2011 IEEE Computer Society Annual Symposium on VLSI

A Hardware-Software Collaborated Method for
Soft-Error Tolerant MPSoC

Weichen Liu, Jiang Xu, Xuan Wang, Yu WangT, Wei Zhang?, Yaoyao Ye, Xiaowen Wu, Mahdi Nikdast, Zhehui Wang
The Hong Kong University of Science and Technology, Hong Kong, China. E-mail: {weichen,eexu}@ust.hk
"Tsinghua University, Beijing, China. *Nanyang Technological University, Singapore.

Abstract—Multiprocessor systems-on-chip (MPSoCs) are at-
tractive platforms for embedded applications with growing com-
plexity, because integrating a system or a complex subsystem
on a single chip provides better performance and energy effi-
ciency and lower cost per function. As feature sizes and power
supply voltages continually decrease, MPSoCs are becoming
more susceptible to soft errors. However, traditional soft-error
tolerant methods introduce large area, power and performance
overheads to MPSoCs. This paper presents a low-overhead
hardware-software collaborated method, called SENoC, to dy-
namically mitigate soft errors on MPSoCs using an on-chip sensor
network. We developed a low-cost on-chip sensor network to
collaboratively monitor and detect soft errors, and implemented
software-based mechanisms to guarantee correct task executions.
To maximize the performance of soft-error tolerant MPSoCs,
a hybrid scheduling scheme is proposed to effectively manage
applications and resources under uncertainties. We studied the
new method on MPSoCs with different scales and tested it using
typical embedded applications under different cosmic ray flux
conditions. Experimental results show that comparing to tradi-
tional methods SENoC requires substantially lower protection
overheads to achieve the same level of soft-error tolerance. For
instance, soft-error tolerant MPSoCs using SENoC archive on
average 114.1% better performance than a latest traditional
method, and SENoC only introduces 0.42% area overhead to
a 256-core MPSoCs.

I. INTRODUCTION

As feature sizes continue to shrink with the advancement of
nanotechnologies, multiprocessor systems-on-chip (MPSoCs)
become promising solutions to satisfy the growing demands
of embedded applications, because integrating a system or a
complex subsystem on a single chip provides better perfor-
mance and energy efficiency and lower cost per function [1].
On the other hand, nanotechnologies also make MPSoC more
susceptible to various reliability threats, such as soft errors.
Soft errors occur when high-energy particles or electromag-
netic noises cause state inversions directly in registers or
memory elements, or indirectly through glitches propagating
across combinational logic [2]. Without proper protections,
they can compromise system reliability, and cause unpleasant
user experiences or even serious danger.

Soft-error tolerant system designs have been studied ex-
tensively in the past [3]. There are two types of methods to
achieving system-level soft-error protections for multiproces-
sor systems. In hardware-based methods, additional circuits
are designed in company with common functional units to
provide error protections, e.g., Triple Modular Redundancy

978-0-7695-4447-2/11 $26.00 © 2011 IEEE
DOI 10.1109/ISVLSI.2011.48

260

(TMR) [4], in which three identical subsystems are used to
process the same task and a majority voting of the results is
used to determine the correct outputs. Hardware-based meth-
ods can mitigate soft errors and do not introduce extra work-
load to software. However, they require significant hardware
modifications and involve large overheads on area, power, and
performance [5]. In software-based methods, instead of de-
pending on extra hardware, additional copies of a program are
executed in order to obtain error-resilient results [6]. Software-
based methods minimize hardware changes but introduce large
overheads on task execution time and power consumption,
which make it hard to meet the stringent requirements of
embedded applications.

Traditional soft-error tolerant methods dramatically increase
MPSoC cost and reduce performance due to their large pro-
tection overheads. This significantly limits the scalability and
flexibility of MPSoCs. The root of this problem is traditional
methods rely on fixed protections against transient soft errors.
Fixed protections are designed for worst cases, but worst cases
only account for a small portion of the total MPSoC run
time, and this makes traditional methods become burdens for
MPSoCs in most of the time.

