
COSMIC Heterogeneous Multiprocessor Benchmark
Suite user manual

Version 4.0

OPTICS Lab

Big Data System Lab

Department of Electronic and Computer Engineering

Hong Kong University of Science and Technology

https://eexu.home.ece.ust.hk

March 2020

https://eexu.home.ece.ust.hk

CONTENTS

I Introduction 1

II Overview 2

III Statistical Application Modeling 3

III-A Application Modeling . 3

III-B Application Profiling . 4

III-C Memory Request Profiling . 4

III-D Profiling Setup Details . 5

IV Statistical Application Behavior Generation 6

IV-A Application Flow . 6

IV-B Memory Trace Synthesis . 6

IV-C Critical Section Synthesis . 6

V Applications in COSMIC Benchmark Suite 8

VI Useful Tools 9

VI-A Pipeline Stage Partitioning . 9

VI-B Tools installation . 9

VII Application Programming Interface 10

VII-A Basic data structures . 10

VII-B Load applications . 10

VIII Directory and Files 11

VIII-A Directory organization . 11

VIII-B File formats . 11

IX Agreement and License 12

X Revision History 13

XI Copyright 14

References 14

I. INTRODUCTION

Recent advances in the computing industry towards multiprocessor technologies shifted the dominant
method of performance increase from frequency scaling to parallelism. Due to the huge design space of
multiprocessor systems, evaluating candidate architectures in early design stages, when the number of
variables is at its maximum, is challenging. Simulation plays an important role not only in validating the
circuit correctness but also in estimating candidate architectures performance. Commonly used simulation
methods requires the use of representative benchmarks that should be compiled for specific instruction
set, and executed on top of an abstraction layer that provides a set of services to access the hardware.

Estimating the average performance of a candidate architecture requires evaluation of the system with
a representative number of input datasets and benchmarks that cover most of the architecture purpose
domain. However, enumerating all possible inputs for a given application is very inconvenient and in most
of the cases impossible. For instance, for a hardware designed to perform H.264 video coding/decoding,
enumerating input datasets means obtaining numerous image frames with representative resolution, to
depict temporal and spatial characteristics of realistic videos. Clearly, such approach does not scale
well, and is aggravated by the fact that simulation is naturally slow and performing simulation runs for
individual input dataset becomes prohibitively time and resource consuming. Additionally, heterogeneous
multiprocessor systems has a lack of operating systems support or it is usually not decided in early design
stages, diminishing the usefulness of traditional benchmarks in evaluating novel architectures.

COSMIC Heterogeneous Benchmark Suite

Realistic Statistical Application Models

Application Programming Interface (API)

Useful Tools

pipeline stage partitioning tool

NASAPEX SPEC2006

SPLASH-3 PARSEC 3.0

Fig. 1: Content of COSMIC benchmark suite.

In order to fulfill this gap, we developed a heterogeneous multiprocessor benchmark suite called
COSMIC (Communication-Observant Schedulable Memory-Inclusive Computation) that replaces key Op-
erating System (OS) and compiler functionalities, and can be flexibly applied on a variety of architecture
exploration platforms. Differently from conventional benchmarks that rely on individual input specification,
and require enumeration of a large number of inputs, COSMIC models the application behavior using
statistical distributions obtained from profiling the original algorithm implementation, at thread block
section level, using a representative number of input datasets. The statistical distributions are used to
construct Realistic Statistical Application Models (RSAM). RSAM approximates the overall joint behavior
of application and processor by randomly generating task computation time and memory accesses. Due
to its randomness, RSAM is useful to replicate many possible application behavior outcomes that could
eventually happen and is a more convenient and systematic method to iteratively exercise the system and
evaluate the overall average system performance, as well as to identify corner case conditions.

