the given number, we will ignore numbers that are larger than the
PS count. A sample output file is given as VII.3.

Example VII.3. An example of the output file when the max number of partitions is set to 8.
2 4

4 3 4 5

8 1 2 3 4 5 6 7

The first column is always the number of stages. The following numbers define the partitions of the
parallel sections. The sequence of numbers represents the index of where we put a delimiter for the
partition. For example, the first line has “2 4” meaning that there are two stages. Parallel sections with
an index below 4, which are 0, 1, 2, and 3, are mapped to stage 0 while parallel sections with an index
equalling or above 4 are mapped to stage 1. Some sample outputs of the pipeline stage partitioning are
provided under the directory /home/JADE-5.0/applications/partition.

17

To simulate in this mode, users need to set a few flags in the command line.

• –pipeline-application: this flag tells to enable pipelining simulation. You need to pass as an argument
the number of stages. Usually, you want to set the number of stages the same as the number of chips.

• –pipeline-partitioning: this flag is used to set the partitioning of the application (i.e.: which parallel
sections belong to the same pipeline stage). Partitioning for several of the benchmarks is provided.
They are located under /home/JADE-5.0/applications/partition.

• –workload-repeat: this flag indicates how many times you will repeat each stage. Usually, you want
to set this number larger than the number of stages you have so that the whole system is exercised.

• –ignore-pipeline-fill: this flag indicates how many times you will repeat each stage. Usually, you
want to set this number larger than the number of stages you have so that the whole system is
exercised.

D. Mapping and scheduling

In contrast to JADE-4.0, mapping and scheduling are implemented at runtime rather than fixed before
execution. The scheduling is done hierarchically at a thread level. Whenever a new thread is spawned or
resumed, it is firstly scheduled to a chip by the system scheduler. After that, the chip scheduler selects a
core and puts the thread into the active task queue of that core. There are three mapping and scheduling
algorithms available in JADE:

• Dynamic scheduling: a thread can be scheduled to different chips and cores.
• Static chip dynamic core scheduling: a thread is always executed on the same chip, but it can be

assigned to different cores.
• Static chip region and dynamic core scheduling: a thread is always executed on the same chip region,

but it can be assigned to different cores.

Dynamic scheduling is the default scheduling algorithm when simulating in multi-threading mode.
We define the chip affinity by process ID and the core affinity by thread ID. When making mapping
decisions, the thread will be assigned to the affined core if it’s available. Otherwise, the scheduler will
select a different core. Maintaining the thread to core affinity can help reduce the cache misses.

Static chip and dynamic core scheduling is the default scheduling algorithm during pipelined simulation
mode. In this case, one pipeline stage will be mapped to a fixed chip, so the number of chips should be the
same as the number of pipeline stages. If users want to apply pipelined execution in a single chip, they can
enable the static chip region dynamic core algorithm by specifying the --static-pipeline-stage
-to-region option in the command line. In this case, the option --chip-region arg is also
required. If the argument arg is a number, cores will be uniformly divided into regions. It can also be
the name of an input file, which defines a specific region partition. In this file, each line is a set of core
IDs belonging to the same region.

In the case of a multi-machine system, users can assign one scheduler to manage a set of machines.
The scheduler will then distribute the workload in this set of machines dynamically. This is useful
when you want to run two workloads and you want to reserve a set of machines for one workload,
and another set of machines for another workload. This is also useful for the pipeline simulation mode,

18

where one pipeline stage is treated similarly to one application. To enable multi-chip scheduler, the
--multi-chip-scheduler should be used. This command option receives a file where each line
defines a new scheduler. Each line contains a set of core IDs that this scheduler manages. The sequence
of the core is the relative priority of each of the cores.

E. Synthetic traffic

In the simulations based on synthetic traffic, packets are generated as an independent Poisson process.
The average generation interval of two sequent packets in one core depends on the offered load. Different
types of synthetic traffic patterns determine the destination of each packet.

Under uniform traffic, the packets from each core will be sent to all other cores with the same probability.
Under tornado traffic, each packet for core s will be always sent to the core d. The relation between s
and d can be expressed by tornado permutation, given as d = s+ (dN

2
e − 1)%N , where N is the number

of cores.
Hotspot traffic patterns and hotpair traffic patterns are similar. A packet generated from core s has the

probability of α to be sent to one determined destination core, and has the probability of 1−α to be sent to
all the other cores with the same probability. The default value of α is 0.5. The difference between hotspot
and hotpair is the following: the determined destination core for the packets from different source cores
under hotspot traffic is the same, while the determined destination cores for the packets from different
source cores under hotpair traffic are different. The relationship between the determined destination core
and the source core is defined as tornado permutation.

The rest synthetic traffic patterns are also permutation traffic patterns, where all traffic from each source
core is directed to one specific destination core, and the destination is determined by different permutation.
For example, the relationship between the destination core and the source core is determined by transpose
permutation under transpose traffic pattern.

Here is an example of simulation using synthetic traffic.

Example VII.4. Simulating a 1024-core system with 3-level cache and MOSI protocol based on uniform
synthetic traffic. Each core composes a chip. The chips are connected by a 1024-port FODON switch
fabric. The packet length is set as 64 Bytes, and it will not change during the simulation. The offered
load per core is 0.5, and the simulation time is 5ms:
./workspace/generic-3level_msi_mosi_cmp_directory_3level_inclusive/bin/jade.exec

-w ./architectures/net/OSwitchNet_1x1024.txt --max-sim-time 5e9 --bandwidth-mult 23.04 -y -S FODON

-C ./architectures/switch/parameter_setting_FODON.cfg --synthetic_pattern_type Uniform

--pkt_len_type Fixed -R 0.5 --dynamic-mtu 16 -O ./synthetic_results.txt

19

VIII. ARCHITECTURES

A. Network topology file

The network file defines the connection among different components of the system, such as L1, L2,
L3, main memory, and router/switch. It should be noticed that in three-level cache architecture we name
the first level cache as L0, L1 the second level cache, and L2 the last level cache. For two-level cache
hierarchy we name the first level of cache as L1 and the last level of cache as L2. In a three-level cache
organization, L0 and L1 caches are private for each core while the last level cache (named L2) is shared
for all cores. For two-level cache organization, the first level of cache is L1 and is private. While the last
level of cache (L2) is shared among cores.

