
On-Chip Sensor Network for Efficient
Management of Power Gating-Induced Power/
Ground Noise in Multiprocessor System on Chip

Weichen Liu, Member, IEEE, Yu Wang, Member, IEEE, Xuan Wang, Student Member, IEEE,

Jiang Xu, Member, IEEE, and Huazhong Yang, Senior Member, IEEE

Abstract—Reducing feature sizes and power supply voltage allows integrating more processing units (PUs) on multiprocessor system

on chip (MPSoC) to satisfy the increasing demands of applications. However, it also makes MPSoC more susceptible to various

reliability threats, such as high temperature and power/ground (P/G) noise. As the scale and complexity of MPSoC continuously

increase, monitoring and mitigating reliability threats at runtime could offer better performance, scalability, and flexibility for MPSoC

designs. In this paper, we propose a systematic approach, on-chip sensor network (SENoC), to collaboratively predict, detect, report,

and alleviate runtime threats in MPSoC. SENoC not only detects reliability threats and shares related information among PUs, but also

plans and coordinates the reactions of related PUs in MPSoC. SENoC is used to alleviate the impacts of simultaneous switching noise

in MPSoC’s P/G network during power gating. Based on the detailed noise behaviors under different scenarios derived by our circuit-

level MPSoC P/G noise simulation and analysis platform, simulation results show that SENoC helps to achieve on average 26.2

percent performance improvement compared with the traditional stop-go method with 1.4 percent area overhead in an 8*8-core

MPSoC in 45 nm. An architecture-level cycle-accurate simulator based on SystemC is implemented to study the performance of the

proposed SENoC. By applying sophisticated scheduling techniques to optimize the total system performance, a higher performance

improvement of 43.5 percent is achieved for a set of real-life applications.

Index Terms—Sensor network, reliability, dynamic control, low-power, noise, power grid, system on chip

Ç

1 INTRODUCTION

MULTIPROCESSOR system on chip (MPSoC) is becoming a
favorite choice to satisfy the ever growing perfor-

mance demanded by applications [1], [2], [3]. On one hand,
shrinking feature size allows for more and better functions
on MPSoC. On the other hand, it also makes MPSoC more
susceptible to various reliability threats, such as high
temperature and power/ground (P/G) noise. Improving
reliability has become an important aspect of MPSoC design.

As the scale and complexity of MPSoC continuously

increase, a systematic approach that not only detects

reliability threats but also mitigates such threats accord-

ingly at runtime could potentially offer better performance,

scalability, and flexibility for MPSoC designs. In this paper,

we propose a systematic approach, on-chip sensor network

(SENoC), to collaboratively predict, detect, report, and

alleviate runtime threats in MPSoC. SENoC not only detects

reliability threats and shares related information among
processing units (PUs), but also plans and coordinates the
reactions of related PUs in MPSoC. SENoC is integrated
with network-on-chip (NoC) to ensure that critical informa-
tion and decision is delivered in a timely fashion.

To highlight the details of our idea, SENoC is used to
alleviate the impacts of simultaneous switching noise in
MPSoC’s P/G network during power gating. Tight low
power requirements force MPSoC to aggressively adopt
low power techniques. While power gating can dramati-
cally reduce leakage power in MPSoC, it exacerbates
simultaneous switching noise on the power delivery
network, and can result in performance degradation and
even functional errors [4], [5], [6]. As that will be studied in
Section 4, Fig. 5 shows the impact of such noise to the
surrounding PUs of the chip. This motivates us to design
the SENoC to effectively solve the simultaneous switching
noise in MPSoC’s P/G network. Based on the detailed
noise behaviors under different scenarios derived by our
circuit-level MPSoC P/G noise simulation and analysis
platform, simulation results show that SENoC helps to
achieve on average 26.2 percent performance improvement
compared with the traditional stop-go method with
1.4 percent area overhead in an 8*8-core MPSoC in
45 nm. Based on our conference publication [7], we further
propose sophisticated scheduling techniques to offset the
overheads induced by power gating related operations,
and optimize the total system performance. Efficient
working strategies and communication protocols in SENoC
are also presented. We implement a SystemC-based

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013 767

. W. Liu is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Hong Kong.
E-mail: weichen@ust.hk.

. Y. Wang and H. Yang are with the Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China.
E-mail: {yu-wang, yanghz}@tsinghua.edu.cn.

. X. Wang and J. Xu are with the Department of Electronic and Computer
Engineering, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {eexwang, eexu}@ust.hk.

Manuscript received 1 Nov. 2011; revised 9 June 2012; accepted 11 June 2012;
published online 22 June 2012.
Recommended for acceptance by D. Kaeli.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-11-0807.
Digital Object Identifier no. 10.1109/TPDS.2012.193.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

architecture-level cycle-accurate simulator for the SENoC,
and observe a higher performance improvement of
43.5 percent on average for a set of real-life DSP and
multimedia applications with the enhanced scheduling
techniques applied.

The rest of the paper is organized as follows: Related
works are presented in Section 2. Section 3 gives an overview
of SENoC. Serving as the basis of our approach, the circuit-
level modeling for power gating induced P/G noise is
presented in Section 4. In Section 5, we focus on the behavior
models of the key components in SENoC and formalize their
mechanisms. Section 6 shows the implementation and
simulation results. Section 7 concludes the paper.

2 RELATED WORK

In this section, we summarize the existing techniques that
work on optimizing the power gating process and mitigat-
ing the induced P/G noise. Circuit/block level techniques
can be applied to improve the efficiency of the power gating
technology, and system-level approaches can be used for
overhead control and tradeoff analysis. Sensor-based
system designs are also studied.

Many circuit level techniques are proposed for the P/G
noise mitigation with power gating techniques. Optimized
sleep transistor designs for power gating are critical to a
successful low-power design. Various techniques were
presented for power-on current rush control through the
sleep transistor implementation that reduces power supply
voltage fluctuation [8], [9], [10], [11]. The optimization of the
sleep transistor distribution and the sizing selection were
demonstrated to be effective to trade off among the worst
case noise, area overhead, and leakage power consumption
by assigning large sleep transistor to control the function
units with high current density [8]. Gupta et al. analyzed the
voltage variations in chip multiprocessors using a distrib-
uted power-delivery network [12]. Reddi et al. used recur-
ring program and microarchitectural event activity to predict
the voltage droop [13]. Our proposed model is compatible
with these models. It is designed in fine-grained granularity
for the purpose of improving the simulation accuracy.

The scheme of multiple power gating modes tried to
control the power-on current rush by dividing the total
voltage transition into multiple steps with smaller transi-
tion, and as a result, the worst case rush current among all
these small steps was reduced [9], [10], [11]. A low-power
switched decoupling capacitor circuit was proposed to
suppress on-chip resonant supply noise [14]. It enhanced
the efficiency of the on-chip decoupling capacitor by
replacing the traditional passive decoupling capacitors with
some new controllable active capacitance structures to
achieve the equivalent capacitance with less area overhead
and small leakage power consumption. Powell et al.
proposed a microarchitectural technique by controlling
instruction issue to guarantee the worst case magnitude of
resonant P/G noise with low energy and performance loss
[15], [16]. It alleviates the switching activity induced
resonant P/G noise by controlling instruction access to
reduce simultaneous switching activities in the pipeline.
Jiang et al. proposed a scheduling technique to address
system-level power gating with several gated blocks and
optimize the wake up order of these blocks in terms of noise
[17]. It tries to alleviate the rush current during the power

gating of heterogeneous blocks by optimizing their wakeup
schedule, and reduces the power gating induced P/G noise
with increased wake up time. Our work schedules
application’s execution at the system level to reduce the
performance loss due to power gating without the con-
sideration of reducing the P/G noise magnitude.