1

Fig. 1 shows an overview of COSMIC benchmark suite. COSMIC includes statistical application models
that are obtained from profiling applications from multiple widely used benchmark suites, including
APEX [1], NAS [2], SPEC2006 [3], SPLASH-3 [4] and PARSEC 3.0 [5], for a target processor. Addition-
ally, it provides a useful tool for partitioning an application into multiple stages for pipelined execution
during simulation. The COSMIC benchmark can be easily incorporated into existing multiprocessor
simulators for high-level multiprocessor design exploration and evaluation by using an easy to use
application programming interface (API) provided in C++. For instance, COSMIC has been successfully
incorporated in the JADE heterogeneous system simulation platform [6], and also used in various other
studies [7].

The rest of the manual is organized as follows. An overview can be seen in Section II. More details about
the statistical application model and the profiling is described in Section III, while Section IV illustrates
the behavior generation for the realistic models. In Section V, we provide brief description about each
application included, and the user’s guide on the tools and the API are presented in sections VI and VII,
respectively. Section VIII introduces the directory organization and file format of the COSMIC benchmark
package.

II. OVERVIEW

The overview of how the COSMIC application models are obtained is shown in Fig. 2a. Starting with
a real multiprocessor application implemented using high-level languages (e.g, C, C++, and Fortran), we
partition the application into multiple thread block sections (TBSs) by inserting instrumentation function
calls in the code whenever threads are created, destroyed or synchronized (e.g. barriers, locks, etc). Then,
we profile the application to obtain the application flow, which can be represented with a TBS graph,
and extract the main behavior statistics with micro-architecture independent metrics for each TBS. Some
examples of metrics we profile are the memory locality for data and instruction and the distribution of the
request type. The profiled information is used to build what we refer to as Realistic Statistical Application
Models (RSAM). These models are later used to reproduce the behavior of the application which can be
used to feed, for example, a timing simulator to simulate a target system.

Realistic Statistical Application Model

Realistic Application

C/C++/Fortran implementation
of an algorithm

sample
inputs

insert instrumentation calls

synchronizations and memory requests
analysis and profiling

memory models for
locality, request type

application flow

(a) Workflow for application profiling.

Realistic Statistical Application Model

pipeline stage partitioning (optional)

memory
behavior

TBS mapping
& scheduling

application & processor
behavior

memory
traces

Architecture Simulator

trace driven
simulator

hardware
emulator

event driven
simulator

(b) Workflow for application synthesis during hardware/soft-
ware co-simulation.

Fig. 2: Application behavior profiling and synthesis flow.

2

The COSMIC benchmarks can be easily applied to study heterogeneous systems platforms. During the
situation, we generate the application behavior based on RSAM and use it as the stimulus for architecture
being studied. This procedure is referred to as synthesis and it is the reverse process of profiling. Fig. 2b
shows an overview of how to use the COSMIC application models for synthesis. The application flow is
reproduced by traversing the TBS graph. We map each TBS to one core at runtime and synchronizations
are issued at the end of the TBS execution. For each TBS, we generate memory requests for data and
instructions based on the statistical model generated during profiling. Additionally, we provide an algorithm
to partition the application into multiple stages with relatively balanced workload. The user can define
their own algorithms to map TBSs belonging to different stages to different chip regions or machines for
pipelined execution during the simulation. The behavior generated can be used in several forms. It could
be used as stimulus for a even-driven or even trace-driven simulation. For simulations that involves timing,
the hardware model should provide some feedback to tune the generation timing information. Figure 3
shows an example of using RSAM to build a simple system simulator. COSMIC has also been integrated
in the JADE simulator [6] and is also available online at https://eexu.home.ece.ust.hk/JADE.html.

Metric

Average

Iterations

Ex: execution time,
L1 miss rate

Statistical
Behavior

CORE

Application

OS

L2
cache

MC

L1D
cache

L1I
cache

Statistical
Model

Fig. 3: Example of statistical model usage in a system simulator.

III. STATISTICAL APPLICATION MODELING

This section details how the statistical application models are built.

A. Application Modeling

The applications are modeled by the fork/barrier/join model. In this model, the execution flow of the
application is divided into parallel sections (PSs). There are three cases where transitions between PSs
happen:

• fork: creation of threads;
• join: merging of threads; and
• barrier: synchronization of threads.

