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Abstract—Network-on-chip (NoC) based multiprocessor
system-on-chips (MPSoCs) have been proposed as promising
architectures to meet modern applications’ ever-increasing
demands for computing capability under limited power budget.
Understanding the behaviors of MPSoC applications is the
key to design MPSoCs under tight power and performance
constraints. In this case study, we systematically examine
the computation and communication behaviors of four real
applications on MPSoCs based on three popular NoC topologies.
We formally model real multiprocessor applications as task
communication graphs (TCG) to accurately capture their
computation and communication requirements. We publicly
release a multiprocessor benchmark suite called COSMIC
online, which includes the TCG models. In this work, we
analyze the spatial distributions of workloads and traffics for
each application, and evaluate their performance and energy
efficiency on various MPSoC architectures. Our study shows
that fat tree based MPSoCs are good choices for applications
requiring high network throughput.

I. INTRODUCTION
Multiprocessor system-on-chips (MPSoCs), can improve

computing power per energy and lower cost per function to
efficiently meet the ever-increasing computation requirements
of emerging applications. The performance of an MPSoC
is decided by both the performance of each processor, and
the efficiency of the data communications among them. As
the degree of chip integration and complexity of applications
grow, the demand for on-chip communication bandwidth also
increases, and often at a even faster pace. Traditional buses or
ad-hoc interconnects can hardly satisfy this demand. Network-
on-chip (NoC) [1], as a scalable alternative with better mod-
ularity than the conventional architectures, are becoming a
promising choice for the on-chip communication architectures
of MPSoCs.
A well designed NoC-based MPSoC should be able to

not only provide sufficient computing power for targeted
applications, but also efficiently accommodate the traffics
generated. The computation and communication behaviors of
MPSoC applications provide useful knowledge for designing
computation and communication subsystems for MPSoCs.
Synthetic models were used to capture the characteristics of
real applications for architecture design and evaluation in early
works. As researchers realize that the traditional synthetic
approaches can hardly faithfully reflect the requirements of
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real applications [2], more and more designers are starting to
analyze the behaviors of real applications. Barrow-Williams et
al. examined the communication and memory sharing behav-
iors of real applications selected from existing benchmark
suites [3]. Gratz et al. analyzed realistic application traffic
behaviors based on a new set of metrics [4]. And many works
provided application characterization methodologies [5]–[7].
These works mostly selected applications from multi-threaded
benchmark suites, such as SPLASH-2 [8] and PARSEC [9].
However, there are only a small number of existing multi-
processor systems or simulators that can execute high-level
programs, such as Tilera Tile64 [10] and GEM5 [11], but even
for these multiprocessor platforms, the choices of network
architectures are limited, and simulation runtime is long.
In this work, we conduct a case study on the computation

and communication behaviors of four real applications exe-
cuted on MPSoCs in different scales and three regular network
topologies, i.e., mesh, torus and fat tree. The applications
are named FFT-1024 complex, RS-32 28 8 dec TURBO-dec
and MD-144 gs. Descriptions for these four applications are
provided in section III. A formal computation model, called
task communication graph (TCG), is developed to capture
the computation and communication requirements of appli-
cations. We systematically generate the TCG models for a
set of real applications. We publicly release a multiprocessor
benchmark suite called COSMIC (Communication-Observant
Schedulable Memory-Inclusive Computation), which includes
the application TCG models, the high-level programs of the
applications, sample input datasets for each application and a
tool for task scheduling and memory allocation. Using TCG
models in addition to real application programs allows us
to bypass operating systems (OS) and compilers to quickly
explore novel multiprocessor architectures, such as MPSoCs.
The COSMIC Benchmark Suite is online available at [12].
We analyze the spatial distributions of workloads and traf-

fics for each applications, and evaluate their execution perfor-
mance and energy efficiency on various MPSoC architectures
based on the results obtained from cycle-level simulations.
The experimental results show that, compared to RS and
TURBO, FFT and MD can be better parallelized over multiple
processors and benefit more from the increase of processors.
On the other hand, the workloads of RS and TURBO are
distributed mainly onto several neighbouring processors, and
increasing the number of processors will hardly improve the



performance but incur large amount of leakage overhead
which reduces the energy efficiency significantly. Based on the
experimental results, fat tree network based MPSoCs are good
choices for applications requiring high network bandwidth
and whose traffic patterns are of low locality. Moreover,
the results suggest that not all applications need as many
processing resources as possible to improve performance or
energy efficiency, but may have some bounds that further
increasing processors will not benefit the execution. The main
contributions of our work includes:
• we develop the task communication graph model to

faithfully capture real application characteristics and
generate TCG models for real applications which are
publicly released in the COSMIC benchmark suite.

