
A NoC Traffic Suite Based on Real Applications
Weichen Liu, Jiang Xu, Xiaowen Wu, Yaoyao Ye, Xuan Wang, Wei Zhang†, Mahdi Nikdast, Zhehui Wang
The Hong Kong University of Science and Technology, Hong Kong, China. E-mail: {weichen,eexu}@ust.hk

†Nanyang Technological University, Singapore. E-mail: zhangwei@ntu.edu.sg

Abstract—As benchmark programs for microprocessor archi-
tectures, network-on-chip (NoC) traffic patterns are essential
tools for NoC performance assessments and architecture ex-
plorations. The fidelity of NoC traffic patterns has profound
influence on NoC studies. For the first time, this paper presents
a realistic traffic benchmark suite, called MCSL, and the
methodology used to generate it. The publicly released MCSL
benchmark suite includes a set of realistic traffic patterns for
8 real applications and covers popular NoC architectures. It
captures not only the communication behaviors in NoCs but
also the temporal dependencies among them. MCSL benchmark
suite can be easily incorporated into existing NoC simulators and
significantly improve NoC simulation accuracy. We developed a
systematic traffic generation methodology to create MCSL based
on real applications. The methodology uses formal computa-
tional models to capture both communication and computation
requirements of applications. It optimizes application mapping
and scheduling to faithfully maximize overall system performance
and utilization before extracting realistic traffic patterns through
cycle-accurate simulations. Experiment results show that MCSL
benchmark suite can be used to study NoC characteristics more
accurately than traditional random traffic patterns.

I. INTRODUCTION

By integrating multiple processing units on a single chip,
multiprocessor systems-on-chip (MPSoCs) can provide higher
performance per energy and lower cost per function to ap-
plications with burgeoning complexity. The performance of
an MPSoC is determined not only by the performance of its
processing units, but also by how efficiently they collaborate
with one another. It is the MPSoC’s communication architec-
ture which determines the collaboration efficiency. The on-
chip communication architectures of MPSoCs are gradually
moving from traditional buses and ad-hoc interconnects to
more sophisticated networks-on-chip (NoCs) [1], [2], and have
become an active research area in both industry and academic
communities [3], [4].

As benchmark programs for microprocessor architectures,
NoC traffic patterns are essential tools for NoC performance
evaluations and architecture explorations. Several works stud-
ied the properties of on-chip traffic and proposed various
traffic models to capture their patterns. Grecu et al. provides
an overview of the requirements for NoC benchmarks [5].
Varatkar et al. investigated the self-similarity property ex-
hibited in burst traffic among on-chip functional units for
MPEG-2 video applications [6]. Soteriou et al. proposed a
3-tuple traffic model to empirically capture on-chip traffic
characteristics [7]. Bahn et al. presented a generic traffic model
to describe on-chip traffic properties, including burstiness,
injection rate, and the distribution of source-to-destination

pairs [8]. Many NoC simulation environments currently pro-
vide traffic models to generate random traffic patterns for NoC
studies [9], [10], [11], [12]. They often have the capabilities
to accept new traffic models and even realistic traffic patterns.

While realistic traffic patterns are based on the behaviors
of real applications, random traffic patterns use probabil-
ity distributions to randomize on-chip communication traffic
characteristics, such as packet destinations and transmission
intervals. When configuring properly, their effects on NoC
performance and power consumption can approximate to the
long-term accumulated effects of realistic traffic patterns.
However, configuring parameters properly for random traffic
requires a comprehensive knowledge of the corresponding
realistic traffic patterns. On the other hand, realistic traffic
patterns can provide more accurate performance and power
consumption results and more detailed information to improve
NoC architectures.

In this paper, we present a realistic traffic benchmark suite,
called MCSL, and the methodology used to generate it. MCSL
benchmark suite is publicly released and can be downloaded
from [13]. It currently includes a set of realistic traffic patterns
for 8 typical MPSoC applications and covers popular NoC
architectures in various scales. MCSL captures not only the
communication behaviors in NoCs but also the temporal
dependencies among them. Each traffic pattern in MCSL
has two versions, a recorded traffic pattern and a statistical
traffic pattern. The former provides detailed communication
traces for comprehensive NoC studies, while the latter helps
to accelerate NoC explorations at the cost of accuracy. We
developed a systematic traffic generation methodology to cre-
ate MCSL based on real applications. The methodology uses
formal computational models to capture both communication
and computation requirements of applications. It optimizes
application mapping and scheduling to faithfully maximize
overall system performance and utilization before extracting
realistic traffic patterns through cycle-accurate simulations.
Experiment results show that MCSL benchmark suite can
be used to study NoC characteristics more accurately than
traditional random traffic patterns.