We represent the fork/barrier/join model using what we refer as thread block section (TBS) graph, as
shown in Fig. 4. This example shows four PSs, each of which is composed of one or more TBSs. We
define TBS as a sequential execution section that is executed by one physical thread. The edges in the
TBS graph represent the flow dependency between each of the TBSs. Single-threaded application will be
represented as a single TBS.

This model helps us to separate the data-sharing into concurrent and sequential data-sharings. In simple
words, sequential data-sharing happens when data in one PS is used in another PS, while concurrent
sharing is the sharing between TBSs in the same PS.

3

https://eexu.home.ece.ust.hk/JADE.html

TBS0

TBS1

TBS2

TBS3

TBS7

TBS4

TBS5

TBS6

Fork Barrier Join

PS1 PS2 PS3 PS4

PS = Parallel section TBS = Thread block section

Fig. 4: Application model based on fork/barrier/join.

B. Application Profiling

We profile the application during runtime with the goal of obtaining a TBS graph similar to Fig. 4, as
well as the profiling information for each of the TBSs. There are two types of information we need to
observe during profiling. One type is function calls to synchronizations (i.e. fork, join, and barrier), and
we refer to this type as synchronization trace. The second type are the actual memory traces (instructions
and data), which will be discussed in subsection III-C.

To obtain the graph, we start by creating the root TBS to represent the master thread in the first PS.
Then for each synchronization trace received, we use the physical thread ID (TID) to find the TBS it
belongs to. The corresponding TBS is terminated, and the type of the synchronization event and related
information are recorded. In the case of a barrier, we keep a unique identifier for it and record how many
threads the barrier awaits. In the case of a fork, we record how many threads are spawned and TIDs of
the spawned threads. Then, we create new TBSs and assign flow dependency between current and the
newly created TBSs. And last, we remap TIDs to the new TBSs.

During profiling, we also inspect critical sections, such as calls to locks and semaphores. For each TBS,
we record how many critical sections there are, and how many times the TBS enter the critical section.
We record a unique identifier for each lock being acquired/released and how many times that particular
lock is used. For semaphores, we also record their initial value and whether the TBS is calling wait or
signal.

C. Memory Request Profiling

TBS1

TBS2

TBS3

TBS4

Blocal

Blocal

Blocal

Blocal

PS1

Bseq

PS2

(a) Local requests.

TBS1

TBS2

TBS3

TBS4

Blocal

Blocal

Blocal

Blocal

PS1 PS2

Bseq

(b) True cold miss.

PS2

TBS1

TBS2

TBS3

TBS4

Blocal Blocal

Blocal

PS1

Bseq

Blocal

(c) Sequential sharing.

TBS1

TBS2

TBS3

TBS4

Blocal

Blocal

Blocal

Blocal

PS1 PS2

Bseq

(d) Concurrent sharing.

Fig. 5: Different types of memory requests.

COSMIC uses a statistical model to represent the memory locality of each benchmark, called sharing-
locality model (Shalom). Shalom is applied to obtain the memory locality for individual TBS to minimize

4

interference from the others. The output of profiling is the distribution of reuse distance (RD). We profile
data and instruction accesses separately. The detailed format of the application models are explained in
section VIII. In this section, we give an overview of what kind of information is collected.

As shown in Fig. 5, there are four types of requests. If a TBS accesses a location that has been touched
before, it is treated as local, given in Fig. 5a. If a TBS access a memory location for the first time, it is
treated as a non-local request. Non-local accesses are further divided into three types. The first type is
true cold miss of the application [Fig. 5b]. The second type is sequential sharing, which happens when
the address of a non-local access has been used in previous PS [Fig. 5c]. The third type is concurrent
sharing, meaning that the non-local memory access is present in another TBS in the same PS [Fig. 5d].
The RD for cold misses is always infinity. For the other three types of requests, we calculate their RD
and build the locality distribution model separately.

