A Design Methodology for
Application-Specific Networks-on-Chip

JIANG XU and WAYNE WOLF
Princeton University

JOERG HENKEL

University of Karlsruhe

and

SRIMAT CHAKRADHAR

NEC Laboratories America, Inc.

With the help of HW/SW codesign, system-on-chip (SoC) can effectively reduce cost, improve re-
liability, and produce versatile products. The growing complexity of SoC designs makes on-chip
communication subsystem design as important as computation subsystem design. While a number
of codesign methodologies have been proposed for on-chip computation subsystems, many works are
needed for on-chip communication subsystems. This paper proposes application-specific networks-
on-chip (ASNoC) and its design methodology. ASNoC is used for two high-performance SoC applica-
tions. The methodology (1) can automatically generate optimized ASNoC for different applications,
(2) can generate a corresponding distributed shared memory along with an ASNoC, (3) can use
both recorded and statistical communication traces for cycle-accurate performance analysis, (4) is
based on standardized network component library and floorplan to estimate power and area, (5)
adapts an industrial-grade network modeling and simulation environment, OPNET, which makes
the methodology ready to use, and (6) can be easily integrated into current HW/SW codesign flow.
Using the methodology, ASNoC is generated for a H.264 HDTV decoder SoC and Smart Camera SoC.
ASNoC and 2D mesh networks-on-chip are compared in performance, power, and area in detail. The
comparison results show that ASNoC provide substantial improvements in power, performance,
and cost compared to 2D mesh networks-on-chip. In the H.264 HDTV decoder SoC, ASNoC uses
39% less power, 59% less silicon area, 74% less metal area, 63% less switch capacity, and 69% less
interconnection capacity to achieve 2X performance compared to 2D mesh networks-on-chip.

Categories and Subject Descriptors: B.7.0 [General]; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems; C.5.4 [VLSI Systems]

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Application-specific, networks-on-chip, architecture, regular
topology, methodology

This research was supported by NEC with additionl support by NSF grant CCF0325119.
Authors’ addresses: Jiang Xu and Wayne Wolf, Department of Electrical Engineering, Princeton
University, Princeton NJ 08544; email: jiangxu@princetion.edu; Joerg Henkel, University of Karl-
sruhe,Germany; Srimat Chakradhar; NEC Laboratories America, Inc,Princeton NJ 08540.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2006 ACM 1539-9087/06/0500-0263 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 263-280.

264 o J. Xu et al.

1. INTRODUCTION

As an effective way to reduce cost, improve reliability, and produce versatile
products [Wolf 2001], system-on-chip (SoC) not only implements function units,
but also emphasizes cooperation among function units to improve performance
and reduce cost. On-chip communication subsystem decides how effective the
cooperation is. While a number of HW/SW codesign works have been proposed
for on-chip computation subsystems, a lot of works are still needed for on-chip
communication subsystems. In this paper, we propose a design methodology for
application-specific networks-on-chip (ASNoC).

1.1 Previous Work

Two challenges gradually move on-chip communication subsystem from bus
and adhoc interconnection to more sophisticated NoC. The migration toward
NoC is propelled by reduced feature sizes in each generation of process tech-
nology. On one hand, smaller transistors allow more and better functions on a
single chip. This results in more computations as well as more on-chip communi-
cations. On the other hand, reduced feature sizes make on-chip communication
more difficult. Global interconnection delays increase exponentially, as NAND
gate delays decrease exponentially [Sematech 2004]. On-chip communication
will need not one but multiple clock cycles [Cong 2001]. Cross-talk noise be-
comes significant and poses great threats on signal integrity [Kuhlmann and
Sapatnekar 2001]. Facing these two challenges, state-of-art communication net-
work theories and technologies are used to systemically study and design more
sophisticated and efficient on-chip communication subsystems.

Many on-chip communication architectures were developed based on on-chip
buses, for example, AMBA from ARM [Flynn 1997], CoreConnect from IBM
[Hofmann and Drerup 2002], MicroNetwork from Sonics [Wingard 2001], and
Wishbone from Silicore [Silicore]. For high-performance SoCs, bus architec-
tures often fail to deliver required throughput. For large SoCs with multiply
IPs (intellectual property), bus architectures are not power-efficient and need
large chip areas. The root of these issues is that bus architectures use shared
medium. Hierarchical bus architectures are proposed to improve the through-
put and power efficiency [Ryu et al. 2001]. Those improvements are brought by
switching technologies used in the hierarchical bus architectures.

Regular-topology NoC is proposed as on-chip communication architectures
primarily using switching and routing technologies [Benini and De Michelli
2002; Dally and Towles 2001; Goossens et al. 2003; Sgroi et al. 2001; Hemani and
Jantsch 2000]. A two-dimensional (2D) folded torus NoC is proposed in Dally
and Towles [2001]. Two-dimensional mesh NoC, such as CLICHE, Nostrum,
Eclipse, and aSoC, are presented in Kumar et al. [2002], Millberg et al. [2004],
Forsell [2002], and Liang et al. [2000] respectively. RAW is a multiprocessor
system based on a 2D mesh NoC [Taylor et al. 2002]. SoCIN uses a 2D mesh or
torus [Zeferino and Susin 2003]. SPIN has a fat-tree topology [Adriahantenaina
et al. 2003]. Octagon has a fixed topology [Karim et al. 2002]. Proteo uses a
ring topology [Siguenza-Tortosa and Nurmi 2002]. All those NoCs have either
regular or fixed topologies. Compared to on-chip buses, regular-topology NoC

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 265

has much higher throughput and better scalability. 2D mesh topology is pre-
ferred in most studies, because of its simplicity and corresponding tile-based
floorplan.