• we comprehensively analyze the computation and
communication behaviors as well as energy effi-
ciency of the four multiprocessor applications ex-
ecuted on different sized MPSoCs based on three
popular NoC topologies.

The rest of this paper is organized as follows. In Section
II, we illustrate the application evaluation process. Section III
listed the evaluation setup in the experiments. The experimen-
tal results and related analysis are presented in section IV.
Section V concludes the work.

II. REAL APPLICATIONS EVALUATION METHODS
An overview of the evaluation method is shown in Fig. 1.

The evaluation process starts with the real multiprocessor
application algorithms. We analyze the algorithms of the real
applications, implement them in high-level languages, such
as C and C++, or find their existing implementations, and
develop different sample inputs for each application. Based
on the analysis and implementation, we perform computation
and communication behavior modeling to generate TCG model
for each real application. To execute the modeled applications
on multiprocessor platforms including MPSoC, two necessary
steps are required, one is the allocation of proper memory
resources for each application, and the other is the scheduling
of application tasks onto different processors for execution.
Since MPSoC hardware systems are performance-sensitive and
subject to tight constraints, we specifically optimized these two
steps to improve the performance. After this, we execute the
applications on a SystemC based cycle-level MPSoC simulator
to evaluate the performance and energy efficiency for each
application under various MPSoC architectures.

A. Application modeling
The applications are modeled by a weighted directed acyclic

graph model, called task communication graph. The TCG
is defined as a tuple Gt = (V,E), where V is the set of
weighted vertices denoting the computational tasks, and E is
the set of weighted directed edges denoting the communication
channels among tasks. Each task vi ∈ V has a worst-case
execution time ti , which is measured in the number of clock
cycles. Each edge ei = (vi,s, vi,d, wi) ∈ E has a source task
vi,s, a destination task vi,d and the amount of data wi sent

Fig. 1. An overview of the multiprocessor application evaluation method.

from vi,s to vi,d, which is measured in number of words (32
bits in this work). A TCG example is showed in Fig. 2, in
which the number next to each task refers to the worst-case
execution time, and the number on each edge refers to the
communication volume. There are 11 tasks and 15 edges in
this TCG.

Fig. 2. An example task communication graph.

We take the application TURBO as example to better
illustrate the application modeling process in the following
subsections. In this work, we derive the TCG model based
on the turbo decoding application in 3GPP standard [13], the
block size of which is 40 bits and it adopts double sets of
parity checking bits and the Viterbi algorithm.
1) Application partitioning: Applications are partitioned

into various tasks for execution. Generally, the applications are
partitioned into tasks in different manners according to specific
needs of designers. We systematically analyze the algorithm
of each application to help decide how to properly partition
the application into multiple tasks. In this work, we partition
the applications into multiple tasks in a fine-grain manner
in order to facilitate potential parallelism exploration in the
execution. Besides, fine-grain models could be transformed
by exploiting the task clustering or grouping techniques, to
merge multiple elementary tasks into larger ones based on
specific needs or design requirements. In our work, not all
the instructions are packaged into some tasks, instructions
performing structural operations, such as those updating loop
iterators and interacting with memories, will be translated as



inter-task relations and reflected in the structure of the TCG.
The instructions inside a task must be executed sequentially in
the same processor without preemption. Besides this, for con-
ditional bodies (e.g. “if-else” in C), all instructions contained
inside are treated as one task to comply with the definition
of a directed acyclic graph. Taking the application TURBO
as example, the application is divided into 7 types of tasks:
data input (I), floating point multiplication (M), three-input
addition (A), forward state metrics calculation (F), backward
state metrics calculation (B), extrinsic information calculation
(E), interleaver/deinterlever (I/D).
2) Dependency graph generation: Task dependencies are

mainly reflected by data communication between different
tasks. So the dependency analysis are conducted in pairwise.
At code level, tasks with the same operands or using pointers
referring to the same memory address have potential depen-
dencies. And for the loop entity, as TCG is acyclic, each
iteration needs to be unfolded and the interactions among
different iterations are extracted as the task dependencies.
And for tasks wrapped as functions, the function calls and
their inner sub-calls are completely analyzed to decide all
possible dependencies. A part of the dependency graph for
the application TURBO is showed in Fig. 3. In this figure,
nodes represent the tasks previously mentioned.