TBS1

TBS2

TBS3

TBS4

Blocal Blocal

Blocal

PS1

Bseq

PS2

Blocal

TBS Bloc Bseq

f a1,b1,a2,b2,a3,b3
TBS1

TBS2

a1,a2,a3

b1,b2,b3

Fig. 6: Merging local buffers into the sequential buffer based on uniform interleaving.

For each TBS, we keep a history buffer to store the local accesses, referred to as Bloc. For each PS,
we keep a history buffer holding the locations accessed by all previous PSs, represented as Bseq. When
merging the local addresses touched by multiple TBSs in the previous PS, we assume uniform interleaving.
An example of merging local buffers is given in Fig. 6. We keep three histograms for each TBS, which
count the RD of local accesses, sequential sharing requests, and concurrent sharing requests respectively.
For each memory request, we check whether the address is present in any history buffers and then update
the corresponding histogram accordingly. Even though the fraction of non-local accesses is small, they
highly affect the accuracy of the simulation. Two major issues arise when ignoring the sharing. First, it
will lead to an increased number of cold misses. Second, there will be a similar increase in the application
memory footprint. Therefore, capacity misses and conflict misses are going to be equally accentuated. For
parallel applications, these source of errors are amplified proportionally to the number of threads.

D. Profiling Setup Details

We profile all applications for two different instruction sets: ARM-v8 and x86 64. The QEMU emulator
is used for instrumentation [8], and we develop a profiler called PROFMEM to analyse memory locality and
generate the statistical model. During profiling, QEMU and PROFMEM will be launched simultaneously.
QEMU sends the instrumented information to PROFMEM through shared memory.

All the profiling have been realized using QEMU user-emulation mode. In this mode, OS and the Linux
system calls are not emulated. To enable instrumentation using QEMU we had to do two major changes.
The first modification is to annotate the benchmark source code with instrumentation function calls so that
QEMU can identify when threads start/end and when they are synchronizing (e.g., barriers and locks).
The second modification is in the translation from the target instructions to the host instructions, which
enables inspecting every instruction and extracting details such as its type, request size, and memory
address. Based on synchronization and memory traces received from QEMU, PROFMEM outputs the

5

statistical model by applying the Shalom approach. All the applications were compiled using GCC 5.2
with optimizations -O2 whenever possible.

TABLE I: Instruction set details

Instruction Set Named used Details
ARM-v8 aarch64 The 64-bit ARM architecture
x86 64 x64 A generic 64-bit version of the x86 ISA.

IV. STATISTICAL APPLICATION BEHAVIOR GENERATION

This section details the workflow for application synthesis. The objective of synthesis is to reproduce
the application behavior, including the application flow and the memory trace for each of the TBSs.

A. Application Flow

The synthesis should reproduce the flow in the TBS graph. This requires traversing the graph and treating
each TBS as a task. During the simulation, we map each TBS to one core at runtime. The CPU dictates
when the trace should be generated and issued, and it makes calls to our synthesis algorithm to generate
memory requests until we reach the end of the TBS. As in the profiling, the trace is of two types: memory
trace or synchronization trace (fork/barrier/join). The memory trace generation is explained in subsection
IV-B. Synchronizations are always issued at the end of the TBS execution using the information recorded
during profiling. When they occur the simulation should also simulate the primitive. For example, for a
fork, we spawn the next TBSs and schedule them in the cores available. During synthesis we also keep
the sequential history buffer for each PS, Bseq, which is maintained in the same way as in the profiling
algorithm. The buffer will be used to generate addresses for memory requests.

B. Memory Trace Synthesis

For each TBS we generate a memory trace length of N that equals the total number of requests of
the original realistic application. For each access, we first determine whether it is an instruction or data
access based on their proportions obtained during profiling. The next step is to decide the type of access
(local, sequential sharing, or concurrent sharing) and sample an address based on the corresponding RD
distribution and history buffers. Also, we need to determine the size of the fetch and whether it is a read
or write. These choices are obtained following the frequency in which they happen for each type of access
(local/sequential/concurrent) during profiling.