NoC design methodologies and tools were introduced in previous work. SUN-
MAP is a tool for selecting a standard NoC from a library based on different
requirements [Murali and De Micheli 2004]. Hu and Marculescu [2003] pre-
sented a method to map IPs onto a 2-D mesh network. Lahiri et al. [2004]
presented a methodology to map an application to a given communication ar-
chitecture. Daveau et al. [1997] presented a methodology to select protocols and
generate an interface in HW/SW codesign. XpipesCompiler is a tool for instan-
tiating NoCs based on user-defined topologies [Jalabert et al. 2004]. Orion is a
power and performance simulator for interconnections [Wang et al. 2002]. Zhu
et al. [2004] proposed a framework for modeling and simulating on-chip com-
munications. Kumar et al. [2002] presented a design methodology for CLICHE
NoC. Goossens et al. [2003] proposed a methodology to provide guaranteed ser-
vices in NoCs. Siegmund and Muller [2003] presented a methodology to model
and synthesize protocols for NoCs. Pinto et al. [2002] presented a method to
synthesize topologies for both the on-chip and off-chip communication systems.
Ho and Pinkston [2003] presented a NoC design methodology based on well-
behaved communications. Xu et al. [2005] proposed a general design, modeling,
and analysis methodology for any type of NoC. REGULAY is a physical planning
tool for homogenous multiprocessor networks Ye and De Micheli [2003].

1.2 Contributions and Paper Overview

Regular-topology NoC is inspired by general-purpose multicomputer networks.
However, most SoC are heterogeneous and application-specific/domain-specific.
In SoC, computation nodes (unites) often have very different communication
requirements and geometry sizes. For example, an embedded processor re-
quires much more communications bandwidth and area than an USB controller.
Even in a homogeneous multiprocessor system, processors running different
processes have very different communication requirements. With the help of
application-specific mapping and tuning for a SoC application, regular-topology
NoC can improve performance and reduce power consumption compared to
on-chip buses.

There are several limitations to use regular-topology NoC for heterogeneous
application/domain-specific SoC. First, communication locality is poorly sup-
ported in regular-topology NoC. Second, different communication requirements
of function units are treated equally. Third, regular-topology NoC has abundant
network resource, but the utilization is low. Fourth, different-sized function
units do not fit well in floorplans preferred by regular network topologies.

We proposed application-specific networks-on-chip (ASNoC) to solve the limi-
tations of regular-topology NoC. A methodology to automate the ASNoC design
is also developed. ASNoC is a hierarchical NoC. In ASNoC, there is no fixed
topology for all the applications. Instead, topology is decided by communication
requirement, floorplan, and switch design. A conceptual ASNoC architecture is
shown in Figure 1; an ASNoC example is shown in Figure 2. The lowest level

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

266 o J. Xu et al.

level-2 level-2
network network

Ievel 3 network

N

/
local network

level-2 network

local local
network network
7

RISC

local network

memory | | MPEG
controller

Fig. 1. Conceptual architecture of ASNoC.

Fig. 2. ASNoC example.

of hierarchy is called local network (or level-1 network). A local network holds
multiple closely cooperated function units. For example, the RISC, MPEG de-
coder, SRAM, and external memory controller are closely cooperated and in the
same local network in Figure 2. Which function units are in a local network are
decided by their cooperation relationship. The maximum number of function
units in a local network is limited by chip floorplan. Multiple local networks
are connected by a level-2 network. For example, there are four local networks

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 267

in Figure 2 and they are in a level-2 network. The maximum number of local
networks in a level-2 network is limited by the switch design. If a SoC appli-
cation has a large number of function units, such as several hundreds, more
hierarchies will be needed.

By using network hierarchies, ASNoC tries to maximize communication lo-
cality. Irregular topology can treat different communication requirements of
function units differently and increase network utilization. Besides hierarchy
and irregular topology, floorplan estimation is used to consider the sizes of
function units and reduce interconnection length, and protocols are selected to
reduce network latency.

The design methodology for ASNoC can automatically generate an optimized
hierarchical ASNoC for an application. It also generates a corresponding dis-
tributed shared memory, along with the ASNoC. The methodology uses either
recorded or statistical communication traces for cycle-accurate performance
analysis with different advantages. Standardized network component library
and floorplans are used to estimate power and area. We adapt an industrial-
grade network modeling and simulation environment, OPNET, which makes
the methodology ready to use. The methodology can be easily integrated into
current HW/SW codesign flow.