This is the first time that a realistic NoC traffic benchmark
suite is systematically developed and publicly released. The
benchmark suite provides an essential tool for NoC architec-
ture explorations and evaluations. It can be easily incorporated
into existing NoC simulators and substantially improve NoC
simulation accuracy. Application mapping and scheduling on
MPSoCs are optimized in the traffic generation methodology
to accurately reflect the true communication behaviors in

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.49

66

practical MPSoC designs. The performance of the traffic
patterns are extensively evaluated and analyzed through cycle-
accurate simulations and compared with traditional traffics.

The rest of the paper is organized as follows. Section II
discusses the traffic generation methodology for MCSL bench-
mark suite in detail. Performance evaluation and analysis is
conducted in Section III. Section IV concludes this work.

II. TRAFFIC MODELING METHODOLOGY

An overview of the traffic generation methodology for real
applications is showed in Fig. 1. The generation process starts
with an application model and an architecture model. Traffic
patterns are generated through five steps including application
mapping, application scheduling, performance evaluation on
application mapping and scheduling results, cycle-accurate
simulation, and statistical traffic generation. Two types of traf-
fic patterns will be obtained including recorded traffic patterns
and statistical traffic patterns. The generation steps interact
with each other closely. An unsatisfied performance at the
evaluation step can cause iterative rollbacks to previous steps
for better application mapping and scheduling decisions, until
the performance requirement is fulfilled. Application mapping
and scheduling steps are closely collaborated with each other.
They are essential for the methodology since application
mapping and scheduling decisions substantially affect the final
traffic patterns. Optimized mapping and scheduling decisions
can take full advantages of the parallel hardware resources
in MPSoCs and improve overall resource utilization. We will
discuss each component of the methodology in detail in the
following subsections.

Application
model

Architecture
model

Recorded
traffic pattern

Application
mapping

Application
scheduling

Performance
Evaluation

Cycle-
accurate

simulation

Statistical
traffic

generation

Statistical
traffic pattern

Fig. 1. An overview of the traffic generation methodology.

A. Application model
We use the task communication graph model as the input

of the traffic generation methodology to faithfully capture
the computation and communication requirements of real
applications. A task communication graph is a directed graph
Gt = (V,E), where V is the set of computation tasks, and E is
the set of communication channels between tasks. A task v has
a normalized execution time t. A directed edge e = (vs, vd, w)
has a source task vs, a destination task vd and the amount of

data w that sends from vs to vd. Figure 2 shows a part of the
task communication graph for the H.264 decoder.

… A

E

B G

J

P

S

F K

M

N

…

…
 …

C H Q

D I R

L

O
…

WAB

WAC

WAD

WAE

WDF

WCF

WEF

WBF

WEJ

WDI

WFK

WCH

WBG WGP

WHQ

WIR

WJS

WOS

WKO

WKN

WNR

WKL

WKM

WMQ

WLP

Fig. 2. Part of H.264 decoder’s task communication graph.
Different schedules for a task communication graph have

different performance when they are implemented on multi-
processor systems with tasks allocated to respective processing
blocks for execution. Therefore, it is necessary to optimize
the decisions of task mapping and scheduling on different
hardware resources. This makes the generated traffic model
more realistic and useful for practical implementations.

B. Architecture model
An architecture model captures the hardware resources in

an MPSoC and includes processing blocks (PBs) and NoC.
MPSoCs can have homogeneous as well as heterogeneous
cores and use different NoCs. For the benchmark suite, we
target regular NoC topologies, such as mesh, torus and fattree.
MPSoC architectures with three different regular-topology
NoCs are illustrated in Fig. 3. The selection tries to cover
the most popular NoC architectures first and will be expanded
in the future.