C. Critical Section Synthesis

During the generation of each TBS, we enter the critical section proportionally to the number of times
they entered in profiling. And we generate the average number of memory requests for that critical section.
We assume that critical sections are reached with the same average rate as in the original application for
each TBS. The locality inside the critical regions follows the same procedure as explained in subsection
IV-B for memory trace synthesis. However, their counters belong to the critical region as the locality
inside critical regions tend to differ from the locality in non-critical regions.

6

TABLE II: List of applications provided

Suite Application Description

APEX

hpcg Conjugate gradient algorithm.

dgemm Dense matrix multiplication.

pennant Lagrangian staggered-grid hydrodynamics algorithm on 2-D
unstructured finite-volume mesh.

stream Synthetic benchmark measuring the memory bandwidth and a
corresponding computation rate for four simple vector kernels.

NAS

bt Solving a synthetic system of partial differential equation using
block Tri-diagonal solver.

cg Estimating the smallest eigenvalue of a large sparse symmetric
positive-definite matrix with the conjugate gradient method.

dc Data cube operator.

ep Generating independent Gaussian random variates using the
Marsaglia polar method.

ft Solving a 3D partial differential equation using the fast Fourier
transform (FFT).

is Sorting small integers using the bucket sort.

lu Solving a synthetic system of partial differential equation using
lower-upper Gauss-Seidel solver.

mg Approximating the solution to a 3D discrete Poisson equation using
the V-cycle multigrid method.

sp Solving a synthetic system of partial differential equation using
scalar Penta-diagonal solver.

ua Solving heat equation with convection and diffusion from moving
ball.

PARSEC 3.0

blackscholes Option pricing with Black-Scholes partial differential equation.

canneal Cache-aware simulated annealing to optimize routing cost of a chip
design.

dedup Compression with data de-duplication.

facesim Simulating the motions of a human face.

ferret Content-based similarity search.

fluidanimate Simulating fluid dynamics for animation purposes with Smoothed
Particle Hydrodynamics (SPH) method.

freqmine Frequent itemset mining.

streamcluster Online clustering of an input stream.

swaptions Pricing of a portfolio of swaptions using the Heath-Jarrow-Morton
(HJM) framework.

x264 H.264 video encoder.
Continued on next page

7

TABLE II – continued from previous page

Suite Application Description

SPEC2006

bzip2 File compression and decompression based on bzip2.

cactusADM Solving Einstein evolution equations with staggered-leapfrog
method.

calculix Finite element method for 3D structural analysis applications.

dealII Adaptive finite element method for solving partial differential
equations.

gobmk Analysing and playing Go game.

hmmer Profile hidden Markov models for protein sequence analysis.

lbm Lattic Boltzmann method (LBM) for simulating 3D fluids dynamics.

libquantum Quantum computer simulation.

mcf Single-depot vehicle scheduling.

namd Simulating large biomolecular systems.

omnetpp Discrete event simulation of a large Ethernet network.

povray Ray tracing, rendering algorithm.

sjeng Playing chess.

soplex Simplex linear program solver.

specrand Generating pseudorandom numbers.

specrand i Generating pseudorandom integer numbers.

sphinx Speech recognition.

xalancbmk Transforming XML documents to other document types.

SPLASH-3

barnes Simulating N-body problem with Barnes-Hut method.

cholesky Blocked Cholesky factorization on a sparse matrix.

fft Fast Fourier Transform.

fmm Simulating N-body problem with Fast Multipole Method.

lu Factorizing a dense matrix into the product of a lower triangular
and an upper triangular matrix.

ocean Simulating large-scale ocean movements.

radix Integer radix sort.

raytracing Rendering a 3D scene onto a 2D image plane with ray tracing.

volrend Rendering a 3D volume onto a 2D image plane using an optimized
ray casting technique developed by Marc Levoy.

water-nsquared Simulating the molecular dynamics N-body problem.

water-spatial Simulating the molecular dynamics N-body problem.

V. APPLICATIONS IN COSMIC BENCHMARK SUITE

COSMIC contains applications from five commonly used benchmark suites, which are APEX [1],
NAS [2], SPEC2006 [3], SPLASH-3 [4], and PARSEC 3.0[5] benchmark suites. The complete list of

8

benchmarks with their descriptions is summarized in table II.