The methodology is used to generate ASNoC for a H.264 HDTV decoder SoC
and Smart Camera SoC. ASNoC and 2D mesh NoC are compared in detail
in performance, power, and area. The results show that the ASNoC provide
substantial improvements in power, performance, and cost compared to 2D
mesh NoC. In the H.264 HDTV decoder SoC, the ASNoC uses 39% less power,
59% less silicon area, 74% less metal area, 63% less switch capacity, and 69%
less interconnection capacity to achieve 2X performance compared to 2D mesh
NoC.

The next section gives an overview of the methodology. Corresponding
steps in the methodology are detailed and illustrated in sections 2 through 8.
Section 9 briefly describes the standardized network component library.
Section 10 concludes this paper by showing the time spent on each step.

2. DESIGN METHODOLOGY OVERVIEW

In this section, we give an overview of the design methodology for ASNoC; more
details will be illustrated by examples in the following sections. The inputs of
the methodology are a behavior model and corresponding computation archi-
tecture (Figure 3). The output is a hierarchical ASNoC along with a distributed
shared memory. The behavior model captures the functions of an application.
The computation architecture describes computation nodes (units) used to im-
plement those functions. The behavior model is partitioned and mapped to the
computation architecture.

The first step of the methodology is the communication analysis. A mapped
behavior model is used to obtain communication traffic patterns among compu-
tation nodes. The patterns include communication types, frequencies, timings,
and information sizes. Those patterns are recorded by communication traces.
Communication requirements can be extracted from the traces and used to

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

268 o J. Xu et al.

behavior model

ctomputatio
architecture

| communication analysis |

ASNoC architecture
design

—>|f|oorp|an estimation}<—
v

—>| performance analysisl—
v

—>{ power & area analysisl—

Fig. 3. ASNoC design methodology.

network
component
library

design ASNoC. Optionally, statistical traces can be modeled from the recorded
traces or the behavior model. They can be used to accelerate performance
analysis.

The second step is the ASNoC architecture design based on the communica-
tion requirements. The design uses a recursive method to generate a hierarchi-
cal ASNoC. A distributed shared memory is also generated along with the NoC.
The NoC is composed of network components from a standardized component li-
brary. The library includes network interfaces, switches, and interconnections.
Network components have adjustable features for different applications. Each
network component has a cycle-accurate behavior model, a circuit model, and
a layout model.

The third step estimates the chip floorplan to analyze and reduce the in-
terconnection length. This length will be used to analyze performance, power,
and area of a NoC design. Only the floorplan is estimated and placement and
routing in each computation node is not involved.

The fourth step is the performance analysis. An industrial-grade network
modeling and simulation environment, OPNET [OPNET], is adapted for this
step. Cycle-accurate ASNoC models are built from the network component li-
brary. Simulations are based on the either recorded communication or statisti-
cal traces. The application performance results help to compare different design
choices and refine the NoC designs. If no design meets the performance require-
ments or has too small performance margin, we have to go back to previous
steps.

The last step is the power and area analysis. The network component library
gives the power of each type of activity for each network component. OPNET
records the numbers and types of activities of each network component. By
summing the power of activities of all the network components, we obtain the
power of the NoC. The network component library also gives the areas for each
network component. Silicon and metal area of the NoC design are obtained by

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 269

(a)

bit stream
—_—

video frame

entropy inverse deblocking
decoding transform filter
1 ! T
i \

n

\ 1"

“ Intra-frame I |‘

\ \ prediction I
\ \ I

i
1
I
1
e - <
| T > motion T
. o \ compensation [
behavior o \ prediction .
model 1 \ \ 7 o
ettt - \‘———/ ——————————— ——t—-————————=
computation | \ o/ [
architecture

processor
PO |
processor

P1

Fig. 4. Behavioral model and computation architecture (a) mapping, and (b) H.264 HDTV decoder.

summing the areas of all network components. If the power or the areas do not
meet the requirements, we have to go back to previous steps.

The following sections will detail the design steps. Using the methodology,
we designed ASNoC for two high-performance SoC. We will use one SoC design
to illustrate each design step. Although the example we use is a homogeneous
SoC, the methodology works for heterogeneous SoCs.

3. BEHAVIOR MODEL AND COMPUTATION ARCHITECTURE

Behavior model and computation architecture are the inputs of the design
methodology for ASNoC. The behavior model captures the functions of an ap-
plication using languages such as C or SystemC. The computation architecture
describes a group of computation nodes (units), which are used to implement
the functions and their connectivity. The behavior model is partitioned and
mapped to the computation architecture (Figure 4a). The computation archi-
tecture could be heterogeneous or homogeneous. It is not necessary that all
computation nodes are implemented at this time. In the computation architec-
ture, a distributed memory is used at the beginning, and it will be converted to
a distributed shared memory during the ASNoC design.

Using the methodology, we designed ASNoC for two high-performance SoCs.
One is Smart Camera SoC. The smart Camera system [Wolf et al. 2002] is an
embedded video processing application that can process 150 frames per second.
The other is an H.264 HDTV decoder SoC, which is the latest video compression
standard [Wiegand et al. 2003]. It is a candidate for HDTV broadcasting. The
H.264 HDTV decoder is used to illustrate each step of the design methodology.