This paper presents a novel low-overhead dynamic method,
called SENoC, for soft-error tolerant MPSoCs. SENoC uses
hardware-software collaborated approaches to mitigate tran-
sient soft errors and meet applications’ real-time constraints
with minimal overheads. We developed a low-cost on-chip
sensor network to collaboratively monitor and detect soft er-
rors, and implemented software-based mechanisms to mitigate
soft errors and guarantee correct task executions. To maximize
the performance of soft-error tolerant MPSoCs, we proposed a
hybrid scheduling scheme to effectively manage applications
and resources under uncertainties. The hybrid scheme first
optimizes applications by off-line static scheduling techniques,
and then uses lightweight scheduling adjustment techniques at
runtime to complement the static analysis and handle transient
incidents caused by soft errors and task execution variations.

This is the first time that a dynamic hardware-software
collaborated method is proposed to systematically mitigate
soft errors for MPSoCs using an on-chip sensor network.
The new method can effectively reduce protection overheads
and improve MPSoC scalability. We studied the proposed
method on MPSoCs with different scales and tested it using
typical embedded applications under different cosmic ray

@) CO‘ pute
1(!) I
& SOCIety

flux conditions. Experimental results show that comparing
to traditional methods the new method requires significantly
lower protection overheads to achieve the same level of
soft-error tolerance. For instance, soft-error tolerant MPSoCs
using the hardware-software collaborated method archive on
average 114.1% better performance than a latest software-
based method, and it only introduces 0.42% area overhead
on a 256-core MPSoCs.

The rest of the paper is organized as follows. Related work
is discussed in Section II. An overview of the proposed method
for soft-error tolerant MPSoCs is presented in Section III. Its
hardware architecture is detailed in Section IV. The software
components are presented in Section V. The hybrid scheduling
scheme is detailed in Section VI. Section VII shows evaluation
and comparison results. Section VIII concludes our work.

II. RELATED WORK

Several hardware-based methods are proposed for soft error
protections. A globally optimized robust system “BISER”
is presented to correct soft errors in latches, flip-flops and
combinational logic by reusing on-chip scan resources [5], [7].
It can reduce the cost for error correction quite significantly
compared to classical techniques such as TMR. However,
performance and energy penalties are still relatively large.
A fault-tolerant MPSoC prototype is presented in [8]. It
uses checker processors to achieve runtime fault recovery. A
multiple clocking of data technique [9] is proposed to remove
the error detection overhead from the circuit critical path.

Software-based fault-tolerant scheduling techniques are dis-
cussed in [6], [10] for hard real-time multiprocessor systems.
Smolens et al. [11] presented a spatial and temporal redun-
dancy and value based detection for soft error protections.
When a soft error is detected, error correction is achieved by
rolling back an execution to its previous checkpoint state and
re-executing instructions. Code redefinition techniques [12],
[13], [14] derive a new program with the same functionalities
as the original application, but with soft error detection capa-
bility through redundant execution. These techniques have no
special hardware requirements, while they induce significant
performance degradation and memory overhead to the system.

A fault-tolerant optimization method is presented in [15] to
selectively use hardware redundancy as well as software re-
execution. Given an application scenario, it performs a trade-
off between selective duplications on hardware component or
software process to provide required level of fault tolerance
with minimized system costs. Many techniques are proposed to
protect transient failures on on-chip interconnects like routers
and communication links [16], [17].

ITI. SYSTEM OVERVIEW

SENoC is a hardware-software collaborated solution for
soft-error tolerant MPSoCs. It is a systematic approach not
only aiming to protect the system from soft errors, but also to
optimize system performance in the presence of task execution
uncertainties caused by soft errors. It provides robust soft error
protection in two steps. A low-cost hardware-based on-chip

261

sensor network is used to detect and report soft errors, and
a software-based scheduling technique is applied for error
recovery. A hybrid task management strategy is used for
system performance optimization and includes two stages —
static task scheduling stage at static time and dynamic schedule
adjustment stage at runtime.