A power-gating driven floorplanner (PGFP) was devel-
oped in [18] to assist the design of power gated chips.
Mohamood et al. [4] proposed a design methodology for
power integrity aware floorplanning using microarchitec-
tural feedback to guide the module placement. Healy et al.
[5] presented an improved design methodology to combat
the ever-aggravating high-frequency power supply noise
(di/dt) in modern microprocessors. The ideas in [4], [5]
are to build up dynamic controlling mechanisms at the
microarchitecture level by dynamically monitoring the
access patterns of microarchitecture modules and prevent
the troublesome simultaneous switching activities among
all the modules. These works mainly focused on block-level
design techniques, while in this paper, we investigate
processor-level power gating protection strategies based on
our detailed P/G noise analysis platform for MPSoC, and
study the relationship between the performance degrada-
tion and the noise protection during powering on/off PUs.

Tiny on-chip sensors can measure various runtime
parameters, such as noise, error, temperature, switching
activity, clock duty-cycle, and technology parameters. Ernst
et al. proposed Razor, a circuit-level design for monitoring
and correcting timing errors in low power systems [19],
[20]. Razor motivates many sensor designs for chip
reliability [21], [22]. Petrescu et al. proposed a signal
integrity architecture to monitor various on-chip physical
parameters, especially voltage and temperature [23]. The
proposed voltage monitor was well developed with a high
time resolution and accuracy, which provides opportunities
to capture the profiling of the medium frequency and high
frequency P/G noise during runtime. The voltage sensor is
implemented with a high bandwidth 7-bit DAC in the
90 nm technology. It can achieve a DC-resolution of 10 mV
and measure 100 ps wide spikes. Poirier et al. and
McGowen et al. described the control system on a 90-nm
Itanium processor which utilizes on-chip sensors to
measure power and temperature and modulates voltage
and frequency to optimize performance [24], [25]. It showed
the promising potential for the sensor-based feedback
control system to be implemented in the real commercial
products to further improve their runtime performance.
Sohn et al. proposed a sensor-based solution for SRAM to
overcome the uncertainty and fluctuation of device para-
meters [26], [27]. These works show that the information
gathered by on-chip sensors can be used to effectively
improve the reliability and performance of different
functional units, and it will come to practice as a powerful
strategy for the next generation commercial products.

Architecture level frameworks are proposed to collect
useful information and adjust the function units at runtime.
Machine Check Architecture (MCA) is an error protection
mechanism mainly designed for general purpose processors,
and the mechanism can be used to detect, locate, and log
system faults like parity errors in cache, ECC errors in
DRAM and system bus errors [28]. MCA is a more general
architecture that can be widely used in many error
protection scenarios. Compared to that, SENoC is designed

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

to target NoC-based MPSoC architectures. Currently, the
sensors can only be used for voltage monitoring, and the
mechanism is designed for solving the P/G noise problem.
Chan et al. proposed to use system management bus to
communicate between IP cores and the thermal-aware
power management IP for system-level power management
[29]. Yin et al. proposed a hierarchical architecture to collect
runtime parameters using network on chip [30]. Several
architectures for the control system and some small
techniques were proposed to trade off among the energy
power consumption overhead, area overhead, and commu-
nication latency of the control system. Ciordas et al.
proposed a monitoring service framework to support the
runtime observability of NoC behaviors and application
debugging [31], [32]. It not only evaluated the tradeoff
between the latency and the hardware overhead, but also
took the design flow impact into consideration compared
with the traditional NoC design. These frameworks for
sensor-based control systems try to achieve efficient and
real-time responses with small system, low hardware over-
head and good scalability for highly integrated NoC design.

3 AN OVERVIEW OF SENoC

The SENoC is composed of on-chip sensors, node agents,
and a task manager (TM). It is integrated with network-on-
chip and uses NoC as the communication medium. Besides
detecting runtime threats and sharing related information
among PUs, the SENoC also decides and coordinates the
reactions of all the PUs in a MPSoC. Fig. 1 illustrates the
SENoC for a 4*4-core MPSoC with a mesh-based NoC.

Tiny sensors are embedded inside and between PUs to
measure various parameters, such as voltage and tempera-
ture. Under normal operating conditions, the parameters
are within a safe range, and sensors only report them upon
requests from the node agents. However, sensors will
immediately report any parameter beyond the safe range to
node agents. They are usually placed to the positions in
each PU which are close to the functional units which have
high power consumption or are sensitive to temperature or
voltage conditions.

Node agents are integrated with NoC routers and
connected to sensors through network interfaces. Each
node agent processes the warnings from a group of sensors
inside a PU. It will preprocess and filter warning as well as
compress warnings from multiple sensors. Based on the
warning severity, a node agent can send alert packets to
nearby node agents or all the node agents in addition to TM.

Node agents not only take commands for TM, but also
collaborate with each other to quickly respond to a threat.

The SENoC uses NoC as the communication medium.
We integrate the node agent into an input-buffered
pipelined NoC router (Fig. 2). The integration allows node
agents to send and receive packets in NoC in a timely
fashion, which is critical to the SENoC. NoC routers use
virtual channels to guarantee the delivery time of high-
priority control packets. In addition to unicast, multicast is
used to send packets simultaneously to multiple node
agents. The SENoC uses four packet types—command
packet, alert packet, report packet, and postalert packet. The
TM processes packets and creates a system-wide plan to
minimize threat impacts. It is connected to the NoC and
sends command packets to node agents to execute the plan.
When receiving a command packet, node agents will inform
the PU to take specific actions, such as entering sleep mode
through clock gating. Off-chip memories are connected to
the routers in an efficient way to support the backup and
resumption of runtime information for the PUs. In this way,
each PU selects the nearest memory as its destination, and
the number of memory blocks used is minimized.

4 THE PHYSICAL MODEL OF POWER

GATING-INDUCED P/G NOISY

In this paper, SENoC is used to alleviate the impacts of
simultaneous switching noise in MPSoC’s P/G network
during power gating. In order to analyze the performance
of SENoC, it is necessary to understand the impacts of
power gating induced P/G noise among PUs in MPSoC. We
build a P/G noise simulation and analysis platform and
systematically explore MPSoC P/G noise behaviors under
different power gating scenarios [33]. The noise behaviors
serve as the basis for the P/G noise aware task management
methodology based on SENoC.

The simultaneous switching noise induced by turning
on/off PUs at different locations in MPSoC is evaluated
based on circuit-level simulations using HSPICE. We
assume homogeneous MPSoC systems in the simulation
model. Based on [6], [12], we assume all the PUs charge the
same amount of load capacitance during the power gating
process. Each PU is composed of multiple identical sub-
blocks which can be controlled separately. A subblock
consists of the mesh-based power grid model, the load
capacitance of the function logics, the decoupling capacitor,
and an inverter. The load capacitance of each subblock is
modeled by the average over the entire PU following the
uniform distribution. The inverter is placed between each
pair of power grid node and its adjacent ground grid node,
and works as a sleep transistor to represent PU switching
activity. Different combinations of the inverter control can
be used to mimic different power gating scenarios. A
subblock of the P/G network circuit model is shown in

LIU ET AL.: ON-CHIP SENSOR NETWORK FOR EFFICIENT MANAGEMENT OF POWER GATING-INDUCED POWER/GROUND NOISE IN... 769

Fig. 1. SENoC on a 4*4-core MPSoC.