Joint Model [JVT] is used as the behavior model of our H.264 HDTV decoder
(Figure 4b). The main profile and a progressive HDTV sequence with a reso-
lution of 1920 X 1088 and 523 frames are used. In the entropy-decoding stage,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

270 o J. Xu et al.

0% workload for each processing stage

0] I) IR —— = —— -

o []

entropy inverse prediction deblocking

Fig. 5. Workload for each processing stage in H.264 HDTV decoder.

the input video stream is interpreted and various syntax elements are demulti-
plexed. Syntax elements of the video stream related with residual macroblocks
are processed by the inverse transform stage. Syntax elements related with
intraprediction macroblocks and motion-compensated prediction macroblocks
are processed by the intraframe prediction and motion-compensation stage with
reference to previous decoded frames or fields. The deblocking filter stage re-
duces artifacts introduced by the coding process at block boundaries. Figure 5
shows the workload of each processing stage in terms of the percentage of the
whole system.

The decoder behavior model is partitioned and mapped to a computation
architecture (Figure 4b) based on the workload of each processing stage. In-
put and output agents help to organize the input video stream and decoded
video frames. The entropy-decoding stage is implemented by two processors,
PO and P1. The inverse transform stage and the intraframe prediction and
motion-compensation prediction stage are implemented by processor P2. The
deblocking filter stage is implemented by two processors, P3 and P4. We tar-
get a 130-nm technology to implement the H.264 HDTV decoder SoC. We use
Plasma core [Opencore] for each processor.

4. COMMUNICATION ANALYSIS

The first step of the methodology is the communication analysis. A partitioned
behavior model can be simulated to obtain communication traffic patterns
among computation nodes. If high-level abstractions of computation nodes are
available, more detailed traffic patterns can be obtained by simulating the
mapped behavior model on the computation architecture. The communication
patterns include communication types, frequencies, timings, and information
sizes. Those patterns are recorded by communication traces (see Figure 6).
There is a communication trace for each computation node. A trace includes
multiple entries and each entry records a network access. An entry records the
interval between previous network and current network access, the source and
destination of the access, the operation type, the size of transferred information,
and the memory address if it is a memory access. The network access interval
uses a unit of clock cycle. Compared to exact network access time, access in-
terval is more suitable to describe the interactive communication behaviors of
computation nodes. The change of one network access time because of blocking

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 271

ee entry m-1]| entrym |[entry m+1|e=

struct trace entry

{unsigned int interval,;
unsigned int source;
unsigned int destination;
unsigned int operationtype;
unsigned int address;
unsigned int size;

}

Fig. 6. Recorded communication trace.

previous design

behavior model

| statistical trace modeling |

statistical trace

Fig. 7. Statistical trace modeling.

will affect the exact timing of all following network accesses, but this change
has much less impact on the following network access intervals. Communica-
tion requirements can be extracted from the traces and used to design ASNoC.
For example, the average communication traffic in terms of bits per second can
be obtained from the traces. The traces are also used in performance analysis,
where they control the communication behaviors of corresponding computation
nodes.

Besides recorded communication traces, statistically modeled communica-
tion traces (statistical traces) are also very useful. Statistical traces can be
modeled from previous design or behavior model (Figure 7). In trace modeling,
probability distributions are selected to capture the communication behavior of
each node. They can be used to accelerate performance analysis. In our study,
Poisson distributions are selected. We obtain a 2-3X speedup in performance
analysis and an error within 5% by using statistical traces instead of recorded
traces. Statistical traces can help to accelerate the overall HW/SW codesign.
Statistical traces from a similar design can be used to predict the communica-
tion behavior of a node even before behavioral simulations. Statistical traces
also make it possible to analytically study NoCs.

5. ASNOC ARCHITECTURE DESIGN

The second step is the ASNoC architecture design. The design is based on a
communication graph G extracted from the computation architecture and the
traces (Figure 8). Communication graph G = (V, E) is a weighted graph,v € V
is a computation node, e € E is a connection between nodes, and the weight of

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

272 o J. Xu et al.
PO P3
P1 P4

oM E0-E31, MR 25y
S
M DI e

Fig. 8. Computation architecture and communication graph.

P2

an edge w(e) is the average communication traffic in a fixed period of time. A
distributed memory is used in the computation architecture. A local memory
stays with the corresponding computation node.

We use a recursive method to generate a hierarchical ASNoC. Generally,
the number of hierarchies depends on the number of computation nodes. The
lowest hierarchy level is local networks. Network hierarchies maximize com-
munication locality using multiple network levels instead of a nonhierarchical
network. The NoC architecture is generated by following algorithm.