We use directory-based cache coherence protocols. In the network file, each directory stands for a
memory controller and the main memory. We provide various network files for a different number of
processors and network topologies, each of them is named based on its topology and number of memories.
For instance, mesh_8x8_8mem.txt is a 8x8 mesh topology with 8 main memories. Detailed instruction
about writing a network file can be found at: [7].

JADE has full support for many-chip simulation. In JADE, each chips have its own private memory
space. When simulating multi-chip systems, you can assign each chip a separate memory space and
configure the relevant parameters. You can specify the number of chips in your network files.

A short list of network topologies already provided is shown in table VI. For a full list of files, users are
encouraged to have look in the directory /home/JADE-v5.0/architectures/net. Each network
file has a header that briefly describes its topology, number of processors, memory controllers, and number
of L2 cache banks and LLC slices. It should be noticed that in multiple chips cases, the total number of
processors and processors per chip should be specified accordingly in the header. The processing cores
are evenly assigned to each chip based on the numbering of the L1 cache (means a core). Within each
chip, the placement of L2/L3 cache bank, directory, and their counts can be decided independently.

TABLE VI: Examples of network files already provided.

Topology File name Number
Processors

Number L2
banks

Number
Memory

Controllers

Crossbar crossbar 1 1 1 1
crossbar 4 1mem 4 4 1

Mesh mesh 4x4 16 16 16
mesh 8x8 2L2Cache 2mem 64 2 2

Fattree fattree 8 2mem 8 8 2
fattree 16 2mem 16 16 2

Torus torus 2x2 1mem 4 4 1
torus 8x16 16mem 128 128 16

Folded-torus folded-torus 4x4 16mem 16 16 16
folded-torus 8x8 64mem 64 64 64

Ring ring 16 16 4 4
ring 64 64 16 4

20

B. Custom network topologies

Creating customized topologies with the adjustable placement of components can be accomplished by
two methods. The first one is by using the network generator script we provide, located at /home/
JADE-v5.0/scripts/networkGenerator.py. The current implementation can generate Mesh,
Torus, Folded-torus, Crossbar and Fattree. The number of memory controllers can be selected, as well as
its placement. The network generator syntax is detailed in table VII. Note that for crossbar and fattree,
it should be inserted a number zero right after the number of cores. For other topologies, the number of
cores is given by rows × columns.

TABLE VII: Network generator usage.

Topolgies Syntax

Mesh, torus, folded-torus networkGenerator.py topology rows columns Number of Memories List of memories location

Crossbar, fattree networkGenerator.py topology cores 0 Number of Memories List of memories location

The network generator script will print the output file in the stdout, therefore it should redirect the
standard output to the proper destination file, as shown in examples VIII.1 and VIII.2.

Example VIII.1. To generate a Mesh 4x4 with 1 memory located at node 0, the following command line
should be used:

./scripts/networkGenerator.py mesh 4 4 1 0 > outputNetwork.txt

Example VIII.2. To generate a Torus 2x2 with 2 memories located at node 0 and 3, the following
command line should be used:

./scripts/networkGenerator.py torus 2 2 2 0 3 > outputNetwork.txt

In order to obtain more complex and irregular topologies, users can generate a regular topology with
the script provided and remove or insert specific elements or nodes. To facilitate the elaboration of huge
topologies, the Python API to generate network files can be used and is located at /home/JADE-v5.
0/scripts/networkApi.py. A network object can be created by calling createNet, passing the
number of chips, the number of processors per chip, the number of L2 cache banks and the number of
memory controllers. This object is printable, so users can use this object to write to a specific file or the
stdout, respecting python syntax.

Any element that is outside the network is treated as external. Therefore, connecting processors, L2
caches, and directories to the network can be accomplished by using the external method, giving as
argument the component unique identifier (ID), the router node that it is going to be connected and the
link latency. This simple model can incorporate off-chip components by setting the proper link latency.
Each node in the network is implemented as a router, and in order to connect routers, the method link

should be used. Similarly, it should be given the pair of routers to be connected, the latency between
them and a weighting for routing decision.

Figure 4 shows a simple example on how to use the networkApi.py to generate a network topology.
A system composed of two processors, one L2 cache, and one memory controller (and its directory) is

21

Internal
link

External
link

Component (ID)

CORE

L1I
cache

L1D
cache

CORE

L1I
cache

L1D
cache

L2
cache

�

� �

L1(0) L1(1)

L2(0)
R(0)

R(1)

R(2)

MC

Directory(0)

Network
Boundaries

(a) Example of network.

// External components placement
net += external(‘L1Cache’, 0, 0, 1)
net += external(‘L1Cache’, 1, 1, 1)
net += external(‘L2Cache’, 0, 1, 1)
net += external(‘Directory’, 0, 2, 1)

// Internal connection routers
net += link(0, 2, 1, 1)
net += link(0, 1, 1, 1)
net += link(1, 2, 1, 1)

// Initialize object for network
net = createNet(1, 2, 1, 1)

(b) Example of code to generate network file.

Fig. 4: Example network generated using the Python API provided (networkApi.py).

shown in 4a. The code used to generate the system is shown in 4b. The first step is to create the network
object, then connect the external elements to routers (nodes) and finally create the desired internal structure
by connecting the routers.

Fig. 5: Multi-node network file generation.

JADE-v5.0 also provides a tool for generating multi-node network files. The tool uses a python script
to generate network files to simulate multi-node systems. The script is located under JADE-v5.0/

scripts/multiMachineNetworkGen.py. Fig. 5 shows the overview of the generator. The script
receives the following arguments: number of machines, number of cores per chip, number of cores per
cluster, X-length for a mesh (per chip), Y-length for a mesh (per-chip), the off-chip latency, and the
off-chip link weight.

C. Optical switch fabrics

JADE 5.0 is capable of analyzing the multi-chip systems where different chips are interconnected
by an optical switch. Eight types of switch fabrics have been supported in total. They are Crossbar,
DRAGRON, Spiral, PILOSS, Benes, Baseline, FODON and AWGR. Users can also implement other

22

types of optical switch fabrics, such as Butterfly, Clos, dilated Benes, etc., by inheriting corresponding
base classes provided in JADE.