)

° aoP o Up] °p <] ®p) P
o °,| Processor o © 0 © 5 © 0 ©
= o o ° °
® Sensor OOWR OOWR OOWR OOWR
®, ® ®, ®,
g g S s
Network Interface | © o “|| | %o 7| | %6 "] |00 "
o] ool ool oo
Router) @) ®,
o °p o °p o %p o °p
Node Agent ° ; ° ° (: ° e ; ° °© 00 °
o °w o ° il el |°®m
© ©) Gy Tcu
eu) Task Control Unit
o %p o %p o °p o °p
°© (: o e (: o e ; ° °© ee °
—— Interconnection O N °© [w] ° [w] o N
Fig. 1. SENoC architecture overview on a 16-core MPSoC.

Fig. 1 shows an example of SENoC on a 16-core MP-
SoC. The communication subsystem of SENoC is a scalable
Network-on-Chip (NoC), which is shared by regular MPSoC
payload packets. On-chip sensors are distributed in each
processor tile for soft error detection, and each NoC router
is augmented with a node agent for coordination among on-
chip sensors. A task control unit is built for centralized man-
agement. We will discuss the architecture design of SENoC
and its working strategies in Section IV. The software-based
soft error recovery technique combines traditional rollback
strategy with scheduling techniques to optimize performance.
Its realization is detailed in Section V. Besides the soft error
protection functions, we further enhance the overall system
performance under task execution uncertainties caused by soft
errors. We apply static optimization techniques to maximize
the applications’ performance at static time, and adjust the
static scheduling result at runtime according to task execution
variations and soft error exceptions. The two-stage static
scheduling and dynamic adjustment (SSDA) approach for
SENoC is discussed in Section VI.

IV. HARDWARE ARCHITECTURE AND SOFT ERROR
DETECTION

As a system for soft error monitoring and management,
SENoC is mainly composed of four types of functional
modules: sensors, node agents, a communication subsystem
and a centralized task control unit (TCU). On-chip sensors
are distributed over the chip to collect information from
processors; node agents integrate and analyze information
obtained by sensors, and send feedback advices to processors;
the communication subsystem is used to share information
among the modules; the centralized TCU is used to coordinate
among processors to collaboratively complete task executions
for applications.

On-chip sensors are built to detect soft errors. Similar to the
circuit used by the time redundancy method proposed in [18],
the sensor design is shown in Fig. 2. Extra shadow flip-flops

Fig. 2. The design of on-chip sensors.

are added to processors and triggered by a delayed clock
signal, such that the two flip-flops on the same processing
stage capture the outputs of a combinational circuit at two time
instances that differ by a delay. The content of the functional
flip-flop is compared with the shadow flip-flop by a series
of the XOR gates (working as a set of one bit comparators)
to identify soft errors. Once there is a transient pulse on the
combinational logic output, it will potentially make the output
of the two flip-flops different. The difference is captured by
the control unit and reported to a node agent. This sensor
design is effective in detecting soft errors occurring indirectly
through combinational logic, and it can also detect soft errors
occurring in one of the two flip-flops.

SENoC has several advantages over some related techniques
who use hardware to provide error-free circuits by integrating
detection and recovery circuits together [5]. First, error-free
designs result in longer delays in hardware circuits, which
are not negligible for modern systems. The tiny sensors only
require very low hardware cost compared to error-free designs.
Actually, our hardware-software collaborated strategy allows
the soft error detected interrupt to be processed in the next
clock cycle. Since the clock delay is only applied to the
shadow flip-flops, the clock frequency of the functional logic
can be largely maintained as normal in most circuit designs.
The one cycle delay for setting the soft error interrupt signal
is a small overhead for soft error recovery. Second, SENoC
makes minimal changes to the existing hardware designs,
which makes it easy for system integration. Third, the system
becomes flexible for task scheduling since a universal task
controller is applied to take care of task executions under
different situations.