Fig. 2. An NoC router with an integrated node agent.

Fig. 3. We use the 45 nm bulk CMOS model [34] for
transistors (Vdd ¼ 0:8 V) and the standard cell library is from
the Nangate Open Cell Library [35] for the whole design.
The parameters are set as follows: Rseg ¼ 0:628 �; Lseg ¼
0:005 nH, CL ¼ 0:23 pF. For the power grid model, they are
derived from the typical design of global interconnects
implemented between the metal layers M4 to M7 [36], [37].
Rseg and Lseg are calculated based on the estimation on the
length and area of the cross section of the segment. While
for the lumped capacitance of the PU per 100 �m2, CL is
estimated based on the capacitance/area ratio of the
inverter gate in the 45 nm Nangate library, where it is
assumed half of the gate capacitors are charged during
power gating [35]. Jiang et al. used a similar power gating
model for P/G noise analysis in [6]. Our model is
compatible with related models. It is designed in fine-
grained granularity for the purpose of improving the
simulation accuracy.

The MPSoC is modeled with a set of PUs, P ¼ fpiji 2 ½1;
N �g. The PU states considering power gating induced P/G
noise are defined in Table 1. A PU in ToOn/ToOff is defined
as an attacker. A PU who carries a running task is defined as
an active PU. An active PU within the impact range of an
attacker is defined as a victim. (Please note that some power-
on PUs could be in Idle or Free, and they are not victims in
our definition.) For a PU p, IRðpÞ is defined as the set of PUs
within the impact range of an attacker p, while PV ðpÞ is
defined as the set of p’s potential victims, i.e., PV ðpÞ ¼ fq j
q 2 IRðpÞ; q is activeg, and we have PV ðpÞ � IRðpÞ.

If we assign a task i to a power gated PU p, the powering-
on/off noise when the task begins/finishes will attack the
PUs in IRðpÞ which is provided through our P/G model.
The noise protection method will migrate the data to the
off-chip memory, clock gate the victim PUs before powering
on/off the attacker, and later wake them up when the
attacker is fully turned on/off. Fig. 4 shows the timing of a
power-on event, and the timing of a power off event is
similar. TClkToOff and TClkToOn are the times needed to clock
gate a PU and to wake it up from the clock gated state,
respectively. TToOn and TToOff are the settle times for a PU
to power on and power off. In order to ensure the reliability
of MPSoC, here TToOn � maxq2PV ðpÞfTsettleðpÞ; TsafeðqÞg,
TToOff � maxq2PV ðpÞfTsettleðpÞ; TsafeðqÞÞg, where TsettleðpÞ is
the period that p powers on, and TsafeðqÞ is the period that

victim q returns to the normal voltage level. TOn and TOff
are the noise protection penalties for a victim when an
attacker powers on and off, respectively, where

TOn ¼ TClkToOff þ TToOn þ TClkToOn;
TOff ¼ TClkToOff þ TToOff þ TClkToOn:

Assume that the number of victims of attacker p at the time
instant t is NPV ðp; tÞ. We define POnðp; tÞ and POffðp; tÞ as
the total performance penalties to power on and power off
p, respectively, where POnðp; tÞ ¼ TOn �NPV ðp; tÞ, POffðp;
tÞ ¼ TOff �NPV ðp; tÞ. Initially, these timing parameters,
such as TClkToOff , TToOn, TClkToOn, and TToOff , are set to
the worst case values to ensure the reliability. However,
with the help of SENoC, these parameters can be
dynamically determined using on-chip sensors and re-
duced depending on the scenarios.

In the traditional stop-go strategy, all the active PUs are
protected against P/G noise during powering on/off a PU.
The algorithm is simple and safe, but is too conservative
according to our P/G noise model. Based on the P/G noise
simulation and analysis platform, we simulate MPSoCs with
different scales and conditions. Fig. 5 shows the peak P/G
noise levels of PUs induced by attackers located at different
locations on a 4*4-core MPSoC. In order to obtain the worst
case scenarios, the PU conducting power gating switches all
the subblocks simultaneously, while the other PUs are set to
the power off state and do not help suppress the noise. It is
observed that the peak noise induced by power gating is
around 160 to 250 mV for the PUs at different locations. PU1
is at the corner of the chip, which makes it suffer from the
boundary effect and have higher peak noise of around 250
mV. While PU6 is near the center of the chip and has lower
peak noise of around 160 mV. Kim et al. reported similar
observations in [38] that the power gating induced P/G
noise for a small circuit of two linear-feedback shift registers
and a 32-bit carry look-ahead adder fabricated with 130 nm
technology is already about 9 percent of the supply voltage
and becomes a reliability threat in low power circuit design.
Different impact ranges can be observed in Fig. 5: when PU1

770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 3. In order to facilitate the P/G network analysis, each wire segment
is modeled as a chain of L-type RLC equivalent circuits. An inverter with
a capacitance load is used to imitate logics. A decap is connected to the
intersection points on the vdd/vss grids.

TABLE 1
PU States in Power Gating

Fig. 4. Timing of a power-on event.

is the attacker, at most five PUs need protection; when PU2
is the attacker, at most nine PUs need protection; when
PU6 is the attacker, all the other active PUs need protection.
SENoC can help with the voltage level collection, noise
information transfer, analysis, and planning. The detailed
procedure will be discussed in Section 5.

5 SENoC for MPSoC P/G NOISE ALLEVIATION

In this section, we will present the mechanisms used by
SENoC to alleviate the impacts of P/G noise during power
gating. We formalize our approach by optimizing the
MPSoC performance under the task constraints and PU
operation constraints under P/G noise attacks.

5.1 SENoC Components

The task manager is a global controller for task manage-
ment and chip maintenance. It is in charge of the manage-
ment of the entire MPSoC, making system-wide decisions of
task distribution and PU coordination. The TM is used to
assign new tasks to PUs, and maintain the status of all the
PUs. It has a scheduling control logic, which is used for
online task scheduling implementation and performance
control. The detailed working strategy of the TM is
discussed in Section 5.3.

The TM multicasts command packets to deliver new
tasks to the PUs, and receives report packets and postalert
packets to maintain the states of the PUs. Upon receiving a
report packet or a postalert packet, it updates the task table
and PU table. The TM also maintains a queue for ready
tasks. If the queue is not empty, it selects a task in the queue
and a useable PU to carry on the task according to the
scheduling policies. The task should be scheduled to meet
its timing constraints. The information is packetized in a
command packet which is then multicasted through the
NoC. More information about the TM and the task/PU
tables can be found in the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2012.193.

Packets are generated by the TM or node agents based on
the runtime information provided by the SENoC, trans-
mitted through the NoC and analyzed by the node agents.
Four types of packets are defined in the SENoC, including
command packet, report packet, alert packet, and postalert
packet. Detailed information can be found in the supple-

mentary file, available online. For each type of packet, a tag
including the information of the packet type, the sender,
and the receiver is attached. For a command packet, the
potential victims calculated by the TM are attached. There-
fore, a node agent who receives a packet will be capable of
determining the next action of the PU after combining with
the information reported by the local sensors.