ASNoC _architecture_generation (G(V, E))

{

1 K=[|G|/M-2], Mis 6 for the first loop and the maximum number of ports of
switch for other loops

2 Find P,={G1, Gy,...,Gk} by K-way partitioning. The elements of P, are dis-
joint, G; 1<i<K is an induced subgraph of G, the order of G, is 2,3,...,M-2,
{(Vi(G1), Va(Go), ...,Vk(Gg)}=V(G),and n € N

3 For each P,, find cost C,=a™) w(e;)+8*> wie;),
ei €{E1(G1), E3(Gy), ..., Ex(Gk)},
e; %{El(Gl), Ez(Gz),. . .,EK(GK)} and e; EE(G)
« is the communication cost in a local network in term of cycle,
B is the cost between local networks

4 Select P, with the lowest cost

5 If P, has more than M elements and can’t be connected by a switch, then
collapse the elements to vertices in G to get G’and go to step 1

6 Use a switch to connect nodes in subgraph G;, connect the subgraphs using
direct interconnections and switches in the network component library

7 Combine local memories of computation units in subgraph G; as a distributed
shared memory

8 Return the ASNoC architecture

}

Because it is difficult to find the exact costs of ASNoC before implemen-
tation, we choose multiple candidates instead of just one. The order of a
subgraph decides the number of computation nodes in a local network. The
order of subgraph G; is limited by M, the maximum number of ports of a
switch. ASNoC is composed of network components from a standardized compo-
nent library (Figure 9). The library includes network interfaces, switches, and
interconnections.

A distributed shared memory is also generated along with the NoC by com-
bining local memories of all the nodes in a local network. Although memory can

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 273

|
! '
processor || | processor |
PO [1 P2 |
| : output :
53 I agent‘\%ﬁ{ processor | |
- : I P4 |
G l
processor | | : processor I
PTL P3 |
| | I

Fig. 9. Partition result and the ASNoC architecture.

header { [c[size[control [source [dest [address
data 0

data 1
payload .

| datan |

Fig. 10. Packet template.

be designed in the computation architecture, it is better designed along with
NoC by considering the communication costs of memory accesses.

The packet format is customized based on a template (Figure 10). In the
packet header, field sizes are chosen based on application’s requirements. Small
packet header reduces power consumption in a NoC. The c field is for check-
ing the integrity of the packet. The size field shows the size of payload after
the header. The control field holds the control information. The source field
shows the origin of the packet. The destination field shows the destination of
the packet. The address field gives the memory address for a memory access.
Deterministic routing and cut-through flow control are used.

6. FLOORPLAN ESTIMATION

The third step estimates and designs chip floorplan. Chip floorplan gives the
Manhattan length of each interconnection. The interconnection lengths decide
the interconnection delays in term of clock cycles. In NoC, interconnections
dominate the power and area. Interconnection lengths decide the power and
area of NoC. In this step, only global and intermediate interconnections are
designed and there is no placement and routing inside computation nodes in-
volved. We estimate the slicing floorplan using a method similar to [Yuen and
Young 2003]. The network hierarchies are used as the clustering constraints.
A chip floorplan is shown in Figure 11.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

274 o J. Xu et al.

Fig. 11. Chip floorplan.

7. PERFORMANCE ANALYSIS

The fourth step is the performance analysis of the ASNoC. The application
performance, instead of network performance, is analyzed in this step. Network
performance is measured by network capacity, utilization, end-to-end delay,
etc. Application performance has different metrics depending on application
types. For example, the performance of a MPEG2 decoder is measured by the
time to decode one frame or the number of frames decoded in 1 s. Compared to
network performance, application performance requires simulating many more
chip clock cycles. In the H.264 HDTV decoder, we simulated 5 billion chip clock
cycles.

An industrial-grade network modeling and simulation environment, OPNET
[OPNET], is adapted for this step. Compared to other network simulators, such
as NS2, OPNET is faster and more stable. OPNET can model many common
phenomena in communication systems. It is also a packet-based simulator,
which is particularly useful for NoC designs. OPNET also has some limita-
tions and some adaptations are required to use OPNET for simulating NoCs.
First, it is developed for simulating computer networks and telecommunication
networks and some on-chip features are not well supported. For example, the
smallest time unit is the second, where on-chip communication architectures
need nanosecond or even picosecond. The smallest distance unit is meter in-
stead of micrometer. Second, OPNET assumes asynchronous communication, so
for a synchronous system, designers have to explicitly design a clock scheme and
a distribution network. We make following adaptations in OPNET. In link mod-
els, (1) disable propagation delays pipeline stage and (2) disable error model. In
transmitter and receiver models, set data rate high enough to eliminate the ef-
fects of transmission delay. (We set data rate to 10® bps, which introduces 1-us
transmission delay.) In all node models, state transitions should be on clock
edges. For the clock, (1) use 1 s to represent one clock cycle and (2) build a clock
bus to synchronize the system.

In the network component library, each network component has a cycle ac-
curate. ASNoC models are built on the network component library. OPNET
uses C/C++ to model networks. Simulations are driven by either recorded com-
munication or statistical traces. Communication traces are used to control
the communication behavior of each computation node. Statistical traces can

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 275

Decoding time Total switch Switch utilization Total link Link utilization
(10°cycle/frame) capacity (bit/cycle) (10 capacity (bit/cycle) (10%®)
714 960 2.82 1024 5.93
855 1.18
352 ‘ 320 1.79

[application-specific NoC [] 2-D mesh NoC

Fig. 12. Application and network performances of ASNoC and 2D mesh NoC.

accelerate the simulations. We observed a 2—-3X speedup in our case studies.
The application performance results help to compare different design choices.
OPNET can give detailed performance of each network component and help to
refine the NoC designs. If no design meets the performance requirements or
has too small performance margin, we have to go back to previous steps.