With the sensors for soft error detection, a communication
network is used to collect, share and coordinate the system
with sensing information. NoC is composed of routers and
interconnects. We add the following functional components
to NoC for SENoC: node agents for collecting information
from sensors, controlling packet generation and interpretations
for intercommunications among processors and the central
TCU, and advising processor for task re-execution for error
recovery; TCU in charge of centralized control of the system,
including maintaining processor states and task executions
as well as making scheduling decisions. The communication
protocols are proposed for SENoC including packet formats
and transmission control. The packet types and their functions
are described in Section V.

The structure of a processor core is showed in Fig. 3(a).
Sensors with the functionality of soft error detection are spread

262

on each processor. The control logic of a processor is used to
maintain processor states and coordinate all the components to
make them work correctly. The data path executes tasks for the
processor. The network interface is used for communications
with a nearby router for packet transmission and delivery.
With the design of sensor-enabled processor, we can detect
soft error problems during task executions. A processor has
four states: clock off, free, busy and exception handling. A
special “Exception Handling” state is used for dealing with
soft error exceptions. The processor sets its program counter
back to the start point of the running task and conducts related
rollback operations for soft error recovery. A “Safety Period”
is set inside the “Free” state for state transition from “Busy” to
“Free”. As mentioned, the sensors are possible to report soft
error threat after a cycle delay. When a task finishes execution
and the processor returns to “Free” state, a delayed soft error
report can indicate affected task execution results and soft error
recovery is needed in this case, though generally soft error
report can be omitted when processor is in “Free” state.

Control Port

Foe =

Wowmron

(¢) TCU

v

(a) Processor

(b) Router with node agent

Fig. 3. The structures of processor, router and TCU.

Routers relay messages (by packets) from one processor to
another over interconnected links. The router structure diagram
is given in Fig. 3(b). Normally, a router has five bidirectional
ports: four of which connect nearby routers in a mesh topol-
ogy, and the left one is connected to the local processor. Each
input port has an input buffer for temporary packet storage.
The control unit is used to control packet switching. Most
importantly, there is a node agent built inside each router.
Node agents mainly have three functions: receiving soft error
report from sensors, advising local processor for task re-
execution to correct soft errors, and working as a medium
between processor and communication network. It can analyze
input packets for the processor and generate commands to the
processor control logic. On the other hand, it can synthesize
processor commands and states into packets to transmit to
other network components.

TCU is a global controller used for task management. Its
structure diagram is shown in Fig. 3(c). TCU is used to
assign new tasks to processors, and maintain the status of
all processors. It has a scheduling adjustment control logic,
which is used for online task scheduling implementation and
dynamic adjustment of pre-defined schedules for performance
control. The detailed working strategy of TCU is discussed in
Section VI. Note that TCU can also be protected with similar
techniques proposed in this paper.

V. SOFTWARE DESIGN AND SOFT ERROR RECOVERY

Our recovery scheme is a software solution based on task-
level scheduling adjustment. As a promising software-based

technique, [11] does not need redundant hardware support to
solve soft error problems. It duplicates instruction execution
and compare the results to address soft errors, and once
a soft error is detected, the software rollbacks to the last
checkpoint where the input data for the broken instructions
were stored and restarts the execution. Checkpoints are set
regularly among software instructions. However, the frequent
data backup operations due to the instruction-level checkpoint
buildup increase the memory usage, and duplicated instruction
execution introduces high performance overhead.