The type of optical switch fabrics is passed by the command line option. For example, if a DRAGON
switch fabric needs to be simulated, the command line option -S DRAGON should be used. It is worth
noting that the port of optical switch fabric is determined by the number of chips, which is specified in
the network file (passed by the -w option). Other configurations of the optical switch fabric, including
the number of WDM channels, the loss parameters of photonic devices, and the parameters of lasers, are
specified in the optical switch fabric configuration files, which are located under the directory JADE-v5.
0/architectures/switch, and users can specify the configuration file through the -C option. The
optical bandwidth of inter-chip optical links is passed by the --bandwidth-mult or the -B option.

D. Memory hierarchy and cache coherence protocol

JADE comes with plenty of templates to model a diverse set of memory hierarchies. The templates are
located inside the directory protocols. You can modify the cache hierarchy by setting the PROTOCOL
flag during compilation time. See section V for details.

We provide several examples of cache hirearchy with 2-levels and 3-levels. The templates are all
based on the SLICC (Specification Language for Implementing Cache Coherence) provided by the Ruby
memory simulator [8]. The default cache hierarchy is a 2-level with the directory-based cache coherence
MSI-MOSI MSI MOSI CMP directory. We also provide templates for inclusive and exclusive 3-levels
of caches.

By default, the last level cache is shared across all cores while the other caches are private to each
core. The corresponding parameters can be configured in configuration files VIII-F. You can choose to use
whatever cache hierarchy and protocols as you like by specifying the protocol file listed under directory
protocols when compiling JADE.

E. External memory simulation

In JADE, memory behavior is simulated by DRAMSim2 [9]. It is a cycle-accurate model of a DRAM
memory controller, the DRAM modules which comprise system storage, and the bus by which they
communicate. All major components in a modern memory system are modeled as their respective objects
within the source, including ranks, banks, command queue, the memory controller, etc.

The overview of the memory module is shown in Fig. 6. In JADE, the directory module is in charge of
the memory issues. It receives read or write requests from caches via the network on chip, and generates
corresponding requests to the memory modules (DRAMSim2). Since the main body of JADE is running
in event-based mode while DRAMSim2 is running on cycle-based mode, an event to cycle interface is
inserted between them. The event generated from directories is put in an input event pool. Every cycle,
the interface will check the contents in the input event pool. If the pool is not empty, then the interface
would send the corresponding requests to the memory module. On the other hand, the packet from the
memory modules is converted into an event by the interface at a specific cycle, and put in an output event
pool. There is a clock sequence generator inside the interface.

23

Directory 0

Memory module (DRAMSim2)

Event to cycle interface

Input
event
pool

Output
event
 pool

Directory N-1

Input
event
pool

Output
event
 pool

Network-on-chip

…

…

Fig. 6: The interface between directories and DRAMSim2.

The API of the memory modules is shown in Table. VIII, There are three major functions. The
addTransaction() is to send a memory request to the memory module. The request includes the type
of the transaction (read or write) and the address. The update() is to run the DRAM module by one cycle.
The returnReadDataCB() could obtain the content of the read request back from the memory modules,
which includes the address of the transaction. The parameters of memory modules is shown in Table. IX.
These parameters can be modified in file JADE-v5.0/dramsim2/ini/myConfig.ini. Users can
also use the predefined parameter file directly in the folder JADE-v5.0/dramsim2/ini/.

TABLE VIII: The APIs of memory modules.

API function Description
addTransaction() Send a memory transaction request to the memory controller.

Update() Run DRAM by one cycle.
returnReadDataCB() Data read from the DRAM.

TABLE IX: The parameters of memory modules.

Category Parameter Description

Configuration

NUM BANKS Number of banks
NUM ROWS Number of rows
NUM COLS Number of columns
DEVICE WIDTH width of the data port
REFRESH PERIOD Refresh period in ns

Timing
tCK, CL, AL, BL, tRAS, tRCD, tRRD, TRC,
tRP, tCCD, tRTP, tWTR, tWR, tRTRS, tRFC,
tFAW, tCKE, tXP, tCMD

All kinds of time parameters related
to the DIMM

Power consumption

IDD0, IDD1, IDD2P, IDD2Q, IDD2N, IDD3Pf,
IDD3Ps, IDD3N, IDD4W, IDD4R, IDD5, IDD6,
IDD6L, IDD7

All kinds of current parameters
related to the DIMM

Vdd Supply voltage

24

F. Components configuration file

Many components of JADE can be individually tuned. For instance, one can set buffer sizes of NoC
routers, link latencies, size of memory and caches, latency to access cache, and many other parameters.
A few configuration files are already provided, located in /home/JADE-v5.0/architectures/

configs. Although many of the parameters are explained inside the configuration files, we provide
in Table X a more detailed description of some selected configuration items, since they are important
for simulation. When the configurations in the configuration file are changed, it is necessary to remake
JADE to make these configurations effective. For easy use, we also provide command line setting for
some frequently used parameters, as listed in the appendix. It will take effect without remaking JADE
but complicating the command line. It is up to users to choose the way they like.

TABLE X: Selected configuration items

Parameter Description Example

g RUNNING CYCLES Specify number of cycles to
finish the simulation.

0 means run the simulation to the end.

g INTERLEAVED MEMORY The way an address mapped to
memory controllers.

True means interleaved mapping, False means
continuous mapping.

g simple NoC Specify the NoC granularity.
True means simplified NoC, False means detailed
NoC.

g JADE E NETWORK Specify if electrical
architecture used.

True, electrical network is used.

g MEMORY SIZE BYTES Main memory size in bytes for
each memory.

For 4GB memories set 4294967296.

g DATA BLOCK BYTES
Data block size in bytes.
Corresponds to cache line sizes
in all levels.

For cache line size of 64, set 64.

L1 CACHE NUM SETS BITS Number of cache sets in bits
per core.