Total switch capacity is defined as the maximum number of bits that can be
processed by all the switches in 1 s. Total interconnection capacity is defined as
the maximum number of bits that can be transferred by all the interconnections
in a second. The switch utilization and interconnection utilization are obtained
from OPNET simulations. The switch utilization is defined by

v, =28
> Cs
where By is the number of bits switched by a switch in one second and C; is the
capacity of a switch in 1 s. The switch utilization U is the ratio of total number
of bits switched by all the switches to total capacity of all switches. Similarly,
the interconnection utilization is defined by

_ LB

XTI
where B; is the number of bits transferred by an interconnection in 1 s. and, 7
is the throughput of an interconnection. The interconnection utilization U; is
the ratio of total number of bits transferred by all the interconnections to total
throughput of all the interconnections

We compared the application performance of the ASNoC with a regular-
topology NoC, 2D mesh NoC. 2D mesh NoC uses exactly the same group of
computation nodes and memory as the ASNoC. In 2D mesh NoC, we optimized
the mapping positions of computation nodes and memory for performance. In
the H.264 HDTV decoder, the application performance is measured by the num-
ber of clock cycles needed to decode one frame. The results show that the ASNoC
uses about 50% less decoding time than 2D mesh NoC, which is a 2X speedup
(Figure 12). In term of the network performance, the ASNoC has only 37%
total switch capacity and 31% total interconnection capacity of those of 2D
mesh NoC, respectively. However, the ASNoC has 2.4X switch utilization and
3.3X interconnection utilization of those of 2D mesh NoC, respectively. It shows
that the ASNoC can better use the limited network resources than 2D mesh
NoC. We get the same conclusion in the other case study, Smart Camera SoC.

U

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

276 o J. Xu et al.

NoC power NoC silicon NoC metal
(ud/frame) area (mm?) area (mmz)
390 0.087 1.11
239
0.036
0.29

[application-specific NoC [] 2-D mesh NoC
Fig. 13. Power and area of ASNoC and 2D mesh NoC.

8. POWER AND AREA ANALYSIS

The last step is power and area analysis. The network component library gives
power of each type of activity for each network component E;;. Power is obtained
from SPICE simulation of network components. OPNET records the numbers
and types of activities of each network component A;;. By summing power of
activities of all network components, we obtain power of NoC,P=3") A;; xE;;.
The network component library also gives silicon area and metal area for each
network component, Ag; and Ay;. Areas are based on the layout design of each
network component. The total silicon and metal area of NoC are obtained by
summing areas of all network components, Ag =) Ag; and Ay = Y Ap;. If
power or area does not meet requirements, we have to go back to previous
steps.

We compared power and area of ASNoC with 2D mesh NoC in the H.264
HDTYV decoder SoC design (Figure 13). Results show that ASNoC uses 39% less
power, 59% less silicon area, and 74% less metal area than 2D mesh NoC. This is
because ASNoC has less network resources—switches and interconnections—
than 2D mesh NoC. We obtain the same conclusion in the study of Smart Cam-
era SoC.

9. NETWORK COMPONENT LIBRARY

A standardized network component library is used throughout the design. The
library includes switches, interconnections, and network interfaces. Each net-
work component has three models: behavior, circuit, and layout model. The
models give the cycle accurate behavior, power, and areas for each network
components. We designed the circuit and layout of each component in the li-
brary. The network component was simulated in Cadence Spectre [Cadence].

Currently we use pipelined input/output buffered crossbar switches
(Figure 14). Other types of switch can be added if required. Interconnections can
use different technologies, such as low-swing, differential, and wave-pipelining
[Xu and Wolf 2003]. We model a wire as a fine-grained lumped RLC network
and consider the coupling capacitance. Since mutual inductances have signif-
icant effects at deep submicron processes, they are considered up to the third
neighboring wires. All the design is based on a 130-nm aluminum process. More
advanced processes can also be used. We use BISM3 model for the transistors
and the typical wire dimensions from the Berkeley Predictive Technology Model
[Cao et al. 2000].

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 277

_| control |
unit
inputs v ‘--# vou'tpu'[s
— > > —>
— > input|—> >output—9 ™
[] 0 [] []
¢ |buffer| 8 |crossbarl & |p ger| §
—> > > —>
TX/RX TX/RX
\\\
\ o= TTTTT S~
I»” .'. \\\\\
Pt W“;\
/ ~ C \
I, é Cc \\
{ =
[& - ‘;
\ /: CcL.C
]
\\ S I J
. = /
\\ [} c ,I’
AN H T /
\\\\ E”’

e —m--—-

Fig. 14. Switch and interconnection design.