In SENoC, we do not set checkpoints at the instruction level,
but use abstraction techniques to represent applications by task
graph models, and set checkpoints at the task level (a task in
a task graph normally represents a piece of code or a batch
of instructions). A buffer memory is usually allocated to the
edge between tasks (denoting communication channel) for data
sharing. We exploit this feature to set checkpoints on the edges
between tasks, and use the buffer for data backup. The input
data for a task are kept in the buffer until the task finishes
without soft error alert. Once a soft error occurs, the processor
will roll the next instruction back to the start point of the
affected task and run the task again with the kept input data.
Unlike other software-based methods, our checkpoint setting
naturally takes advantages of task graph semantics and does
not induce additional time or memory overhead to the system.

Based on our scheme, duplicated task execution or backup
memory is not necessary, and task-level error recovery is
triggered only when the soft error really defects task run-
ning. Software overhead is substantially reduced, and recovery
overhead is minimized, which are the main benefits of the
hardware-software combined solution. A centralized TCU is
built to handle the task management and scheduling over
the entire chip as well as coordinate on-chip resources. The
detailed working strategy is discussed in Section VI.

Task Control Unit
Send report packet for free state T
port p | Loop

(previous task finished
|

Send command packet for task execution|
|

Update schedule table
& processor state table

Make scheduling decision

Send report packet for task started

Update schedule table Execute task

& processor state table Soft-error detected

Reset task

Send report packet for soft-error detecte
Update schedule table
& processor state table
Update schedule table Send report packet for task restarted
& processor state table

Restart task execution

v v
Fig. 4. The timeline sequence diagram for communications between
processors and TCU.

The communication protocol between the centralized TCU
and processors is described in Fig. 4. Three types of network
packets are defined: command packet sent from TCU to
processors for delivering task scheduling decisions; report
packet sent from processors to TCU for processor state report;
payload packet sent between processors for data transmission
between inter-processor tasks. Normally, once a processor is
known to be free by the TCU and a scheduling decision is
made to invoke a task on that processor, a command packet
will be sent to the processor. During the task execution,
four types of report packets are possible to be sent to the

263

TCU for the events of task started, task finished, soft error
detected and task restarted for soft error recovery, respectively.
TCU will update the local schedule table and processor state
table according to the received reports. As a future extension,
the protocol in Fig. 4 can be further enhanced by sending
the command packet for task execution to the processor
earlier as soon as the next task gets ready. In this way, the
communication overhead can be covered and reduced by the
simultaneously executed task.

VI. TWO-STAGE SCHEDULING STRATEGY FOR
PERFORMANCE OPTIMIZATION

State-of-the-art techniques for soft error protection only
consider using rollback scheduling to recover from soft errors.
We do more than that: besides task-level rollback for soft error
recovery, we further propose a scheduling strategy to optimize
the performance of the entire system.

We conduct centralized scheduling strategy for global man-
agement of the entire chip resources and coordination among
runtime variations and exceptions. The TCU monitors the
entire chip including processor and task states, and makes
scheduling and controlling decisions. We propose a static-
scheduling-and-dynamic-adjustment (SSDA) strategy, as illus-
trated in Fig. 5, which is the composition of an offline static
task mapping and scheduling algorithm and an online dynamic
adjustment strategy.

Software
Application

Mapping

Scheduling

Hardware
Architecture

Design time:
Static analysis
Allocate task modules

to processors

Schedule tasks allocated
to the same processor

Runtime:
Dynamic Management

Make adjustment on the
schedules according to runtime
exceptions and variations

Scheduling
Adjustment

Optimized
Performance

Fig. 5. Two-stage static scheduling and dynamic adjustment (SSDA) strategy.

At design time, without any knowledge of soft error oc-
currences or task running variations, we try to optimize the
application’s performance using static real-time scheduling
techniques. Load balancing algorithms considering processor
workload and network traffic load are applied to distribute
processing and network transmission workload evenly to make
high resource utilization. The cost function for evaluating
a task mapping decision is defined as a linear combination
of the task’s occupation of the processing time and the
total network delay for sending its output data to all the
dependent tasks on other processors. The processor with the
minimum cost is selected for the task. The tasks assigned to
the same processor execute following a static order strictly.
This scheduling strategy is proved to be more effective for
multiprocessor systems [19].