A node agent is capable of interpreting the information
in the packets, and collecting real-time information from
local sensors, according to some built-in functional compo-
nents. Node agents generate a unified form of packets to
ensure reliable and secure packet delivery and maintain the
efficiency of the MPSoC. More information on the func-
tional components can be found in the supplementary file,
available online.

A PU p becomes an attacker when it is going to power
on/off. Upon receiving the command packet for executing a
task, and understanding its role as an attacker after
analyzing it, p should know the set of its victims and wait
for their report packets. After receiving the report packets
from all its victims, it will multicast alert packets at the
beginning of the powering on, multicast postalert packets at
the end of the powering on, and unicast a report packet to
tell its state of Free to the TM after finishing the task. The
state transition of an attacker is shown in Fig. 6.

A PU q becomes a victim when it is in Active and a
neighbor PU p is going to power on/off. For the sake of
protecting its own process, q has to pause and change to the
Idle state until p’s powering action exerts no impact on q.
The local sensors are used to detect this impact and trigger
the transition. q experiences transient states ClkToOff when
being protected, and ClkToOn when resurging. Report
packets are sent to the attacker and the TM to tell its state
and action. The state transition and packet delivery of a
victim is shown in Fig. 7.

5.2 Overall Operations of the SENoC

The operations of the SENoC can be classified into the
powering-on operation and the powering-off operation
which are very similar. We use the powering on operation
as an example in this section to explain the process. Note
that we only allow one PU to conduct power gating at a
time with this strategy. This simplified the TM design and
its working efficiency. We describe the operations of the TM
as follows when there is a task ready to execute.

If there is some PU in Transient state, do nothing.
Otherwise, if there is no PU in Transient state, the TM selects
a PU to execute the task. This operation is detailed as follows:

If there is no PU in Free or Off, do nothing. Otherwise, if
there is a PU p in Free, it will be selected to execute the
task. The TM synthesizes a command packet, multicasts it,
and updates the PU table. p carries out the task after
receiving the command. Otherwise, if there is a PU p in Off

LIU ET AL.: ON-CHIP SENSOR NETWORK FOR EFFICIENT MANAGEMENT OF POWER GATING-INDUCED POWER/GROUND NOISE IN... 771

Fig. 5. Noise levels and impact ranges of power gating induced P/G
noises in a 4*4-core MPSoC.

Fig. 6. The state transition machine of an attacker.

with the least number of victims and relatively good
performance, it will be selected and become an attacker. A
new Safe voltage will be calculated by the TM according to
p’s performance and the previous safe voltage. The safe
voltage is the minimum voltage level of a PU to keep it
tolerant to the increased gate delay and guarantee correct
execution. The TM multicasts a command packet. An
involved PU will know the role of itself as an attacker or a
victim after its node agent receives the command packet.
Assume PU q is one of p’s victims, and it transits to
ClkToOff after receiving the command packet. During
ClkToOff, it makes preparations for clock gating, including
sending useful data to an external memory (off-chip
memory) for backup, unicasts a report packet to p after
finishing such operations, and transits to the Idle state
during the same period.

After receiving report packets from all its victims, the
attacker p multicasts an alert packet, and transits to ToOn
during which it switches on sleep transistors and powers
on. When its sensors report the safe voltage level, a postalert
packet is generated and multicasted. A report packet is sent
to the TM to update the PU table and task table. Meanwhile,
p transits to the Active state and starts executing the task.
For the victim q in the Idle state, it transfers to ClkToOn after
its own sensors detect the Safe voltage. During the ClkToOn
state, it prepares for resurging from clock gating, including
loading relevant data from off-chip memory. q unicasts a
report packet to the TM after finishing these operations, and
at the meantime transits to the Active state and continues
running the halted task. The TM will update q’s information
after receiving the report packet. After receiving all the
report packets, the TM will update the PU table and task
table accordingly. Then, the TM will move on to the next
action of assigning a new task or turning off the PU.

This protocol design actually makes the system tolerant
to faulty sensors which may be affected by a noisy
environment. If the sensors on a victim PU cannot work
properly, the PU will wait for the postalert packet sent by its
attacker with the notice of power gating finished, and then
can resume from the clock gated state safely. In this way,
the proposed methodology can still guarantee the correct-
ness of the system with faulty sensors, and the performance
overhead compared to correct sensors is minimized to an
upper bound constrained by the communication protocol.
Meanwhile, there are multiple sensors distributed on each
PU, which further enhances the degree of tolerance to faulty
sensors. The timing delay of sensors can also be tolerated
due to similar reasons.

5.3 Two-Stage Scheduling Strategy for
Performance Optimization

In order to effectively utilize the MPSoC resources, it is
essential to have an efficient scheduling strategy for the TM

to the centralized control of the entire system. State-of-the-
art techniques for power gating aware scheduling are
limited to online algorithms. We propose a new scheduling
strategy that is to optimize the performance of the entire
system in two stages.

The approach is a composition of an offline static
mapping and scheduling algorithm as well as an online
dynamic light-weight adjustment technique. At design
time, without any online information, we try to optimize
an application’s performance on the MPSoC using static
real-time scheduling techniques. At runtime, the centralized
TM is aware of the situation of the entire system including
the state of every PU and every task, and we develop a
dynamic adjustment strategy that generally follows the
static scheduling result obtained offline, but makes slight
adjustment to the static decisions according to the practical
information of task running variations due to power gating
related operations. The combined static scheduling and
dynamic adjustment (SSDA) strategy is proposed to
optimize the overall system performance. The strategy
overview is described in Fig. 8.

5.3.1 Optimizing Offline Scheduling by Static Analysis

We conduct static optimizations in order to maximize
applications’ performance theoretically according to the
worst case estimation of task executions and network
transmissions. Formally, given an application represented
by a task graph GðV ;EÞ, and an MPSoC PU , the problem is
to find a mapping M : V ! PU for each task in V to a PU in
P , and a static-order schedule S : V ! N for the tasks
assigned to each PU, where each task in V mapped to a PU
is assigned a natural number indicating its sequence of
execution on that PU, such that the application performance
is optimized. In static order scheduling, the tasks assigned
to the same PU execute following a predefined sequence
strictly. It is proven to be a more effective strategy than
statical-time scheduling and list scheduling for multi-
processor systems [39].

In the SSDA framework, many static optimization
strategies can be applied for making task mapping and
scheduling decisions, like the works presented in [13], [40],
[41]. In this paper, we do not explore the performance
difference by different strategies, but focus on the impact of
the flexible framework. Based on the SSDA framework,
different scheduling algorithms can be selected for further
performance optimization, and we leave it as possible

772 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Fig. 7. The state transition machine of a victim.