To obtain L1 cache of size 64Kbytes, in which
data block is 64 bytes, and associtivity is 4, you
need to set this variable to 8. 28 ∗ 4 ∗ 64 = 64KB

L2 CACHE NUM SETS BITS Number of cache sets in bits
per core.

For example, to set a total size of L2 of
2MBytes, with data block 64B, associtivity 8, and
and assuming there are 4 processors, you need to
set this variable to 10. 210 ∗ 8 ∗ 64 ∗ 4 = 2MB

Users should select the appropriate application model file in accordance with the components configu-
ration used to compile JADE. For instance, in case SYSTEM_SETTINGS=aarch64 were used to build
JADE, users should use application files under the directory aarch64. Please refer to [10] for more
descriptions of memory parameters. We further provide a generic configuration parameter based on a
generic MIPS implementation, to allow users to modify and tune each parameter individually.

G. Power models

In JADE-v5.0, we incorporate holistic Power Management (PM) function for managing the system power
and generating power statics of different components. The PM includes three subsystems: Dynamic Volt-
age and Frequency Scaling(DVFS), Energy Consumption Calculation and Power Delivery System(PDS)

25

Models. The central PM controller in JADE is called PMU (Power Management Unit), which is defined
under the directory support. PMU is responsible for the following functions:

• Initializing Power Management(PM) States, which represents the voltage and frequency pairs
• Launching Power Tools and get corresponding power consumption results for target processor con-

figurations and defined PM states
• Maintain and update real-time PM states for different components (DVFS)
• Calculate energy consumptions for different components (Core / L2)
• Create Power Delivery System Model
• Print power results at the end of the simulation
• Generating per-core frequency/dynamic power/static power variation based on process variation

The PMU initialization workflow of the JADE simulation is as shown in Figure 7. Firstly, it defines
the frequencies and voltage pairs for different PMStates in VFLists for different components. Secondly,
it launches the Power Tool (Currently McPAT) in parallel to compute the dynamic and static power
for all the PMStates of different components. The temporary configuration file is constructed. Then the
power tool is launched directly by ./utils/mcpat/bin/powerWizard.py using the above config file. Finally,
the computation of power tools, corresponding results are written in Power Vectors. These results could
be further used for DVFS and energy consumption calculation. For all components, including processor
cores, routers, caches, etc., both dynamic and static energy is calculated.

JADE

PMU

Multi-core System Simulator

Initiate PMStates

（Voltage & Frequency Pairs)

McPAT

Power vectors PDSModel

Launch power tool

Get power results

Update runtime info.Set PM state

Fig. 7: The PMU workflow in JADE.

Currently, the DVFS function supports the following components, and each component can have
its own voltage and frequency settings. Processor Cores: PM state is changed by the function Set-
ProcPMState(). Users can set PMState at different temporal granularities. Voltage/Frequency Scaling
Time (VScalingTime) is considered if the PDSModel is enabled. It is generated by PDSModel. PMU
also maintains the working states for each core (idle or running) for PDSModel Energy Calculation. We
use PMU::UpdateProcWorkingState(Processor∗ proc) to update the working state and compute the PDS
efficiency at the same time.

Network Interfaces: Use PMU::SetPMState NI(w NetworkInterface∗ NI) to change PMstate of NI in
its wakeup() function. Routers: Use PMU::SetPMState Router(w router∗ router) to change PMstate of
router in its wakeup() function. By default, the DVFS for processor, router, and network interface are

26

all disabled. If you want to use this feature, you can set “Flag DVFS proc”, “Flag DVFS router”, “
Flag DVFS NI” to be true in /home/JADE-v5.0/support/PMU.h.

JADE also includes a process variation generator to simulate the variation of core frequencies, average
dynamic power, and average static power. The fundamental variations of two device-level parameters that
cause the above variations are the effective gate length Leff and the threshold voltage Vth. We model Leff

and Vth as a spatial correlated normal distribution, and use a spherical function to generate covariance
between cores.

27

IX. OUTPUT ITEMS

Several statistics are provided by JADE including holistic performance and power analysis, system
behavior, and memory access trace. For a given input application and architecture, several simulation
iterations are executed allowing the application behavior to be randomly constructed. From the simulation
we use a configurable amount of intermediate results, ignoring initial and final iterations to allow system
warm-up and sink.

Displayed outputs include overall application execution time, individual processor statistics such as
total busy time, and waiting time to depict the utilization ratio of processors. The network counters shown
include packet injection rate for individual routers, average packet delay, throughput, and flow control
statistics. JADE also incorporates power library models, for selected technology nodes, and reports power
and energy usage for various components within the system.

Memory access trace is also recorded, supplementing further investigation of memory behavior of
applications. Besides conventional outputs, researchers and designers need to get more detailed behavior
of some specific component in the system to better understand it and lately tune. To attend different needs,
a custom output is also possible by adding customized recorders to the modules, enabling extraction of
specific metrics and behavior.

Although we intend to print out the statistics of system behavior and performance as detailed as possible,
we still understand that users might be interested in certain perspectives that we have not covered in the
current version. To this end, users may need to go through the source codes and add probes to realize
their requirements.

28

AGREEMENT AND LICENSE

JADE copyrights can be found in its root directory. If you use JADE in your research, please cite the
following paper (http://dx.doi.org/10.1145/2857058.2857066):

Rafael K. V. Maeda, Peng Yang, Xiaowen Wu, Zhe Wang, Jiang Xu, Zhehui Wang, Haoran Li, Luan
H. K. Duong, Zhifei Wang, JADE: a Heterogeneous Multiprocessor System Simulation Platform Using
Recorded and Statistical Application Models, HiPEAC Workshop on Advanced Interconnect Solutions
and Technologies for Emerging Computing Systems, Prague, January 2016.

http://dx.doi.org/10.1145/2857058.2857066

29

REVISION HISTORY

TABLE XI: Revision history

Version Changes Date
2.1 Cache coherence protocols 1-Jun-16

2.2 Inter-chip communication and separate memory space 10-Oct-16

2.3 Optimized memory usage and compatible with APEX benchmarks 10-Dec-16

2.4 Power management unit 2-Feb-17

2.5 Process variation 1-Apr-17

2.6 Internal test and verification 1-May-17

3.0 Public release 1-Aug-17

3.1 Adoption of COSMIC v3.0 1-Jul-18

3.2 Enhanced CPU models. 1-Aug-18

3.3 Adoption of more cache coherence protocols. 1-Aug-18

4.0 Public release 1-Sept-18

5.0 Public release 1-May-20

30

REFERENCES

[1] R. K. V. Maeda, Q. Cai, J. Xu, Z. Wang, and Z. Tian, “Fast and accurate exploration of multi-level caches using hierarchical reuse
distance,” in 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2017, pp. 145–156.