At runtime, we generally follow the schedule obtained
offline, but make slight adjustments according to the runtime

uncertainties, like soft error occurrences and task execution
time variations. The light-weight online adjustment algorithm
is given in Alg. 1. We use the work-conserving principle
that keeps the processors working efficiently on the scheduled
tasks, and adjusts the task invocation orders if necessary.

Algorithm 1 Online dynamic scheduling adjustment algorithm

Require: MPSoC P, pre-determined schedule table S, report packets
from processors in P
1: for each processor p do
if p reports free then
3: Select the next task v in the schedule table S(p) that is
already ready

4 Schedule v on p

5: Update the schedule table S

6: end if

7. if p reports soft error occurrence on task v then
8: Predict task v’s new finish time

9: Make adjustment on the schedule table S

10: else if p reports execution time variation on v then
11: Make adjustment on the schedule table S

12: else if p reports processor state change then

13: Update the schedule table S

14: end if

15: end for

The pre-determined schedule may be advanced or postponed
by the runtime events. If a task finishes in a shorter time than
its estimation, the TCU will possibly invoke its successors and
the next task on that processor earlier, and the performance
is expected to be enhanced than the prediction. If a task
is affected by soft error, the TCU will re-execute the task
and delay its successors and the following tasks on the same
processor. Fortunately, if its successors are on other processors,
the TCU will adjust the schedule on that processor to allow
unaffected tasks to be invoked earlier than the plan, so that
the impact of soft error on total performance is reduced to
minimum. Alg. 1 has linear complexity to the problem input
and runs fast in practice.

VII. PERFORMANCE EVALUATION

In order to verify the effectiveness of the proposed method,
we develop a cycle-accurate simulator using SystemC,and
conduct extensive performance evaluations using several well-
known real-world applications. We compare our solution with
state-of-the-art soft-error tolerant techniques on application
performance. We construct three MPSoCs using mesh-based
NoCs with 16, 64 and 256 processors, respectively. XY routing
and wormhole switching techniques are applied in the commu-
nication subsystem. We run three groups of simulations. First,
we assume the system is running without soft error attack,
and obtain the “Error-free” performance of the applications.
Second, the proposed “SENoC” is applied to an environment
with soft error attacks. Soft errors are simulated to appear
on each processor randomly following uniform distribution.
A series of terrestrial locations with different cosmic ray flux
conditions are selected as the X-axis [20], where the soft error
rates can differ in more than three orders of magnitude for dif-
ferent altitudes. Last, for comparison purpose, we assume the

264

same cosmic ray flux conditions as in the second group, and
handle soft errors using a latest software-based technique [11].
In the simulations, task execution time variations are described
by assigning random execution times following the Gaussian
distribution. In order to obtain steady and useful results, we
run each application continuously for multiple iterations with
pipelining. The end-to-end latency of each simulation run is
recorded for analysis.

First, we compare the performance of the techniques in
terms of the time used to complete the applications. Figure 6
shows the results for respective applications, where the Error-
free performance on 256-core MPSoC is normalized to 1, and
the rest results are shown by relative values to it. Results for
Error-free cases are very close to those for SENoC and omitted
in the figures for clarity purpose. Figure 7 shows the average
performance comparison on the three MPSoCs, where the
performance values are normalized to [11] on 16-core MPSoC.
The average performance overhead by our technique is 0.8%
compared to the Error-free case, and the average performance
improvement compared to [11] is 114.1%. Experimental re-
sults show that our technique has consistently low performance
degradation for soft error protection, though soft error rates
are largely changed with different terrestrial locations, and it
outperforms [11] impressively.

Average performance comparison

N
&

> Error-free]

Normalized performance
= & 8

o)

i

64 256
Number of processor cores

Fig. 7. The comparison of average performance on 16-core, 64-core and
256-core MPSoCs.