Fig. 3. Dependency graph of TURBO-dec.

3) Task profiling: The partitioned task programs are com-
piled and executed on a processor simulator called Sim-
pleScalar [14] to obtain the worst-case execution time and
output data volume of each task. The SimpleScalar proces-
sor emulates PISA architecture, which is similar to MIPS-
IV ISA [15]. Performances based on SimpleScalar serve as
comparison baselines for new processors, accelerators, and
other processing units.
The worst-case task execution time is measured in number

of clock cycles instead of absolute timing for the ease of cycle-
level simulation. Since the theoretical worst-case execution
time is difficult to determine, we resort to empirical approaches
to approximate the worst case. Firstly the application is
executed for multiple times with different input datasets and
every time the execution time for each task is recorded. We

choose the largest execution time for each task and add it with
a 10% margin to be the final worst-case time approximation.
The communication volumes between tasks are calculated
mainly by recording the variables used for transferring data
between task functions, including function parameters and
global variables. There are two special cases here, one is
dealing with user-defined data types, and the other is the use
of pointers. In both of these situations, we statically calculate
the sizes of the specific memory spaces defined in the source
program, as it is difficult to determine the size of the memory
referred to by the labels of data structure or pointers.

B. Memory space allocation and task mapping and scheduling
We assume that a virtual private memory space is assigned

to each edge to store the data generated by the source task.
Many applications, such as the RS and TURBO, run iteratively
rather than for once in real systems, thusly insufficient memory
allocation can limit the application throughput and affect the
overall performance. Hence it is very beneficial to properly
determine the memory requirements on each communication
edge such that the performance can be maximized with mini-
mum memory resources allocated in total.
In this work, we adopt the genetic algorithms to achieve

this goal based on an existing technique proposed in [16].
And there are two objectives to be optimized for: maximizing
application throughput is with higher priority, and minimizing
the total memory allocated is with lower priority. Basically,
we iteratively search for a satisfiable result by checking if the
theoretical throughput with memory constraint is met.
For task mapping and scheduling, the basic principle is

trying to distribute computation and communication workloads
over the whole system evenly while the overall execution time
can be minimized. The tasks are evaluated and assigned one
by one in the order defined be the dependency relationships in
the TCG. For each task v in V , the weight of assigning it to
a processor p in processor set P is calculated in the following
cost function:

w(v, p) = c1 × t(v, p) + c2 × q × n(v, p), (1)

in which t(v, p) is the required time for task v to finish
execution on p, defined by the time for executing previously
assigned tasks on p plus the execution time of v on p, and
n(v, p) is the total amount of network transmission, defined
by the number of packets generated by v and sent to other PBs.
q is an architecture-specific scaling factor which balances the
two terms which can be measured in different units, and c1, c2
are constant factors which can be manually adjusted to tradeoff
the weight of the two parts in the overall cost.

III. EVALUATION SETUP
Four real applications are modeled into TCGs, and we list

their details in Table. I. We run the applications on different
homogeneous MPSoC architectures comprising 4, 8, 16, 32,
64 processors interconnected by fat tree, mesh and torus based
NoCs, specifically the processors are organized as 2x2, 2x4,
4x4, 4x8, 8x8 matrices in mesh and torus topologies. Sample



Fig. 4. MPSoCs with three different regular-topology NoCs.

diagrams for these three topologies are showed in Fig. 4.
Each router is connected to the neighbouring routers or local
processor with bidirectional channels. We implement the NoC
based MPSoCs on a SystemC based platform, and conduct a
detailed cycle-level simulation to evaluate their performance.
All the experiments are conducted on the host system with
Intel Xeon CPU E5-2687W processors running Linux version
2.6.18.

TABLE I
INFORMATION OF THE REALISTIC APPLICATIONS EVALUATED

Application Description No.
tasks

No.
edges

FFT-
1024 complex

Fast Fourier Transform with 1024
complex number inputs 16384 25600

RS-
32 28 8 dec

Reed-Solomon code decoder with
codeword format RS(32,28,8) 182 392

TURBO-dec
Turbo code decoder in 3GPP
protocol with block size 40-bit and
rate 1/3

33257 86208

MD-144 gs

Molecular dynamic simulating the
gas molecular dynamics when
shotted towards surface composing
of 144 solid atoms