[2] “APEX benchmarks,” https://www.lanl.gov/projects/apex, accessed 28-Feb-2020.
[3] “NAS parallel benchmarks,” https://www.nas.nasa.gov/publications/npb.html, accessed 28-Feb-2020.
[4] “SPEC2006 benchmarks,” https://www.spec.org/cpu2006, accessed 28-Feb-2020.
[5] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly synchronized benchmark suite for contemporary research,”

in 2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2016, pp. 101–111.
[6] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton University, January 2011.
[7] http://research.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/Understanding%20Network%20Files.
[8] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,

“Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset,” ACM SIGARCH Computer Architecture News, vol. 33,
no. 4, pp. 92–99, 2005.

[9] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory system simulator,” IEEE Computer Architecture
Letters, vol. 10, no. 1, pp. 16–19, 2011.

[10] http://research.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/.

https://www.lanl.gov/projects/apex
https://www.nas.nasa.gov/publications/npb.html
https://www.spec.org/cpu2006
http://research.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/Understanding%20Network%20Files
http://research.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/

31

APPENDIX-A: BASIC COMMAND LINE OPTIONS

There are two classes of command line. The basic options and the advanced options. This section
shows the basic options whereas in Appendix IX we show the advanced options. To obtain the full basic
command line options you can run the command:

./workspace/aarch64_msi_mosi_cmp_directory/bin/jade.exec --help

The basic command line option is shown below:

JADE command line options:

Usage options:

-h [--help] List command line options.

-H [--help-arch] List architecture parameters options.

-v [--version] Print JADE version

Basic options (all required):

-w [--net] arg Topology file (.net). Examples under directory:

JADE/architectures/net.

-O [--out] arg Results output file. Default file:

workspace/dir/result/results.txt

--mtsyn arg Use synthetic multithreaded workload

Logging options, use --log-help for details.:

--log arg Enable prints for debugging for a particular

subset of messages. Example --log="network,cpu"

--log-help Will print all possible logs and a comment

about their purposes.

Simulation control:

-P [--periodic-stats] arg Print results periodically. Should pass the

period to print. Unit in cycles.

--max-sim-time arg Maximum simulation time. Given in time unit

(ps). Double value accepted. e.g: 10e3 will

simulate 10000ps.

-r [--random] arg Random seed. Use 0 for time() and larger than 0

for fixed seed.

-N [--iterations] arg How many iterations the same application should

be executed. The results will be accumulated.

--workload-repeat arg Number of times to run the same application.

-D [--trace] arg Trace file when running cycle-accurate.

Examples under JADE/applications/app. You still

need to input the (.sam) file using --app.

-y [--cached-net] Use cached routing information to build the

network. Saves simulation time.

-Y [--gen-net] Do not simulate, only generate the cached

routing information.

32

--limit-task-iteration arg Limit the total number of task to simulate per

iteration. If 0 this is disabled..

--nosharing Do not simulate the sharing between thread

blocks.

--omit-net-traffic Will omit results for SRC-DST message size

traffics.

--trace-reduction arg Will simulate with details 1 / X, where X is

the value set. If X<0 it will use automatic

sampling with at least X detailed simulation

length.

--sampling-rate arg Same as trace-reduction

--max-sampling-rate arg default (1000). Maximum sampling rate in

automatic mode.

--conv-factor arg Defult 0.5. It means that the convergence can

be 50% error. Need to set sampling-rate -1.

--sampling-warm-length arg Only useful for cycle-accurate.

--no-func-warmup Will NOT do functional warmup during sampling.

--prof-tnumber arg Number of threads for profiling. Value (0) will

disable it.

--print-results-per-phase Will print the results every time a new phase

is reached (.e.g: new thread is created)

--ignore-init-phase Will not simulate the initial phase of the

application.

--ignore-pipeline-fill Will not simulate the initial phase when the

pipelining is filling / draining.Only

applicable when simulating pipelined

application.

--ideal-data-cache Will simulate as if all access to DATA cache is

a hit. Allow quick simulation of the inter-chip

net.

--ideal-inst-cache Will simulate as if all access to INSTRUCTION

cache is a hit. Allow quick simulation of the

inter-chip net.

Mapping and scheduling options:

--static-chip-mapping Use static chip mapping and dynamic

mapping for each core scheduling (under

development).

--pipelined-application arg Set application running into pipeline.

Should give number of stages.

--pipeline-partitioning arg Application partitioning telling which PS

belongs to which stage.

--static-pipeline-stage-to-region Will map pipeline stage 0 to chip region

0. Only works in pipeline mode, and using

region. See chip-region option for more

details.

33

--ps-per-chip arg Set the number of parallel sections per

chip. How many parallel sections to run in

a chip before trying to find a new chip.

--chip-region arg Create regions withing a single chip. All

chips will have the same regions. This

flag can receive an integer or a file

name. In the case of an integer, N, then

we will divide the chip into N regions.

For example, if you simulate a 8-core chip

and use N=2 we will set one region for

cores 0 to 3 and another region for cores

from 4 to 7. In the case of a file name,

then we will read the file and each line

of the file will have the list of cores

for that region.

--multi-chip-scheduler arg Create custom schedulers that manipulate

multiple chips. The chips could belong to

the same machine or not. The scheduler

will assign workload to these

chips/machines assuming there is a equal

cost to assign an workload to either of

the machine. This argument receives a file

where each line define a new scheduler.

Each line contain a set of coreid that

this scheduler manages. The sequence of

the core is the relative priority of each

of the cores.

Basic system parameters.:

--base-period-ps arg Baseline period (in picoseconds) of all components.