(a) Router

(b) TCU

Fig. 8. The layouts of the router and task control unit for a 16-core MPSoC.

Next, we implement the hardware and analyze the chip
area overhead induced by our technique. Figure 8 shows
the layouts of the router and TCU obtained by Cadence
Encounterin a 45nm process [21]. Table I summarizes the
areas of the hardware components. The area overhead contains
three parts: sensors, node agents and the TCU. We assume
the area of a processor core to be 660*660 pm? and has five
pipeline stages.Routers are designed with five bi-directional
ports and input buffers with the depth of two packets. With
the synthesized results, we show that the area overhead of
our technique is 0.37%, 0.39% and 0.42% for 16-core, 64-
core and 256-core MPSoCs, respectively, and the average area

Performance comparison for Modem Performance comparison for H.264 Decoder

B - = SR Y- S} 1} BeeeeeoeBeeeeoBeen

Performance comparison for Satellite Receiver

O

§ 0.9
© 0.8

01 o o o o o L -]

Performance comparison for Sparse Matrix Solver

B -
809
§08
50.7,
2

e |
© 16CPU_SENC

0 16CPU[10]
-5-64CPU_SENoC
-5-64CPU_[10]
-3-256CPU_SENoC|
o 256CPU_[10]

O 16CPU_SENoC

o Bl e B B B B

$0.9) O 16CPU_SENGC 309
c © 16CPU_[10] c
208 5-64CPU_SENOC 208
50.7} < 64CPU_[10] 5 0.7}
T -B8-256CPU_SENOC| b -B- CPU. No
206 2560PU_(10] 309 256CPU_[10]
T05 <05
N N
0.4 o4
E 0.3 - E 0.3
5 5
202 -) 2oy T
0o o o n © 8 8§ & L =S - -
o e e e el ey e
0 12 16 20 24 28 0 4 8 12 16 20 24 28
Altitude (km) Altitude (km)
(a) Modem (b) H.264 decoder
Fig. 6.

overhead from the additional hardware components used by
our technique is 0.39%, which is negligible considering the

huge performance gain.
TABLE I
AREAS OF SENOC COMPONENTS.

Components Area (um?)

Processor core 435600
Router 22803

Sensors (on a core) 724

Node agent 687

TCU on 16-core MPSoC 8599
TCU on 64-core MPSoC 50608
TCU on 256-core MPSoC 127315

VIII. CONCLUSION

This is the first time that a dynamic hardware-software
collaborated method is proposed to systematically mitigate
soft errors for MPSoCs using an on-chip sensor network. We
developed a low-cost on-chip sensor network to collaboratively
monitor and detect soft errors, and implemented software-
based mechanisms to mitigate soft errors and guarantee correct
task executions. To maximize the performance of soft-error
tolerant MPSoCs, we proposed a hybrid scheduling scheme to
effectively manage applications and resources under uncertain-
ties caused by soft errors. The new method can substantially
reduce protection overheads and improve MPSoC scalability.
We studied the proposed method on MPSoCs with different
scales and tested it using typical embedded applications under
different cosmic ray flux conditions. Experimental results show
that comparing to latest traditional methods the new technique
requires significantly lower protection overheads to achieve the
same level of soft-error tolerance.

ACKNOWLEDGEMENT
This work is supported by RGC, Hong Kong SAR.

REFERENCES

[1] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “H. 264 hdtv decoder
using application-specific networks-on-chip,” in Multimedia and Expo,
2005. ICME 2005. IEEE International Conference on, july 2005, pp.
1508 —1511.

M. Nicolaidis, “Design for soft error mitigation,” Device and Materials
Reliability, IEEE Transactions on, vol. 5, no. 3, pp. 405 — 418, sept.
2005.