11320 53803

The technology we target here is 45nm, and the frequency of
electrical components including routers, links and processors,
is set to be 1.25 GHz. For all three types of networks, packet
switching and wormhole routing scheme is adopted, and a
fixed packet size of 8 flits with 32 bits per flits (same as
the width of each router port) is assumed. For mesh and
torus based networks, XY routing algorithm is applied, and
turn around routing is used for fat tree networks. The routers
are working in a pipelined manner and we assume three
cycles delay for flits to cross a router. Two virtual channels
are implemented to avoid the head-of-line (HOL) problem.
Link delay is confined in one cycle, and the bandwidth is 40
Gbps. The above configurations and timing assumptions are
commonly applied in NoC studies. The power models of the
processing and communication components are derived from
[17]. Specifically, the average dynamic power is 37.5mW and
leakage power is 10mW for each processor. For the network
energy model, on average the crossbar consumes 0.06 pJ/bit,
the buffer consumes 0.003 pJ/bit and the control unit consumes
1.5 pJ to make decision for each packet.

IV. EXPERIMENTAL RESULTS
We firstly show the computation and communication be-

haviors of four applications, which is reflected by the spatial
distribution of the computation intensities and communication

traffics during one execution iteration. Then we evaluate
the system performance, including the network performance
and overall execution performance, for each application on
MPSoCs under different network topologies and scales. At last
we show the energy consumption of MD executed on various
MPSoC architectures and analyze the energy efficiency.

A. Computation and communication patterns of applications
We exhibit the spatial distribution of the computation work-

loads and communication traffics of each application. For
space limitation, only the results of 4x4 mesh based MPSoC
are visualized in Fig. 5. In the figures, the color on each
link refers to the number of flits going through and the grey
scale for each processor (marked as P(x,y) in the figures)
refers to the computation intensity measured in cycles. We
can find that the workloads of FFT and MD are distributed
more evenly than those of TURBO and RS. The workloads
of the latter two applications are more centralized, where
computation workloads are mostly processed by one processor
or several processors closed to each other, for example, 67%
of the workloads of TURBO are laid on P(1,1), P(1,2), P(2,1)
and P(2,2). For the traffic patterns, outstanding hot links
exist for all applications except for FFT, and these links
are mostly connected to the processors with large amount of
workloads. These distribution patterns could help decide the
overloaded processors or links in MPSoCs, and make specific
augmentations to avoid potential performance degradation.
We also derived the average (over three topologies) standard

deviation (SD) of workloads on processors in Fig. 6 to reflect
the variance degree of workload spatial distribution on each
sized MPSoC architecture. The results here are relative values
with respect to the average workload per processor on each
sized MPSoC. A general trend is that with the growth of
the number of processors, the workloads are distributed more
unevenly, and this situation is more remarkable for TURBO
and RS. This shows that FFT and MD can better exploit
the computing resources on multi-processor systems, which
indicates that the two applications are of relatively high
parallelism.

B. Performance evaluation
In the experiments, each application is executed in a

pipelined fashion for 20 iterations. The results for evaluation
are measured from the 5th to 15th iteration, since the MPSoC
is in a more stable state in this interval than those in the
first and last 5 iterations in which the system may not be
entirely loaded. All the performance results are the average
value over these 10 iterations. We firstly evaluate the network
performance for each application run on different MPSoCs in
terms of network throughput and end-to-end packet delay. And
then the overall performance is reflected by the execution time
of one iteration.
Fig. 7 and Fig. 8 show the average network throughput

and packet delay. And the value of each application run
on 4-processor fat tree based MPSoC is normalized to 1,
and the other results are relative values to these baselines



Fig. 5. Spatial distribution of computation and communication workloads of the MPSoC applications.

correspondingly. Fig. 7 shows that the network throughput of
FFT and MD are significantly improved with the growth of
MPSoC size. But for the other two applications, the network
throughput get limited improvement, or even slight degrada-
tion in some cases, for example the network throughput of
RS run on 32-processor fat tree system is around 10% less
than that on 16-processor fat tree system. In Fig. 8, the packet
delays for most of these applications are reduced as the number
of processors and network scales get larger. This is mainly due
to lower traffic density in larger networks. This effect benefits
FFT and MD more apparently than the other two applications.
For example, the packet delay of FFT run on 64-processor
mesh system is more than 86% less than that on 4-processor
mesh system. But for the other two applications, the results
show great variance.

Fig. 6. Normalized standard deviation of processor workloads of each
application on different sized MPSoCs.