Fig. 8. Two-stage static scheduling and dynamic adjustment strategy.

future work. We apply load balanced mapping and static-

order scheduling strategies to obtain static scheduling

result. The basic idea is to distribute processing and

network transmission workload evenly and make high

utilization to the hardware resources. The mapping strategy

is to assign the tasks to PUs one by one in the order defined

by the graph topology, and the schedule on each PU is

determined by invoking the tasks mapped to the PU in self-

timed manner. The objective is to minimize the end-to-end

delay of the application’s execution with the consideration

of interprocessor communication overhead. For a task

v 2 V , the weight of mapping it to a PU p 2 P is calculated

by the following cost function:

wðv; pÞ ¼ c1tðv; pÞ þ fc2nðv; pÞ; ð1Þ

in which tðv; pÞ is the required time for task v to finish

execution on PU p, defined by the time for executing

previously assigned tasks on p plus the worst case execution

time of v, and nðv; pÞ is the total amount of network

transmission, defined by the number of packets generated

by task v from p to other PUs (Table 2 lists the definitions of

the symbols):

tðv; pÞ ¼ fðpÞ þ eðvÞ; ð2Þ

nðv; pÞ ¼
X

ðv;uÞ2E
lðv; uÞ � dðp;mðuÞÞ; ð3Þ

where c1 and c2 are the user-specified constant factors to

trade off between the two concerns, and f is an

architecture-specific scaling factor which balances the two

terms in different measurement units. For example, setting

c1 ¼ 1; c2 ¼ 0 will obtain the mapping result that balances

the PUs’ workload regarding execution time, and setting

c1 ¼ 2; c2 ¼ 1 will balance PUs’ workload as well as

network traffic with bias toward PU workload. For

performance evaluations in Section 6, we set both factors

c1 and c2 to 1, meaning that task execution and network

transmission are considered to be of the same importance

to the system performance. In ideality, factor f can be set to

3 for the number of clock cycles a packet crossing a router,

while the value should be larger when network contention

occurs. The detailed mapping and scheduling algorithm

with pseudocodes and explanations can be found in the

supplementary file, available online.

5.3.2 Improving Online Performance by Dynamic

Adjustment

We make use of online messages and conditions to make
slight adjustment to the statically determined schedules
with the intent of further improving the application
performance. A lightweight online scheduling adjustment
strategy is used to improve runtime performance under the
uncertainties of task execution variations due to power
gating operations.

In this work, task mappings are statically optimized and
fixed at runtime to reduce the online management complex-
ity. At runtime, the TM sends command packets to the
respective PUs for task invocations according to the
schedule table obtained by static analysis, and keeps a PU
table to monitor the status of all the PUs. Each PU is able to
send report packets to the TM with three kinds of events:
task has started, task has finished, and task has halted. The
dynamic scenarios of task executions will be kept in the
schedule table and used by the TM for runtime decisions.
The scheduling adjustment strategy follows the work-
conserving principle to keep the PUs work efficiently. The
TM keeps each PU work-conserving and invokes tasks in
the defined order in the schedule table. The actual schedule
should be similar with the offline result but slightly
different. Node agent on each router handles power gating
and task state change locally, but the incidents are reported
to the TM to allow global synchronization.

The online adjustment algorithm is given in Algorithm 1.
Function NextTask(p; S) (Lines 3, 5) is used to fetch the next
task on PU p in the predefined static order. PU state
reporting includes task v started, finished, and halted. The
schedule table stðV Þ contains the records of all predicted
and actual task executions at offline and online. The
algorithm allows dynamic adjustment on the predefined
static order schedules to invoke ready tasks earlier if its
preceding task is blocked for execution at runtime. The
strategy is to keep PU work conserving, i.e., a PU cannot be
free if some task assigned to it is ready for execution.
Algorithm 1 has linear complexity to the input size of the
problem and runs very fast in practice.

Algorithm 1. The light-weight online dynamic scheduling

adjustment algorithm

Require: task graph GðV ;EÞ, MPSoC P , mapping MðV ; P Þ,
static order schedules SðV ;NÞ

1: for each PU p do

2: if p reports free then

3: v ¼ NextTask(p; S)

4: while v is not ready do

5: v ¼ NextTask(p; S)

6: end while

7: Schedule v on p

8: Update stðvÞ
9: end if

10: if p reports PU state then

11: Update stðvÞ
12: end if

13: end for

14: return makespan and schedule table stðV Þ

LIU ET AL.: ON-CHIP SENSOR NETWORK FOR EFFICIENT MANAGEMENT OF POWER GATING-INDUCED POWER/GROUND NOISE IN... 773

TABLE 2
Definition of the Symbols Used in Offline Scheduling

The SSDA framework combines the offline static
optimization and online dynamic lightweight adjustment
to guarantee a correct and performance-effective system.
The dynamic adjustments to the schedules at runtime are
mainly induced by the power gating-related operations, like
sensors reporting safe voltage level on victim PUs. This
hybrid strategy offers both performance enhancement and
flexibility to such scenarios.

6 PERFORMANCE EVALUATION

We first show the timing analysis for SENoC in Section 6.1.
Based on the analysis, extensive simulations are performed
to compare the performance of the MPSoCs with and
without SENoC in Sections 6.2 and 6.3.

6.1 Timing Analysis for SENoC

SENoC and PUs consume time in several ways, such as the
signal transfer time and processing time. A comprehensive
timing analysis in the SENoC is provided in the supple-
mentary file, available online, in which the time usage
parameters to be used in the timing analysis are defined in
detail. The values of these parameters are determined
according to the time used by some unit operations (like a
unit packet crossing a router, a power gating and clock
gating operation, a sensor and node agent operation, etc.)
and the runtime situations (like packet size, router buffering
delay, network contention, etc.). In our simulations, we use
the following reference values for the unit operations in the
number of clock cycles. The time for a unit packet crossing a
router is assumed to be 3 clock cycles. The time for a power
gating operation is assumed to be at the magnitude of
200 clock cycles, and that for a clock gating operation is at
the magnitude of 100 clock cycles [42]. These parameters are
determined by the power/clock gating process, which are
not optimized in this work. SENoC is compatible with
circuit level techniques that can optimize these parameters
and by integrating them the system performance can be
further enhanced. The sensor and node agent are assumed
to operate in 1 clock cycle [23]. The actual values of the
parameters at runtime are determined based on these basic
assumptions and the runtime conditions during simulation.
The detailed timing analysis can be found in the supple-
mentary file, available online.

6.2 Implementation and Simulation Setup

The simulations are based on the MPSoC P/G noise
simulation and analysis platform, which is described in
more detail in Section 4 and [33]. The P/G noise analysis
platform is built up with HSPICE and C. Scheduling
algorithms are implemented with C, Matlab, and SystemC,
respectively. The experiments are performed on a server
with 2 Intel Core2 Xeon and 8 GB memory. The simulations
assume that the average power consumption of a single PU
is 30 mW, and the area of a single PU is 660 �m� 660 �m.
Based on the HSPICE simulation results using 45 nm
standard logic cells, the noise toleration of Vdd � Vss is set
to be 100 mV, and hence Vsafe is set to be 700 mV. The
corresponding impact range IRðpÞ of each attacker p is
derived for 4*4-core to 8*8-core MPSoCs. The P/G network
RLC parameters are obtained from the PTM interconnect
model [34]. The power consumption of the monitoring
network for an 8*8 MPSoC is estimated to be 38.1 mW using

HSPICE simulation, including all the sensors, node agents
and the TM. It introduces around 1.9 percent overhead to
the total power consumption.

We adopt four basic topological structures of tasks to
make comparisons:

1. TASKNC . Tasks with no correlation,
2. TASKSP . Several sequential tasks in parallel,
3. TASKTT . Tree-connected tasks,
4. TASKFC . Fully correlated tasks (a connected DAG

with multiple inputs and multiple outputs).