D. K. Pradhan, Ed., Fault-tolerant computer system design.
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.
S. Mukherjee, Architecture Design for Soft Errors.
USA: Morgan Kaufmann Publishers Inc., 2008.

(2]

(3]
(4]

Upper

San Francisco, CA,

265

(3]

(6]

(7

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

8 12 16 20 24 28 0 4 8 12 16 20 24 28
Alttude (km) Altitude (km)

(c) Satellite receiver (d) Sparse matrix solver

Performance comparisons between SENoC and [11] on 16-core, 64-core and 256-core MPSoCs.

S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. Gill, and K. S. Kim,
“Combinational logic soft error correction,” in Test Conference, 2006.
ITC °06. IEEE International, oct. 2006, pp. 1 —9.

G. Manimaran and C. S. R. Murthy, “A fault-tolerant dynamic schedul-
ing algorithm for multiprocessor real-time systems and its analysis,”
IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 11, pp. 1137-1152, 1998.
S. Mitra, “Globally optimized robust systems to overcome scaled cmos
reliability challenges,” in DATE '08: Proceedings of the conference on
Design, automation and test in Europe. New York, NY, USA: ACM,
2008, pp. 941-946.

X. Zhu and W. Qin, “Prototyping a fault-tolerant multiprocessor soc with
run-time fault recovery,” in DAC '06: Proceedings of the 43rd annual
Design Automation Conference. New York, NY, USA: ACM, 2006,
pp. 53-56.

N. Avirneni and A. Somani, “Low overhead soft error mitigation
techniques for high-performance and aggressive designs,” Computers,
IEEE Transactions on, 2011.

S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance through schedul-
ing of aperiodic tasks in hard real-time multiprocessor systems,” /EEE
Trans. Parallel Distrib. Syst., vol. 8, no. 3, pp. 272-284, 1997.

J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Reunion:
Complexity-effective multicore redundancy,” in MICRO 39: Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture. Washington, DC, USA: IEEE Computer Society, 2006, pp.
223-234.

M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante, “Soft-
error detection through software fault-tolerance techniques,” in DFT ’99:
Proceedings of the 14th International Symposium on Defect and Fault-
Tolerance in VLSI Systems. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 210-218.

B. Nicolescu, R. Velazco, M. Sonza-Reorda, M. Rebaudengo, and M. Vi-
olante, “A software fault tolerance method for safety-critical systems:
Effectiveness and drawbacks,” in SBCCI ’02: Proceedings of the 15th
symposium on Integrated circuits and systems design. Washington, DC,
USA: IEEE Computer Society, 2002, p. 101.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in CGO '05. Proceedings
of the international symposium on Code generation and optimization.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 243-254.
V. Izosimov, 1. Polian, P. Pop, P. Eles, and Z. Peng, “Analysis and opti-
mization of fault-tolerant embedded systems with hardened processors,”
in DATE. 1EEE, 2009, pp. 682-687.

A. Dutta and N. A. Touba, “Reliable network-on-chip using a low cost
unequal error protection code,” Defect and Fault-Tolerance in VLSI
Systems, IEEE International Symposium on, vol. 0, pp. 3—11, 2007.

A. Patooghy, M. Fazeli, and S. G. Miremadi, “A low-power and seu-
tolerant switch architecture for network on chips,” in PRDC ’07:
Proceedings of the 13th Pacific Rim International Symposium on De-
pendable Computing. Washington, DC, USA: IEEE Computer Society,
2007, pp. 264-267.

M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in VTS '99: Proceedings of the 1999 17TH
IEEE VLSI Test Symposium. Washington, DC, USA: IEEE Computer
Society, 1999, p. 86.

W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo graph
theory for task mapping and scheduling on multiprocessor systems,”
IEEE Transactions on Parallel and Distributed Systems, 2010.

JEDEC Standard, JESD89, 2001, http://www.jedec.org.

“Nangate 45nm open cell library,” http://www.nangate.com.