VI. USEFUL TOOLS

A. Pipeline Stage Partitioning

As mentioned in section II, during simulation, we can partition the application into several stages for
pipelined execution. As the system scale increases, the performance improvement brought by thread-level
parallelism is vanishing due to high synchronization overhead. The introduction of pipelining provides an
additional level of parallelism and can potentially lead to more efficient use of hardware resources. When
evaluating the performance of large-scale systems, pipelined execution could be the preferred simulation
mode. The related python scripts are located in /home/COSMIC-v4.0/tools/pipeline.

After partitioning, each pipeline stage consists of one or multiple PSs of the application. During
simulation, the application starts at stage 0 and execute each stage sequentially (0, 1, 2, 3 ...). As soon
as one stage finishes we re-start that stage. The execution of one stage can be constrained to a specific
machine, a specific chip, or a specific region of the chip.

The algorithm for the application partitioning takes into consideration the computation (i.e., number
of instructions) and the communication traffic among stages. It is a simple greedy algorithm that tries
to minimize the standard deviation of the load for each of the stage. In other words, the algorithm tries
to search for a partitioning that attempts to distribute the load evenly across chips or chip regions while
considering the communication traffic.

An example on how to use the mapping tool is shown in VI.1.

Example VI.1. Partition the FFT application profiled with four threads into at most 8 stages.

./pipelinePartitioning.py splash/fft/4.txt fft_partition.txt 8

In the command above, the statistical application model splash/fft/4.txt is the input, fft_
partitions.txt is the output file, and 8 is the maximum number of stages users would like to have.
In this case, we will generate partitions with 2, 4, and 8 stages. If the application has fewer PSs than the
given number, we will ignore numbers that are larger than the PS count. A sample output file is given as
VI.2.

Example VI.2. An example of the output file when the max number of partitions is set to 8.
2 4
4 3 4 5
8 1 2 3 4 5 6 7

The first column is always the number of stages. The following numbers define the partitions of the
parallel sections. The sequence of numbers represent the index of where we put a delimiter for the partition.
For example, the first line has “2 4” meaning that there are two stages. Parallel sections with index below
4, which are 0, 1, 2, and 3, are mapped to stage 0 while parallel sections with index equalling or above
4 are mapped to stage 1.

B. Tools installation

Building the COSMIC resources requires a few tools and libraries. Most of current Linux distributions
would attend these requirements. Table III lists the recommended set of tools, but users can use your
preferred set. Compiling the API is straightforward. We have provided and CMakeList.txt that lists
the source code. Users can include this file in there makefile.

9

TABLE III: External dependencies

Software Version Purpose Quick reference

Required

GCC 5.3.1 Compilation https://gcc.gnu.org/

Python 3.6.0 Scripts https://www.python.org/

Boost 1.6 Helper library. https://www.boost.org/

VII. APPLICATION PROGRAMMING INTERFACE

The application models we provide can be used for a variety of studies. Apart from heterogeneous mul-
tiprocessor system simulators, COSMIC can be used to evaluate virtual memory assignment, prefetching,
cache configurations, and many others. In order to provide a transparent use of the application models,
we provide an Application Programming Interface (API) written in C++ to help users read and use the
models in the format we provide.

A. Basic data structures

The main data structure that users have to deal with is TBtbSyn, which defines the behavior of the
TBS. Some basic data members of the TBtbSyn class have been listed in Table IV. Users can customize
the TBtbSyn class by using inheritance as needed.

The TBtbBarrierInfo class defines the address of the barrier and the number of threads that
should reach it. If current TBS does not reach a barrier, barrier points to NULL. The TLocality
class contains the number and locality models of instruction and data accesses, and its data members are
listed in Table V. The TCombinedLocality contains information about local, sequential sharing, and
concurrent sharing accesses.