What’s more, for task numbers of 60 and 80, we adopt two
substructures for each task set of TASKSP , TASKTT , and
TASKFC : structure expanded by depth (designated by a
subscript of d) and by width (designated by a subscript of
w), from 40-task structures.

6.3 Simulation Results

In our simulation, we test MPSoC using SENoC and stop-go

method for 6 to 80 tasks with different task structures. Both

works are at the system level and are compatible with

circuit-level techniques to further optimize system perfor-

mance. The actual execution time is longer than ideal

execution time for all the cases in our study. Difference in

task structures, MPSoC scales, task numbers, and algo-

rithms affects execution time differently. We define ri ¼
TendðSENoCÞ�TendðidealÞ

TendðidealÞ to measure the efficiency of the SENoC

approach, where TendðSENoCÞ and TendðidealÞ denote the

finish time for all the tasks in the SENoC and the ideal case

assuming power gating is not adopted, respectively. To

compare different methods directly, we define rs ¼
Tendðstop�goÞ�TendðSENoCÞ

Tendðstop�goÞ to compare the SENoC and stop-go

methods, where Tendðstop� goÞ denotes the finish time for

all the tasks in the stop-go approach. Results show that the

SENoC helps to achieve an average performance improve-

ment of 26.2 percent on average for an 8*8-core MPSoC. We

estimate the area overhead based on the 45 nm design and

the NoC simulations using NS2 [43]. The area overhead of

the SENoC for the 8*8-core MPSoC is 1.4 percent. More

detailed experimental results for different task structures in

8*8 MPSoC can be found in the supplementary file,

available online.
Fig. 9 shows the performance improvement of MPSoC

using SENoC with 40 tasks under different task structures
and MPSoC scales. The performance improvement in-
creases dramatically as the MPSoC scale increases in
TASKNC . However, for task structures TASKSP ,
TASKTT , and TASKFC , the increase in performance is
not that obvious. The tasks in TASKNC can run in higher
level of parallelism since they don’t have dependency
relation with each other. As the number of processors
increases, the benefits from using the impact range in the
SENoC become more obvious because lower number of
PUs are affected by power gating compared to the
conservative stop-go method. The improvements for
the other task set structures are relatively limited due to
the data dependencies that reduce the tasks and PUs
running in parallel. Generally, the trend of increase in
performance slows down when MPSoC scale increases.

774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

This is due to the fact that a relatively small number of PUs
can handle the given set of tasks.

Besides, the finish times of TASKCP and TASKPT using
SENoC is reduced drastically in most cases. This indicates
that the SENoC helps reduce the number of power off and
on, thus effectively avoids powering on/off induced P/G
noise. Therefore, a MPSoC can work more safely with
higher reliability by using SENoC.

In order to further verify the effectiveness of the proposed
approach for real-life problems, we develop a cycle-accurate
SENoC simulation model using SystemC [44], and conduct
extensive performance evaluations on several well-known
realistic DSP and multimedia applications [45]. We compare
our solution with the traditional stop-go method on the total
performance. The simulator is built with parameterized
configurations, where parameters like MPSoC size, global
clock frequency, cache size, etc., are adjustable. We construct
a mesh-based MPSoC architecture with 4*4 processing units,
XY routing and wormhole switching protocols. Task
executions are simulated with random execution times
following Gaussian distribution with mean of 80 percent
of their worst case execution times and variance of 0.2. The
global clock frequency is set to 1.25 GHz. The enhanced
scheduling strategies proposed in Section 5.3 are applied for
further performance improvement.

Fig. 10 shows the experimental results given by the
relative performance improvement of our technique over
the traditional stop-go method. Results show that our
approach outperforms the stop-go method by 43.5 percent
on average. There are mainly three reasons for the
improvement. First, sensors are used to detect the safe
voltage level, instead of waiting for the attacker’s postalert
packet, which significantly reduces the time that victims are
in the clock gating state, especially when the network is
congested by traffic transmission which may cause long
delay of packet delivery. Second, the improved power
gating induced P/G noise model reduces the number of
protecting PUs so that the power gating efficiency is
improved. Last, the further improvements benefit from
the more efficient scheduling strategy that helps reduce the
performance overhead induced by power gating and
improve the system resource utilization. Most operations
in the SENoC are actually distributed to the respective PUs
and node agents. The workload of the centralized TM
mainly comes from the lightweight dynamic scheduling
adjustment algorithm (Algorithm 1), which has linear
complexity and can scale to larger number of processors.

The NoC uses virtual channels to deliver control packets in
higher priority than payload packets. This guarantees the
control message delivery between the TM and PUs will not
be delayed by regular data communications. Therefore, the
system can scale well for large applications and MPSoCs.

7 CONCLUSION

This paper proposes a systematic approach, on-chip sensor
network (SENoC), which not only detects reliability threats
and shares related information among PUs, but also plans
and coordinates the reactions of related PUs in MPSoC.
SENoC is integrated with NoC to ensure that critical
information and decision is delivered in a timely fashion.
SENoC is applied to alleviate the impacts of simultaneous
switching noise in MPSoC’s P/G network during power
gating. Based on the detailed noise behaviors under
different scenarios derived by our circuit-level MPSoC P/
G noise simulation and analysis platform, it shows that
SENoC helps to achieve on average 26.2 percent perfor-
mance improvement compared with the traditional stop-go
method with 1.4 percent area overhead in an 8*8-core
MPSoC in 45 nm. With the enhanced scheduling techniques
applied to offset the overheads of power gating related
operations and optimize the total system performance, a
higher improvement of 43.5 percent is observed for a set of
real-life applications by architecture-level cycle-accurate
simulations based on SystemC.

ACKNOWLEDGMENTS

This work is partially supported by HK GRF (620911,
621108), HKUST PDF, DAG07/08.EG04, SBI06/07.EG01-4,
NSTMP (2011ZX01035-001-001-002, 2010ZX01030-001-001-
04, 2010ZX01030-001), and NSFC (60870001, 61028006).

REFERENCES

[1] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y.
Hoskote, N. Borkar, and S. Borkar, “An 80-Tile Sub-100-w
Teraflops Processor in 65-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 43, no. 1, pp. 29-41, Jan. 2008.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.
MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C.
Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D.
Khan, F. Montenegro, J. Stickney, and J. Zook, “Tile64 -
Processor: A 64-core Soc with Mesh Interconnect,” Proc. IEEE
Int’l Solid-State Circuits Conf. (ISSCC ’08), pp. 88-598, 2008.

LIU ET AL.: ON-CHIP SENSOR NETWORK FOR EFFICIENT MANAGEMENT OF POWER GATING-INDUCED POWER/GROUND NOISE IN... 775

Fig. 9. Performance improvement of MPSoC using SENoC with 40 tasks
under different task structures and MPSoC scales. Fig. 10. Performance improvement of the SENoC compared to the stop-

go method for realistic applications.

[3] S. Borkar, “Thousand Core Chips: A Technology Perspective,”
Proc. 44th Ann. Design Automation Conf. (DAC ’07), pp. 746-749,
2007.

[4] F. Mohamood, M. Healy, S.K. Lim, and H.-H. Lee, “Noise-Direct:
A Technique for Power Supply Noise Aware Floorplanning Using
Microarchitecture Profiling,” Proc. Asia and South Pacific Design
Automation Conf. (ASP-DAC ’07), pp. 786-791, 2007.