Default: 500ps = 2GHz.

--comp-param arg Set the value of a particular component parameter.

See comp-param-list to list all possible parameters.

This option expects the name of the component,

the id of the component, and the value

(all in a single string). For example, to set the

issue width of a CPU to 8 use the following,

--comp-param "TIpcCpu 3 maxMemIssuePerCycle 8".

You can use this argument as many time as needed.

--comp-param-list List all parameters of components that are

configurable. This is per-component setting. For

system-wide settings, see --help-arch.

Optical inter-chip switch options:

-S [--OSwitch_Type] arg OSwitch Type. Examples: Fat_Tree, FODON, Benes

-C [--OSwitch_Filename] arg OSwitch Configure file(.cfg). Example under

34

directory: JADE/architectures/config.

Synthetic traffic options:

-R [--injection-rate] arg Injection rate for the synthetic-traffic.

-T [--dynamic-mtu] arg Dynamic MTU for inter-chip communication.

-B [--bandwidth-mult] arg Inter-chip interconnect bw multiplier

-E [--electrical-icn] Use electrical inter-chip network

-F [--performance-ratio] arg Set the processor performance ratio

-M [--integrated-nic] Integrated NIC

--IC_WORD_SIZE arg Set the size of flit (basic unit) for

inter-chip packets, which is the word size in

the default mode

--synthetic_pattern_type arg Synthetic pattern type: Uniform, Tornado,

Hotspot, HotPair, ...

--pkt_len_type arg Distribution of packet length under synthetic

pattern type: Fixed, Exponential, ...

Power parameters:

-L [--power-lib] arg Set the power library file.

-A [--tech-node] arg Set the technology node (nm).

--enable-power-tool Run the power tool (McPat) to estimate energy

and power values.

--enable-pds Activate PDS simulation, requires user to set

the output file (pds-outfile)

--pds-result-path arg Set the path to write the PDS results. Default:

workspace/dir/result/pds/*

--pds-baseline-iterations arg Baseline iterations to compute average pds stats.

--pds-iterations-average arg Number of iterations to compute average pds stats.

35

APPENDIX-B: ADVANCED COMMAND LINE OPTIONS

The advanced command line options sets specific architecture parameters such as cache size, cache
latencies, and many more. You are advised to use these options carefully since misconfiguration of the
parameters might cause unpredictable behavior in the simulation. You can obtain the full advanced options
by running JADE with the command:

./workspace/aarch64_msi_mosi_cmp_directory/bin/jade.exec --help-arch

Here is the full command line option shown:

Advanced architecture parameters. Use carefully:

System parameters.:

--g_NUM_MEMORIES arg (uint)

--g_PROCS_PER_CHIP arg (uint)

--g_NUM_CHIPS arg (uint)

--g_NUM_CHIP_BITS arg (uint)

--g_NUM_PROCESSORS_BITS arg (uint)

--g_PROCS_PER_CHIP_BITS arg (uint)

Network parameters:

--g_adaptive_routing arg (boolean)

--g_PRINT_TOPOLOGY arg (boolean)

--g_JADE_E_NETWORK arg (boolean)

--g_JADE_SUOR arg (boolean)

--g_INIC arg (boolean)

--g_simple_NoC arg (boolean)

--g_DETAIL_NETWORK arg (boolean)

--g_GARNET_NETWORK arg (boolean)

--g_NETWORK_TESTING arg (boolean)

--g_bash_bandwidth_adaptive_threshold arg

(float)

--g_ODB arg (float)

--InjectRate arg (float)

--g_topology_file arg (string)

--g_NETWORK_TOPOLOGY arg (string)

--g_DP arg (uint)

--g_PF arg (uint)

--g_D_MTU arg (uint)

--NETWORK_LINK_LATENCY arg (uint)

--COPY_HEAD_LATENCY arg (uint)

--ON_CHIP_LINK_LATENCY arg (uint)

--g_endpoint_bandwidth arg (uint)

--NUMBER_OF_VIRTUAL_NETWORKS arg (uint)

--g_SUOR_cluster_size arg (uint)

--g_FLIT_SIZE arg (uint)

--g_NUM_PIPE_STAGES arg (uint)

--g_VCS_PER_CLASS arg (uint)

--g_BUFFER_SIZE arg (uint)

--g_SpecifiedGenerator arg (string)

Processor parameters.:

--g_SYNTHETIC_DRIVER arg (boolean)

--g_DETERMINISTIC_DRIVER arg (boolean)

--PROFILE_HOT_LINES arg (boolean)

--PROFILE_ALL_INSTRUCTIONS arg (boolean)

--USER_MODE_DATA_ONLY arg (boolean)

--TRANSACTION_TRACE_ENABLED arg (boolean)

--g_SIMICS arg (boolean)

--FINITE_BUFFERING arg (boolean)

--g_trace_warmup_length arg (uint)

--g_tester_length arg (uint)

--ENABLE_DVFS arg (boolean)

--g_synthetic_locks arg (uint)

--g_deterministic_addrs arg (uint)

--g_callback_counter arg (uint)

--g_NUM_SMT_THREADS arg (uint)

--SIMICS_RUBY_MULTIPLIER arg (uint)

--OPAL_RUBY_MULTIPLIER arg (uint)

--g_NUM_PROCESSORS arg (uint)

--PROCESSOR_BUFFER_SIZE arg (uint)

--SEQUENCER_TO_CONTROLLER_LATENCY arg (uint)

Memory parameters:

--PERFECT_MEMORY_SYSTEM_LATENCY arg (uint)

--L0_CACHE_ASSOC arg (uint)

--L0_CACHE_NUM_SETS_BITS arg (uint)

--L1_CACHE_ASSOC arg (uint)

--L1_CACHE_NUM_SETS_BITS arg (uint)

--L2_CACHE_ASSOC arg (uint)

--L2_CACHE_NUM_SETS_BITS arg (uint)

--g_DATA_BLOCK_BYTES arg (uint)

--g_PAGE_SIZE_BYTES arg (uint)

--g_NUM_L2_BANKS arg (uint)

--g_MEMORY_SIZE_BITS arg (uint)