10. CONCLUSIONS

ASNoC and its design methodology are described in this paper. Our method-
ology can automatically generate all aspects of ASNoC for different applica-
tions. Some previous methodologies use standard topologies and vary a few
parameters. Kumar et al. [2002] has a design methodology only for CLICHE
NoC. Hu et al. [2003] considers the mapping in a 2D mesh network. Lahiri
et al. [2004] can map an application to a given communication architecture.
Murali and De Micheli [2004] selects a standard NoC from a library based
on different requirements. Some other methodologies can synthesize a part
of NoC. Daveau et al. [1997] can select protocols and generate interface.
Siegmund and Muller [2003] can model and synthesize protocols. Jalabert
et al. [2004] can generate NoCs from user-defined topologies. Our methodol-
ogy can generate hierarchical topologies with distributed shared memories.
Some other methodologies can generate nonhierarchical topologies. Pinto et al.
[2002] can synthesize topologies for both the on-chip and off-chip communica-
tion systems. Ho and Pinkston [2003] can generate topologies for well-behaved
communications.

In summary, compared to previous works, our methodology (1) can automat-
ically generate optimized hierarchical ASNoC for different applications, (2) can
generate a corresponding distributed shared memory along with an ASNoC, (3)
can use both recorded and statistical communication traces for cycle-accurate
performance analysis, (4) is based on the standardized network component
library and floorplan to estimate power and area, (5) adapts an industrial-
grade network modeling and simulation environment, OPNET, which makes
the methodology ready to use, and (6) can be easily integrated into current
HW/SW codesign flow.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

278 o J. Xu et al.

Table I. Estimated Times Spent on Each Step (Person/Day)

H.264 HDTV decoder Smart Camera
Communication analysis 12 7
ASNoC architecture design 4 5
Floorplan estimation 1 1
Performance, power and area analysis 8 6
Total 25 19

Using this methodology, we generated ASNoC for a H.264 HDTV decoder
SoC and Smart Camera SoC. We compared ASNoC with 2D mesh NoC in perfor-
mance, power, and area in detail. The comparison results show that the ASNoC
provide substantial improvements in power, performance, and cost compared to
regular-topology NoC. In the H.264 HDTV decoder SoC, the ASNoC uses 39%
less power, 59% less silicon area, 74% less metal area, 63% less switch capacity,
and 69% less interconnection capacity to achieve 2X performance compared to
2D mesh NoC.

Table I lists the estimated time we spent on each design step. The whole
design requires about 25 person day for the H.264 HDTV decoder. Communi-
cation and performance analysis involve large simulations and consume most
of the design time.

ACKNOWLEDGMENTS

Authors would like to thank the reviewers and editors for their helpful
comments.

REFERENCES

ADRIAHANTENAINA, A., CHARLERY, H., GREINER, A., MoRTIEZ, L., AND ZEFERINO, C. A. 2003. SPIN:
A scalable, packet switched, on-chip micro-network. Design, Automation and Test in Europe
Conference and Exhibition.

Bening, L. anp DE micHELL, G. 2002. Networks on chip: A new paradigm for systems on chip design.
Design, Automation and Test in Europe Conference and Exhibition.

CADENCE. www.cadence.com

Cao, Y., Saro, T., SYIVESTER, D., OrsHANSKY, M., AND Hu, C. 2000. New paradigm of predictive
MOSFET and interconnect modeling for early circuit design. IEEE Custom Integrated Circuits
Conference. 201-204.

Cong, J. 2001. An Interconnect-centric design flow for nanometer technologies. Proceedings of
the IEEE 89, 4, 505-528.

Darry, W. anp Towrks, B. 2001. Route packets, not wires: On-chip interconnection networks.
Design Automation Conference.

Daviau, J.-M., MARcHIORO, G. F., BEN-ISMAIL, T., AND JERRAYA, A. A. 1997. Protocol selection and
interface generation for HW-SW codesign IEEE Transactions on Very Large Scale Integration
Systems, 5, 1.

Foynn, D, 1997. AMBA: Enabling reusable on-chip designs. IEEE Micro, 17, 4.

ForseLr, M. 2002. A scalable high-performance computing solution for networks on chips. IEEE
Micro, 22, 5.

Goossens, K., DIELISSEN, J., MEERBERGEN, J., PopLavko, P., RADULESCU, A., RIJPKEMA, E., WATERLANDER,
E., anD WIELAGE, P. 2003. Guaranteeing the quality of services in networks on chip. Networks
on Chip, A. Jantsch and H. Tenhunen, eds. Kluwer Acad. Publ., Boston, MA.

HEemant, A. AND JanTscH, A. 2000. Network on chip: An architecture for billion transistor era”,
IEEE NorChip Conference.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

A Design Methodology for Application-Specific Networks-on-Chip . 279

Ho, W. H. anp Pinkston, T. M. 2003. A methodology for designing efficient on-chip interconnects
on well-behaved communication patterns. International Symposium on High-Performance Com-
puter Architecture.

Hormann, R. aND DrerUP, B. 2002. Next generation CoreConnect processor local bus architecture.
Annual IEEE International ASIC/SOC Conference. 25—28.

Hu, J. AND MARcULESCU, R. 2003. Energy-aware mapping for tile-based NoC architectures under
performance constraints. Asia and South Pacific Design Automation Conference.

JALABERT, A., MURrALI, S., BENINI, L., AND DE MicHELI, G. 2004. XpipesCompiler: A tool for instan-
tiating application specific networks on chip. Design, Automation and Test in Europe Conference
and Exhibition.