TABLE IV: Data members of TBtbSyn class

Variable Name Data Type Description

btbid uint32 t TBS ID.

tid uint32 t Thread ID.

memcount vector〈uint32 t〉 Number of memory requests in each region.

cscount vector〈uint32 t〉 Number of critical sections in each region.

nextbtb vector〈uint32 t〉 IDs of TBSs that depend on current TBS.

dependson vector〈uint32 t〉 IDs of TBSs that the current TBS depends on.

btbvec vector〈TBtbIF*〉 Pointers to all TBSs.

barrier TBtbBarrierInfo* Pointer to the barrier.

locality vector〈TLocality〉 Locality model of the TBS.

B. Load applications

Loading the application using the COSMIC API is straightforward. An code reference is shown in
Fig. 7. By calling the function cosmic::initializeCosmicShalom, the information of all TBSs
will be loaded. Users are required to give as argument containers for instruction and data concurrent
access locality models and TBSs.

10

https://gcc.gnu.org/
https://www.python.org/
https://www.boost.org/

TABLE V: Data members of TLocality class

Variable Name Data Type Description

dcount int32 t Number of data accesses.

icount int32 t Number of instruction accesses.

datacloc TCombinedLocality Sharing-locality model for data accesses.

instcloc TCombinedLocality Sharing-locality model for instruction accesses.

TConcLocality icshare;
TConcLocality dcshare;
std::vector<TBtbIF*> btbvec;

cosmic::initializeCosmicShalom(

"x64/splash/fft/4.txt",
 &icshare, &dcshare, btbvec);

Fig. 7: Refernece C++ code for initialization.

VIII. DIRECTORY AND FILES

In this section, we introduce the directory organization and the format of statistical models in the
COSMIC benchmark suite.

A. Directory organization

Table table VI shows organization of the root directory. For each application, we provide its statistical
models profiled for ARM-v8 and x86 64. As these models are developed based on existing programs, we
do not include the source code files in our folder. Under the folder tools, we provide the scripts for
application partitioning and API for COSMIC.

B. File formats

The statistical models are saved as files with .txt extension. The file contains a header and profiling
information for each TBS. We discourage users from manually reading these files since they can get a
bit large and it uses many sparse vector formats that difficult the reading. Instead, users can refer to the
initialization functions in the API to check the order in which each data structure is initialized.

The header contains the file name and developers information. After that, profiling information for each
TBS is stored in one line. For each TBS, we start with its TBS ID followed by the relevant information

TABLE VI: COSMIC root directory organization

Class Directory Name Description

User space applications Contains all application models profiled for different ISAs
with various thread counts.

documents Documentation and user instructions.

Tools tools COSMIC API and tools for designers.

11

for that TBS. The sequence of the information is:

• TBS ID
• thread ID
• number of regions
• memory trace length of each region
• instruction and data locality information of each region
• number of critical sections in each region
• information of next TBSs

The instruction and data locality information follow the same sequence. They are:

• number of total requests, including local and non-local ones
• average request size
• mean of address accessed
• the standard deviation of address access
• locality information of local requests
• locality information of sequential sharing requests
• locality information of concurrent sharing requests

The locality information of local requests follows this sequence:

• number of local requests
• markovian RW information (see the HRD [9] for details)
• flag of whether we are using sparse (1) or dense (0) vector
• output of the hierarchical reuse distance histogram (two layers)

The locality information of sequential sharing requests follows this sequence:

• number of sequential sharing requests
• number of write requests for sequential sharing
• flag of whether we are using sparse (1) or dense (0) vector
• output of the reuse distance histogram

The locality information of concurrent sharing requests follows a similar format as that of sequential
sharing requests. The only difference is that sparse vector is always used, so the flag for indicating the
vector format is not required.

In the last section, which is information for following TBSs, we first decide whether it is a barrier or
not. In the case of a barrier, the sequence is:

• -1 (indicating it is a barrier)
• address of the barrier
• number of threads that should hit this barrier
• ID of the next TBS

In other cases, we list the number of next TBSs followed by IDs of next TBSs.