--g_DATA_BLOCK_BITS arg (uint)

--g_PAGE_SIZE_BITS arg (uint)

--g_NUM_L2_BANKS_BITS arg (uint)

--g_NUM_L2_BANKS_PER_CHIP_BITS arg (uint)

--g_NUM_L2_BANKS_PER_CHIP arg (uint)

--g_NUM_MEMORIES_BITS arg (uint)

--g_NUM_MEMORIES_PER_CHIP arg (uint)

--g_MEMORY_MODULE_BITS arg (uint)

--DIRECTORY_CACHE_LATENCY arg (uint)

--ISSUE_LATENCY arg (uint)

--CACHE_RESPONSE_LATENCY arg (uint)

--L2_RESPONSE_LATENCY arg (uint)

--L2_TAG_LATENCY arg (uint)

--L1_RESPONSE_LATENCY arg (uint)

--L0_RESPONSE_LATENCY arg (uint)

--MEMORY_RESPONSE_LATENCY_MINUS_2 arg (uint)

--DIRECTORY_LATENCY arg (uint)

--RECYCLE_LATENCY arg (uint)

--L2_RECYCLE_LATENCY arg (uint)

--TBE_RESPONSE_LATENCY arg (uint)

--L0_REQUEST_LATENCY arg (uint)

36

--L1_REQUEST_LATENCY arg (uint)

--L2_REQUEST_LATENCY arg (uint)

--L0CACHE_TRANSITIONS_PER_RUBY_CYCLE arg

(uint)

--L1CACHE_TRANSITIONS_PER_RUBY_CYCLE arg

(uint)

--L2CACHE_TRANSITIONS_PER_RUBY_CYCLE arg

(uint)

--DIRECTORY_TRANSITIONS_PER_RUBY_CYCLE arg

(uint)

--NUMBER_OF_TBES arg (uint)

--NUMBER_OF_L0_TBES arg (uint)

--NUMBER_OF_L1_TBES arg (uint)

--NUMBER_OF_L2_TBES arg (uint)

--PROTOCOL_BUFFER_SIZE arg (uint)

--MEM_BUS_CYCLE_MULTIPLIER arg (uint)

--BANKS_PER_RANK arg (uint)

--RANKS_PER_DIMM arg (uint)

--DIMMS_PER_CHANNEL arg (uint)

--BANK_BIT_0 arg (uint)

--RANK_BIT_0 arg (uint)

--DIMM_BIT_0 arg (uint)

--BANK_QUEUE_SIZE arg (uint)

--BANK_BUSY_TIME arg (uint)

--RANK_RANK_DELAY arg (uint)

--READ_WRITE_DELAY arg (uint)

--MEM_CTL_LATENCY arg (uint)

--REFRESH_PERIOD arg (uint)

--BASIC_BUS_BUSY_TIME arg (uint)

--TFAW arg (uint)

--MEM_RANDOM_ARBITRATE arg (uint)

--MEM_FIXED_DELAY arg (uint)

--PRINT_INSTRUCTION_TRACE arg (boolean)

--REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH arg

(boolean)

--g_INTERLEAVED_MEMORY arg (boolean)

--SyntheticTraffic arg (boolean)

--MAP_L2BANKS_TO_LOWEST_BITS arg (boolean)

--g_MEMORY_SIZE_BYTES arg (ulong)

--g_MEMORY_MODULE_BLOCKS arg (ulong)

--XACT_CONFLICT_RES arg (string)

--PERFECT_MEMORY_SYSTEM arg (boolean)

Instrumentation parameters.:

--RANDOMIZATION arg (boolean)

--g_FILTERING_ENABLED arg (boolean)

--PROTOCOL_DEBUG_TRACE arg (boolean)

--PERIODIC_TIMER_WAKEUPS arg (boolean)

--PERFECT_FILTER arg (boolean)

--PERFECT_VIRTUAL_FILTER arg (boolean)

--PERFECT_SUMMARY_FILTER arg (boolean)

--ENABLE_MAGIC_WAITING arg (boolean)

--ENABLE_WATCHPOINT arg (boolean)

--DEBUG_FILTER_STRING arg (string)

--DEBUG_VERBOSITY_STRING arg (string)

--DEBUG_OUTPUT_FILENAME arg (string)

--g_RANDOM_SEED arg (uint)

--g_DEADLOCK_THRESHOLD arg (uint)

--g_RETRY_THRESHOLD arg (uint)

--g_FIXED_TIMEOUT_LATENCY arg (uint)

--g_NUM_COMPLETIONS_BEFORE_PASS arg (uint)

--g_think_time arg (uint)

--g_hold_time arg (uint)

--g_wait_time arg (uint)

--g_DEBUG_CYCLE arg (uint)

--NULL_LATENCY arg (uint)

--TIMER_LATENCY arg (uint)

--ABORT_RETRY_TIME arg (uint)

--DEBUG_START_TIME arg (ulong)

Legacy parameters.:

--g_DISTRIBUTED_PERSISTENT_ENABLED arg

(boolean)

--g_DYNAMIC_TIMEOUT_ENABLED arg (boolean)

--XACT_ENABLE_VIRTUALIZATION_LOGTM_SE arg

(boolean)

--XACT_EAGER_CD arg (boolean)

--XACT_LAZY_VM arg (boolean)

--XACT_VISUALIZER arg (boolean)

--XACT_NO_BACKOFF arg (boolean)

--g_REPLACEMENT_POLICY arg (string)

--BLOCK_STC arg (boolean)

--PROFILE_EXCEPTIONS arg (boolean)

--ATMTP_ENABLED arg (boolean)

--ATMTP_ABORT_ON_NON_XACT_INST arg (boolean)

--ATMTP_ALLOW_SAVE_RESTORE_IN_XACT arg

(boolean)

--READ_WRITE_FILTER arg (string)

--VIRTUAL_READ_WRITE_FILTER arg (string)

--SUMMARY_READ_WRITE_FILTER arg (string)

--g_CACHE_DESIGN arg (string)

--ATMTP_XACT_MAX_STORES arg (uint)

--ATMTP_DEBUG_LEVEL arg (uint)

--FAN_OUT_DEGREE arg (uint)