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Joint Model Reference Software,
iphome.hhi.de/suehring/tml/

Karmv, F., NGuvEN, A., aND DEY, S. 2002. An interconnect architecture for networking systems on
chips. IEEE Micro, 22, 5.

KUHLMANN, M. AND SAPATNEKAR, S. S. 2001. Exact and Efficient Crosstalk Estimation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20, 7, 858—
866.

KUMAR, S., JANTSCH, A., SOININEN, Jp., FORSELL, M., MILLBERG, M., OBERG, J., TIENSYRJIA, K., AND HEMANT,
A. 2002. A network on chip architecture and design methodology. IEEE Computer Society
Annual Symposium on VLSI.

Lanmri, K., RAGHUNATHAN, A., AND DEY, S. 2004. Design space exploration for optimizing on-chip
communication architectures. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 23, 6.

LiaNG, dJ., SWAMINATHAN, S., AND TESSIER, R. 2000. aSoC: A scalable, single-chip communications
architecture. International Conference on Parallel Architectures and Compilation Techniques.
MILLBERG, M., NiLssoN, E., Taip, R., KuMAR, S., AND JANTSCH, A. 2004. The Nostrum backbone-a

communication protocol stack for Networks on Chip. International Conference on VLSI Design.

MuraLl, S. aND DE MicHELI, G. 2004. “SUNMAP: A tool for automatic topology selection and
generation for NoCs”, Design Automation Conference.

Opencore. Www.opencores.org

Opnet. www.opnet.com

PinTo, A., CARLONI, L. R., AND SANGIOVANNI-VINCENTELLI, A. L. 2002. Constraint-driven communi-
cation synthesis.Design Automation Conference.

Ryy, K. K., SHIN, E., AND MoonEY, V. J. 2001. A comparison of five different multiprocessor SoC
bus architectures. Euromicro Symposium on Digital Systems, Design.

SEMATECH. 2004. International Technology Roadmap for Semiconductors

Scroi, M., SHEETS, M., MiHAL, A., KEUTZER, K., MALIK, S., RABAEY, J., AND SANGIOVANNI-VINCENTELLI,
A. 2001. Addressing the system-on-a-chip interconnect woes through communication-based
design. Design Automation Conference.

SieeMUND, R. AND MULLER, D. 2003. Efficient modeling and synthesis of on-chip communication
protocols for network-on-chip design.IEEE International Symposium on Circuits and Systems.
S1cUENZA-ToRTOSA, D. AND NURMI, J. 2002. Proteo: A New Approach to Network-on-Chip. Interna-

tional Conference on Communication Systems and Networks.

SiLicorRE. www.silicore.net

TavLor, M. B., Kim, J., MILLER, J., WENTZLAFF, D., GHODRAT, F., GREENWALD, B., HorrmaN, H., JOHNSON,
P, LEE, JAE-WoOK, LEE, W., M4, A., SARAF, A., SENESKI, M., SHNIDMAN, N., STRUMPEN, V., FRANK, M.,
AMARASINGHE, S., AND AGARWAL, A. 2002. The Raw microprocessor: A computational fabric for
software circuits and general-purpose programs. IEEE Micro, 22, 2.

Wang, H., Zuy, X., PeH, L., AND MALIK, S. 2002. Orion: A power-performance simulator for inter-
connection networks. IEEE MICRO.

WikcanD, T., SULLIVAN, G.dJ., BJONTEGAARD, G., AND LuTHRA, A. 2003. Overview of the H.264/AVC
video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 560—
576.

Wincarp, D. 2001. MicroNetwork-based integration for SOCs. Design Automation Conference.

Worr, W. 2001. Computers as Components: Principles of Embedded Computing System Design.
Morgan Kaufman Publishers.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

280 o J. Xu et al.

Worr, W., OzEr, B, anDp Ly, T. 2002. Smart cameras for embedded systems. IEEE Computer, 35,
9, 48-53.

Xy, J. anD Worr, W. 2003. A Wave-Pipelined On-chip Interconnect Structure for Networks-on-
Chips. Hot Interconnects.

Xu, J., WoLr, W., HENKEL, J., AND CHAKRADHAR, S. 2005. A methodology for design, modeling, and
analysis of Networks-on-Chip. IEEE International Symposium on Circuits and Systems.

YEe, T. anp DE MicueLr, G. 2003. Physical planning for on-chip multiprocessor networks and
switch fabrics. IEEE International Conference on Application-Specific Systems, Architectures,
and Processors

YueN, W. S. anp Young, E. F. Y. 2003. Slicing floorplan with clustering constraint. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 22, 5.

ZEFERINO, C. A. AND SusiN, A. A. 2003. SoCIN: A parametric and scalable network-on-chip. Sym-
posium on Integrated Circuits and Systems Design.

Znu, X., QN, W., aND MaLIK, S. 2004. Modeling operation and microarchitecture concurrency for
communication architectures with application to retargetable simulation. International Confer-
ence on Hardware/ Software Codesign and System Synthesis.

Received February 2005; revised June 2005; accepted September 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