[5] M. Healy, F. Mohamood, H.-H.S. Lee, and S.K. Lim, “A Unified
Methodology for Power Supply Noise Reduction in Modern
Microarchitecture Design,” Proc. Asia and South Pacific Design
Automation Conf. (ASP-DAC ’08), pp. 611-616, 2008.

[6] H. Jiang, M. Marek-Sadowska, and S. Nassif, “Benefits and Costs
of Power-Gating Technique,” Proc. IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors (ICCD ’05), pp. 559-566,
Oct. 2005.

[7] Y. Wang, J. Xu, S. Huang, W. Liu, and H. Yang, “A Case Study of
On-Chip Sensor Network in Multiprocessor System-On-Chip,”
CASES ’09: Proc. Int’l Conf. Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 241-250, 2009.

[8] K. Shi and D. Howard, “Challenges in Sleep Transistor Design
and Implementation in Low-Power Designs,” Proc. 43rd ACM/
IEEE Design Automation Conf., 2006.

[9] S. Kim, S. Kosonocky, and D. Knebel, “Understanding and
Minimizing Ground Bounce during Mode Transition of Power
Gating Structures,” Proc. Int’l Symp. Low Power Electronics and
Design (ISLPED ’03), pp. 22-25, 2003.

[10] S. Kim, S. Kosonocky, D. Knebel, K. Stawiasz, D. Heidel, and M.
Immediato, “Minimizing Inductive Noise in System-on-a-Chip
with Multiple Power Gating Structures,” Proc. 29th European
Solid-State Circuits Conf. (ESSCIRC ’03), pp. 635-638, 2003,

[11] K. He, R. Luo, and Y. Wang, “A Power Gating Scheme for Ground
Bounce Reduction during Mode Transition,” Proc. 25th Int’l Conf.
Computer Design (ICCD ’07), pp. 388-394, 2007.

[12] M. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks,
“Understanding Voltage Variations in Chip Multiprocessors
Using a Distributed Power-Delivery Network,” Proc. Design,
Automation Test in Europe Conf. Exhibition (DATE ’07), pp. 1-6,
Apr. 2007.

[13] V. Reddi, M. Gupta, G. Holloway, M. Smith, G.-Y. Wei, and
D. Brooks, “Predicting Voltage Droops Using Recurring
Program and Microarchitectural Event Activity,” IEEE Micro,
vol. 30, no. 1, p. 110, Jan./Feb. 2010.

[14] J. Gu, H. Eom, and C. Kim, “A Switched Decoupling Capacitor
Circuit for On-Chip Supply Resonance Damping,” Proc. IEEE
Symp. VLSI Circuits, pp. 126-127, 2007.

[15] M. Powell and T. Vijaykumar, “Pipeline Damping: A Micro-
architectural Technique to Reduce Inductive Noise in Supply
Voltage,” Proc. 30th Ann. Int’l Symp. Computer Architecture, pp. 72-
83, June 2003.

[16] M. Powell and T. Vijaykumar, “Exploiting Resonant Behavior to
Reduce Inductive Noise,” Proc. 31st Ann. Int’l Symp. Computer
Architecture, pp. 288-299, June 2004.

[17] H. Jiang and M. Marek-Sadowska, “Power Gating Scheduling for
Power/Ground Noise Reduction,” Proc. 45th ACM/IEEE Design
Automation Conf. (DAC ’08), pp. 980-985, 2008.

[18] H. Jiang and M. Marek-Sadowska, “Power-Gating Aware Floor-
planning,” Proc. Eighth Int’l Symp. Quality Electronic Design
(ISQED ’07), pp. 853-860, 2007.

[19] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D.
Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation,” Proc.
36th Ann. IEEE/ACM Int’l Symp. Microarchitecture, pp. 7-18, Dec.
2003.

[20] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim,
and K. Flautner, “Razor: Circuit-Level Correction of Timing Errors
for Low-Power Operation,” IEEE Micro, vol. 24, no. 6, pp. 10-20,
Nov.-Dec. 2004.

[21] M. Nicolaidis, “Design for Soft Error Mitigation,” IEEE Trans.
Device and Materials Reliability, vol. 5, no. 3, pp. 405-418, Sept. 2005.

[22] W. Liu, J. Xu, X. Wang, Y. Wang, W. Zhang, Y. Ye, X. Wu, M.
Nikdast, and Z. Wang, “A Hardware-Software Collaborated
Method for Soft-Error Tolerant Mpsoc,” Proc. IEEE CS Ann. Symp.
VLSI, pp. 260-265, July 2011.

[23] V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, and J.
Wieling, “Monitors for a Signal Integrity Measurement System,”
Proc. 32nd European Solid-State Circuits Conf. (ESSCIRC ’06),
pp. 122-125, 2006.

[24] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger, “Power and
Temperature Control on a 90nm Itanium Reg;-Family Processor,”
Proc. IEEE Int’l Solid-State Circuits Conf., vol. 1, pp. 304-305, 2005.

[25] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W.
Parks, and S. Naffziger, “Power and Temperature Control on a 90-
nm Itanium Family Processor,” IEEE J. Solid-State Circuits, vol. 41,
no. 1, pp. 229-237, Jan. 2006.

[26] K. Sohn, N. Cho, H. Kim, K. Kim, H.-S. Mo, Y.-H. Suh, H.-G. Byun,
and H.-J. Yoo, “An Autonomous SRAM with On-Chip Sensors in
an 80nm Double Stacked Cell Technology,” Proc. Symp. VLSI
Circuits, pp. 232-235. 2005,

[27] K. Sohn, H.-S. Mo, Y.-H. Suh, H.-G. Byun, and H.-J. Yoo, “An
Autonomous SRAM with On-Chip Sensors in an 80-nm Double
Stacked Cell Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4,
pp. 823-830, Apr. 2006.

[28] N. Pandit, Z. Kalbarczyk, and R. Iyer, “Effectiveness of Machine
Checks for Error Diagnostics,” Proc. IEEE/IFIP Int’l Conf. Depend-
able Systems Networks (DSN ’09), pp. 578-583, July 2009.

[29] C. Chan, Y. Chang, H. Ho, and H. Chiueh, “A Thermal-Aware
Power Management Soft-IP for Platform-Based SoC Designs,”
Proc. Int’l Symp. System-on-Chip, pp. 181-184, 2004.

[30] A.W. Yin, L. Guang, P. Liljeberg, P. Rantala, E. Nigussie, J. Isoaho,
and H. Tenhunen, “Hierarchical Agent Architecture for Scalable
Noc Design with Online Monitoring Services,” Proc. First Int’l
Workshop Network on Chip Architectures, 2008.

[31] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J.
Meerbergen, “An Event-Based Network-On-Chip Monitoring
Service,” Proc. Ninth IEEE Int’l High-Level Design Validation and
Test Workshop, pp. 149-154, 2004.

[32] C. Ciordas, K. Goossens, A. Radulescu, and T. Basten, “NoC
Monitoring: Impact on the Design Flow,” Proc. IEEE Int’l Symp.
Circuits and Systems (ISCAS ’06), 2006.

[33] Y. Xu, W. Liu, Y. Wang, J. Xu, X. Chen, and H. Yang, “On-Line
Mpsoc Scheduling Considering Power Gating Induced Power/
Ground Noise,” Proc. IEEE CS Ann. Symp. VLSI, pp. 109-114, 2009.