The network performance variances exhibited by different
applications can be partially explained by the different patterns
of workloads spatial distribution analyzed above. For RS and
TURBO, since the workloads are concentrated on a small num-
ber of processors, the associated traffics can hardly spread over
the whole networks. While for FFT andMD, the workloads are
distributed more evenly, thus the network resources are better
utilized, which results in the better network performance than
the other two.
Fig. 9 shows the normalized average execution time of one

iteration for each application on MPSoCs with different net-
work topologies. The result of each application on 4-processor
fat tree based MPSoC is normalized to 1. An interesting
observation is that both FFT and MD, which are of high
parallelism, get better performance on the MPSoC with fat tree
based network, while the other two applications perform worst
on fat tree based MPSoCs. For example, FFT and MD achieve
respectively on average 6.9% and 5.3% better performance on

Fig. 7. Normalized average network throughput of each application run on
mesh/torus/fat tree-based MPSoCs with different sizes.

MPSoCs with fat tree based networks in contrast with mesh
and torus, while RS and TURBO perform on average 2.5% and
9.5% worse conversely. Fat tree based network provides larger
network bandwidth but longer average end-to-end transmission
distance. These features make it more suitable for the applica-
tions that can be highly parallelized onto different processors
for execution and require high network bandwidth, such as
FFT and MD. But the workloads of RS and TURBO are highly
centralized and the traffics are of high locality, therefore the
networks providing smaller end-to-end distance will fit them
better, such as mesh and torus, than fat tree.

Fig. 8. Normalized average packet delay of each application run on
mesh/torus/fat tree-based MPSoCs with different sizes.
On the other hand, regarding the changes of MPSoC sizes,

FFT almost get proportional performance improvement with
the processor number grow exponentially. MD firstly get
significant performance enhancement, but the performance
curve tends to get saturated with further increasing the number
of processors. For RS and TURBO, the performance even
degrades as the MPSoC sizes are enlarged. These results imply
that applications may not need as many processor resources



as possible to improve performance, and there could be such
bound that further increasing processors will not bring or bring
much performance benefit.

Fig. 9. Normalized average execution time per iteration of each application
run on mesh/torus/fat tree-based MPSoCs with different sizes.

C. Energy evaluation
Due to space limitation, only the energy consumptions

of MD run on different MPSoC architectures are showed
in Fig. 10. In this figure, the result of 4-processor fat tree
based MPSoC is normalized to 1. The energy consumption are
divided into three parts: the communication energy (Comm.),
processor working energy (Proc. busy) and processor idle
energy (Proc. idle) which is resulted from static leakage. As
the number of processors gets larger, the energy consumption
of communication and idle processors increase apparently. For
example, the communication energy and leakage energy on
64-processor fat tree based MPSoC take 23.9% and 48.2%
of the total energy consumed. Keep increasing the amount of
processing resources brings little performance improvement
due to the application’s intrinsic parallelism limitation, but
incurs significant leakage overhead. Based on the results,
we can also derive the performance-to-energy ratio index
by dividing the reciprocal of the normalized execution time
per iteration by the normalized energy consumption, which
is especially helpful for high performance MPSoC design
with tight power budgets. For MD, 8-processor fat tree based
MPSoC achieves the highest index value of 1.65, while for
larger MPSoCs, this value is smaller, for example it is 0.78 for
64-processor fat tree MPSoCs, which means the performance
gain can not make up for the extra energy consumed.

Fig. 10. Normalized energy consumption of MD run on mesh/torus/fat tree-
based MPSoCs with different sizes.

V. CONCLUSION
In this work, we formally model real applications as TCGs

and publicly release the COSMIC multiprocessor benchmark

suite, which includes the application TCG models, the high-
level programs of the applications, sample input datasets for
each application and a tool for task scheduling and memory
allocation. We systematically examine the computation and
communication behaviors of 4 real applications on different
sized NoC-MPSoCs based on three popular NoC topologies.
We analyze the spatial distribution of workloads and traffics of
each application, and evaluate their performance and energy
efficiency on various MPSoC architectures. The experimental
results show that fat tree based MPSoCs are good choices
for applications requiring high network bandwidth and whose
traffic patterns are of low locality, such as FFT and MD.
These two applications can benefit a lot from the large
amount of processing resources, and achieve relatively high
energy efficiency. Moreover, the results suggest that not all
applications need as many processor resources as possible
to improve performance or energy efficiency, but may have
some bounds that further increasing processors will not benefit
significantly.
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