--XACT_DEBUG_LEVEL arg (uint)

--XACT_NUM_CURRENT arg (uint)

--XACT_LAST_UPDATE arg (uint)

--XACT_COMMIT_TOKEN_LATENCY arg (uint)

--XACT_LOG_BUFFER_SIZE arg (uint)

--XACT_STORE_PREDICTOR_HISTORY arg (uint)

--XACT_STORE_PREDICTOR_ENTRIES arg (uint)

--XACT_STORE_PREDICTOR_THRESHOLD arg (uint)

--XACT_FIRST_ACCESS_COST arg (uint)

--XACT_FIRST_PAGE_ACCESS_COST arg (uint)

--XACT_LENGTH arg (uint)

--XACT_SIZE arg (uint)

--PROFILE_XACT arg (boolean)

--PROFILE_NONXACT arg (boolean)

--XACT_DEBUG arg (boolean)

--XACT_MEMORY arg (boolean)

--XACT_ENABLE_TOURMALINE arg (boolean)

--XACT_ISOLATION_CHECK arg (boolean)

37

APPENDIX-C: LIST OF APPLICATIONS IN COSMIC BENCHMARK SUITE

COSMIC includes statistical application models that are obtained from profiling applications from
multiple widely used benchmark suites, including APEX [2], NAS [3], SPEC2006 [4], SPLASH-3 [5]
and PARSEC 3.0 [6], for a target processor. The brief description of each application benchmark is listed
in table XII. Please check out the full list on the COSMIC release page at https://eexu.home.ece.ust.hk/
COSMIC.html.

TABLE XII: List of applications in COSMIC benchmark suite

Suite Application Description

APEX

hpcg Conjugate gradient algorithm.

dgemm Dense matrix multiplication.

pennant
Lagrangian staggered-grid hydrodynamics algorithm on 2-D
unstructured finite-volume mesh.

stream
Synthetic benchmark measuring the memory bandwidth and a
corresponding computation rate for four simple vector kernels.

NAS

bt
Solving a synthetic system of partial differential equation using
block Tri-diagonal solver.

cg
Estimating the smallest eigenvalue of a large sparse symmetric
positive-definite matrix with the conjugate gradient method.

dc Data cube operator.

ep
Generating independent Gaussian random variates using the
Marsaglia polar method.

ft
Solving a 3D partial differential equation using the fast Fourier
transform (FFT).

is Sorting small integers using the bucket sort.

lu
Solving a synthetic system of partial differential equation using
lower-upper Gauss-Seidel solver.

mg
Approximating the solution to a 3D discrete Poisson equation using
the V-cycle multigrid method.

sp
Solving a synthetic system of partial differential equation using
scalar Penta-diagonal solver.

ua
Solving heat equation with convection and diffusion from moving
ball.

PARSEC 3.0 blackscholes Option pricing with Black-Scholes partial differential equation.

Continued on next page

https://eexu.home.ece.ust.hk/COSMIC.html
https://eexu.home.ece.ust.hk/COSMIC.html

38

TABLE XII – continued from previous page

Suite Application Description

canneal
Cache-aware simulated annealing to optimize routing cost of a chip
design.

dedup Compression with data de-duplication.

facesim Simulating the motions of a human face.

ferret Content-based similarity search.

fluidanimate
Simulating fluid dynamics for animation purposes with Smoothed
Particle Hydrodynamics (SPH) method.

freqmine Frequent itemset mining.

streamcluster Online clustering of an input stream.

swaptions
Pricing of a portfolio of swaptions using the Heath-Jarrow-Morton
(HJM) framework.

x264 H.264 video encoder.

SPEC2006

bzip2 File compression and decompression based on bzip2.

cactusADM
Solving Einstein evolution equations with staggered-leapfrog
method.

calculix Finite element method for 3D structural analysis applications.

dealII
Adaptive finite element method for solving partial differential
equations.

gobmk Analysing and playing Go game.

hmmer Profile hidden Markov models for protein sequence analysis.

lbm Lattic Boltzmann method (LBM) for simulating 3D fluids dynamics.

libquantum Quantum computer simulation.

mcf Single-depot vehicle scheduling.

namd Simulating large biomolecular systems.

omnetpp Discrete event simulation of a large Ethernet network.

povray Ray tracing, rendering algorithm.

sjeng Playing chess.

soplex Simplex linear program solver.

specrand Generating pseudorandom numbers.

specrand i Generating pseudorandom integer numbers.

sphinx Speech recognition.

xalancbmk Transforming XML documents to other document types.

Continued on next page

39

TABLE XII – continued from previous page

Suite Application Description

SPLASH-3
barnes Simulating N-body problem with Barnes-Hut method.

cholesky Blocked Cholesky factorization on a sparse matrix.

fft Fast Fourier Transform.

fmm Simulating N-body problem with Fast Multipole Method.

lu
Factorizing a dense matrix into the product of a lower triangular
and an upper triangular matrix.

ocean Simulating large-scale ocean movements.

radix Integer radix sort.

raytracing Rendering a 3D scene onto a 2D image plane with ray tracing.

volrend
Rendering a 3D volume onto a 2D image plane using an optimized
ray casting technique developed by Marc Levoy.

water-nsquared Simulating the molecular dynamics N-body problem.

water-spatial Simulating the molecular dynamics N-body problem.

	Motivation
	Introduction
	New features in JADE Version 5.0

	JADE organization
	Root directory
	Workspace

	Installation guideline
	Requirements
	Quick compilation
	Advanced compilation

	Recommended workflow
	Running simulation
	Quick guideline

	Benchmark applications
	Realistic statistical application model
	Directory organization and naming of application models
	Pipeline stage partitioning
	Mapping and scheduling
	Synthetic traffic

	Architectures
	Network topology file
	Custom network topologies
	Optical switch fabrics
	Memory hierarchy and cache coherence protocol
	External memory simulation
	Components configuration file
	Power models

	Output items
	Agreement and License
	Revision History
	References
	Appendix-A: Basic Command Line Options
	Appendix-B: Advanced Command Line Options
	Appendix-C: List of Applications in COSMIC Benchmark Suite