[34] W. Zhao and Y. Cao, “New Generation of Predictive Technology
Model for sub-45 nm Early Design Exploration,” IEEE Trans.
Electron Devices, vol. 53, no. 11, pp. 2816-2823, Nov. 2006.

[35] Nangate Open Cell Library, http://www.opencelllibrary.org,
2012.

[36] S. Pant and E. Chiprout, “Power Grid Physics and Implications for
Cad,” Proc. 43rd ACM/IEEE Design Automation Conf., pp. 199-204,
2006.

[37] A. Balijepalli, S. Sinha, and Y. Cao, “Compact Modeling of Carbon
Nanotube Transistor for Early Stage Process-Design Exploration,”
Proc. ACM/IEEE Int’l Symp. Low Power Electronics and Design
(ISLPED), pp. 2-7, Aug. 2007.

[38] S. Kim, S. Kosonocky, D. Knebel, K. Stawiasz, and M.
Papaefthymiou, “A Multi-Mode Power Gating Structure for
Low-Voltage Deep-Submicron CMOS ICs,” IEEE Trans. Circuits
and Systems II: Express Briefs, vol. 54, no. 7, pp. 586-590, July 2007.

[39] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient Sat-Based
Mapping and Scheduling of Homogeneous Synchronous Data-
flow Graphs for Throughput Optimization,” RTSS ’08: Proc. Real-
Time Systems Symp., pp. 492-504, 2008.

[40] W. El-Essawy and D. Albonesi, “Mitigating Inductive Noise in
SMT Processors,” Proc. Int’l Symp. Low Power Electronics and
Design, pp. 332-337, Aug. 2004.

[41] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability Modulo
Graph Theory for Task Mapping and Scheduling on Multi-
processor Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 22, no. 8, pp. 1382-1389, Aug. 2011.

[42] K.-i. Kawasaki, T. Shiota, K. Nakayama, and A. Inoue, “A Sub-Us
Wake-Up Time Power Gating Technique with Bypass Power Line
for Rush Current Support,” Proc. IEEE Symp. VLSI Circuits,
pp. 146-147, June 2008.

[43] NS2, http://nsnam.isi.edu/nsnam, 2012.
[44] SystemC, http://www.systemc.org, 2012.
[45] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and

Z. Wang, “A Noc Traffic Suite Based on Real Applications,” Proc.
IEEE CS Ann. Symp. VLSI, pp. 66-71, July 2011.

776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 4, APRIL 2013

Weichen Liu (S’07-M’11) received the BEng
and MEng degrees from the Harbin Institute of
Technology in 2004 and 2006, respectively, and
the PhD degree from the Hong Kong University
of Science and Technology in 2011, all in
computer science and engineering. As visiting
scholars, he worked in Signal Processing and
Wireless Communications Lab at the National
Tsinghua University of Taiwan in 2005, Beijing
Key Lab on Intellectual Communication Soft-

ware and Multimedia at Beijing University of Post and Telecommunica-
tions in 2006, and Mobile Computing Systems Lab at the Hong Kong
University of Science and Technology in 2011-2012, respectively. He
served on the technical program committee of the 25th International
Conference on VLSI Design, and served as a technical reviewer of more
than 20 premier international journals and conferences. He authored
and coauthored more than 30 research papers in peer-reviewed
international journals, conferences, and books. He received the Best
Paper Candidate Award from the Seventh IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis
(CODESþISSS 2009), and the Best Poster Award from the Sixth Annual
AMD Technical Forum and Exhibition (AMD-TFE 2010). His research
interests include embedded systems, real-time systems, multiprocessor
systems, system-on-chip, network-on-chip, hardware/software code-
sign, mobile computing, formal methods, and design space exploration.
He is a member of the IEEE.

Yu Wang (S’05-M’07) received the BS degree in
2002, and then PhD degree with honor in NICS
Group, Electronics Engineering Department,
Tsinghua University, in 2007, supervised by
Prof. Huazhong Yang (Tsinghua University)
and Prof. Yuan Xie (Penn. State University).
He is currently an associate professor in the
Electronics Engineering Department, Tsinghua
University. His research mainly focuses on fast/
parallel circuit analysis, low power and reliability

aware circuit design methodology, application specific hardware
computing, and on-chip communication strategies for MPSOC. He has
authored and coauthored more than 70 papers in refereed journals and
conferences. Among them, five conference papers are nominated as the
best paper candidate in ISLPED 2009, CODES 2009, ASPDAC 2010,
ASPDAC 2012. He is a TPC co-chair of ICFPT 2011 and publicity co-
chair of ISLPED 2011; he is also a TPC member for several
conferences, such as ICCAD, ISQED, ISVLSI, ISLPED, DATE, etc.
He is a member of the IEEE.

Xuan Wang received the BS degree in electrical
engineering from Shanghai Jiaotong University,
Shanghai, China, in 2009. Since 2009, he has
been working toward the PhD degree in the
Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and
Technology (HKUST). His research interests
include embedded system, multiprocessor sys-
tem, network-on-chip and fault-tolerant design
and reliability issues in very deep submicron

technologies. He is a student member of the IEEE.

Jiang Xu (S’02-M’07) received the PhD degree
from Princeton University in 2007. From 2001 to
2002, he was at Bell Labs, NJ, as a research
associate. He was a research associate at NEC
Laboratories America, NJ, from 2003 to 2005.
He joined a startup company, Sandbridge
Technologies, NY, from 2005 to 2007 and
developed as well as implemented two genera-
tions of NoC-based ultralow power multiproces-
sor systems-on-chip for mobile platforms. In

2007, he joined the Department of Electronic and Computer Engineer-
ing, Hong Kong University of Science and Technology as an assistant
professor, and established the Mobile Computing System Lab. He
currently serves as an associate editor of ACM Transactions on
Embedded Computing Systems and IEEE Transactions on Very Large
Scale Integration Systems. He is an ACM Distinguished Speaker and a
Distinguished Visitor of IEEE Computer Society. He served on the
organizing committees and technical program committees of many
international conferences. He authored or coauthored more than 50
book chapters and papers in peer-reviewed journals and international
conferences. He coauthored a book titled Algorithms, Architecture and
System-on-Chip Design for Wireless Applications (Cambridge University
Press). His research areas include network-on-chip, multiprocessor
system-on-chip, embedded system, computer architecture, low-power
VLSI design, and HW/SW codesign. He is a member of the IEEE.

Huazhong Yang (M’97-SM’00) received the BS
degree in microelectronics in 1989 and the MS
and PhD degrees in electronic engineering in
1993 and 1998, respectively, all from Tsinghua
University, Beijing. In 1993, he joined the
Department of Electronic Engineering, Tsinghua
University, Beijing, where he has been a full
professor since 1998. He was recognized as
“2000 National Palmary Young Researcher” by
NSFC. His research interests include chip de-

sign for communication and multimedia applications, synthesis of analog
integrated circuits (IC), power estimation and synthesis of digital ICs,
noise and delay estimation of deep submicron ICs, yield enhancement,
optimization and modeling. He has been in charge of several projects,
including projects sponsored by the 863 program, NSFC, the 11th five-
year national program and several international cooperation projects. He
has authored and coauthored more than 200 technical papers and six
books. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU ET AL.: ON-CHIP SENSOR NETWORK FOR EFFICIENT MANAGEMENT OF POWER GATING-INDUCED POWER/GROUND NOISE IN... 777

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