IX. AGREEMENT AND LICENSE

COSMIC copyrights can be found in its root directory. If you use COSMIC in your research, please
cite the following paper (https://doi.org/10.1109/HPCA.2017.11):

12

https://doi.org/10.1109/HPCA.2017.11

Rafael Kioji Vivas Maeda, Qiong Cai, Jiang Xu, Zhe Wang, Zhongyuan Tian, “Fast and Accurate Ex-
ploration of Multi-Level Caches Using Hierarchical Reuse Distance,” in Proceedings of IEEE Symposium
on High Performance Computer Architecture (HPCA), Austin, USA, February 2017.

X. REVISION HISTORY

TABLE VII: Revision history

Version Changes Date
1 Initial public release. 1-Jun-13

1.1 Application and mapping and scheduling tools enhancements. 1-Jun-14

2 Intra-task statistical memory behavior introduced. 1-Feb-16

3 Adoption of hierarchical reuse distance. Inclusion of larger
benchmarks. 1-Aug-18

3.1 Introduction of the application tuner tool. 1-Sept-18

4.0 Adoption of sharing-locality model. Inclusion of applications in
SPEC2006, SPLASH-3, PARSEC 3.0, and NAS benchmark suites. 5-Mar-20

13

XI. COPYRIGHT

Copyright (c) 2007-2020 The Hong Kong University of Science and Technology All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the Hong Kong University of Science and Technology nor the names of its
contributors may be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE HONG KONG UNIVERSITY OF SCIENCE AND
TECHNOLOGY “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE HONG KONG
UNIVERSITY OF SCIENCE AND TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REFERENCES

[1] “APEX benchmarks,” https://www.lanl.gov/projects/apex, accessed 28-Feb-2020.
[2] “NAS parallel benchmarks,” https://www.nas.nasa.gov/publications/npb.html, accessed 28-Feb-2020.
[3] “SPEC2006 benchmarks,” https://www.spec.org/cpu2006, accessed 28-Feb-2020.
[4] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly synchronized benchmark suite for contemporary research,”

in 2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2016, pp. 101–111.
[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton University, January 2011.
[6] R. K. V. Maeda, P. Yang, X. Wu, Z. Wang, J. Xu, Z. Wang, H. Li, L. H. K. Duong, and Z. Wang, “JADE: A Heterogeneous

Multiprocessor System Simulation Platform Using Recorded and Statistical Application Models,” in Proceedings of the 1st International
Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing Systems, ser. AISTECS ’16. New York,
NY, USA: ACM, 2016, pp. 8:1–8:6. [Online]. Available: http://doi.acm.org/10.1145/2857058.2857066

[7] Z. Wang, W. Liu, J. Xu, B. Li, R. Iyer, R. Illikkal, X. Wu, W. H. Mow, and W. Ye, “A Case Study on the Communication and
Computation Behaviors of Real Applications in NoC-based MPSoCs,” in IEEE Computer Society Annual Symp. VLSI, 2014.

[8] F. Bellard, “QEMU, a fast and portable dynamic translator.” in USENIX Annual Technical Conference, FREENIX Track, vol. 41, 2005,
p. 46.

[9] R. K. Maeda, Q. Cai, J. Xu, Z. Wang, and Z. Tian, “Fast and accurate exploration of multi-level caches using hierarchical reuse distance,”
in High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 2017, pp. 145–156.

14

https://www.lanl.gov/projects/apex
https://www.nas.nasa.gov/publications/npb.html
https://www.spec.org/cpu2006
http://doi.acm.org/10.1145/2857058.2857066

	Introduction
	Overview
	Statistical Application Modeling
	Application Modeling
	Application Profiling
	Memory Request Profiling
	Profiling Setup Details

	Statistical Application Behavior Generation
	Application Flow
	Memory Trace Synthesis
	Critical Section Synthesis

	Applications in COSMIC Benchmark Suite
	Useful Tools
	Pipeline Stage Partitioning
	Tools installation

	Application Programming Interface
	Basic data structures
	Load applications

	Directory and Files
	Directory organization
	File formats

	Agreement and License
	Revision History
	Copyright
	References