We define an architecture model as a graph Gp = (P,N),
where P is a set of heterogeneous PBs, and N is an on-chip
communication architecture organized in a NoC paradigm. A
PB p has an attribute, acceleration factor a, for tasks executed
on it, and the actual execution time of the task on this PB
is determined both by its normalized execution time and the
acceleration factor of the PB. Specifically, the running time is
the multiplication of the two values.

C. Application mapping and scheduling
The traffic generation methodology uses a centralized

scheduling strategy to manage the entire chip resources and co-
ordinate PBs. In this way, the scheduling and control decisions
made are globally optimized for the whole system. Formally,
given an application model Gt(V,E), and an architecture
model Gp(P,N), the application mapping and scheduling
problem is to find a mapping M : V → P for each task in V

to a PB in P , as well as a static order schedule S : V → N

for the set of tasks assigned to the same PB, where each
task is assigned a unique number indicating its sequence of
execution, such that the application performance is optimized.
In static order scheduling, tasks assigned to the same PB
execute following a pre-defined sequence strictly. It is proved
to be more effective for multiprocessor systems [14].

67

Router

Processing
Block

Network
Interface

N

Interconnection

P N

R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

P

N
R

R R R RR R R R

R R R R

R R R R

R R R R

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

P
N

R R R R

R R R R

R R R R

(a) 4*4 Mesh (b) 4*4 Torus (c) Fat tree

Fig. 3. 16-core MPSoCs with three different regular-topology NoCs.

TABLE I
DEFINITION OF THE SYMBOLS USED IN APPLICATION MAPPING AND

SCHEDULING.

w(v, p) The weight of mapping task v to PB p

t(v, p) The required time for task v to finish on PB p

f(p) the time for executing previously assigned tasks on PB p

n(v, p) The total amount of network transmission generated by task
v when it is assigned to PB p

k(v, u) The number of packets that task v generates to edge (v, u)

m(v) The mapping of task v

l(p, q) The distance between PB p and q (predicted according to
routing policies on different NoC topologies)

We develop a sophisticated load balanced mapping and
static order scheduling approach for this problem. The basic
idea is to distribute processing and network transmission
workloads evenly and achieve high utilization to the hardware
resources. The mapping strategy is to assign application tasks
to PBs one by one in the order defined by the dependency
relationships in the graph, and the schedule on each PB is
determined by invoking the tasks mapped to the PB according
to the dependency relations. The objective is to minimize
the end-to-end delay of the application’s execution with the
consideration of network communication overhead. For a task
v ∈ V , the weight of mapping it to a PB p ∈ P is calculated
by the following cost function:

w(v, p) = c1t(v, p) + qc2n(v, p), (1)

in which t(v, p) is the required time for task v to finish
execution on p, defined by the time for executing previously
assigned tasks on p plus the execution time of v on p, and
n(v, p) is the total amount of network transmission, defined
by the number of packets generated by v and sent to other
PBs (Table I lists the definitions of the symbols):

t(v, p) = f(p) + t(v) ∗ a(p), (2)

n(v, p) =
∑

(v,u)∈E

k(v, u)× l(p,m(u)), (3)

where c1, c2 are the user-specified constant factors to tradeoff
between the two concerns, and q is an architecture-specific
scaling factor which balances the two terms in different units
of measurement. For example, setting c1 = 1, c2 = 0 will
obtain the mapping result that balances the PBs’ workload
only, and setting c1 = 2, c2 = 1 will balance PBs’ workload
as well as network traffic with bias towards PBs’ workload.

For performance evaluations in Section III, we set both factors
c1 and c2 to 1, meaning that task execution and network
transmission are considered to be of the same importance to
the system performance. Factor q is set to 3 for the minimum
number of clock cycles a packet used to cross a router.

Algorithm 1 The load balanced mapping and static order
scheduling algorithm
Require: application model Gt(V,E), architecture model Gp(P,N)

1: time = 0
2: while there is unscheduled task in Gt do
3: readyQueue = UpdateReadyQueue(Gt)
4: for each task v in readyQueue do
5: minWeight = ∞

6: for each PB p ∈ P do
7: if w(v, p) < minWeight then
8: selectedProc = p
9: minWeight = w(v, p)

10: end if
11: end for
12: m(v) = selectedProc
13: s(v, selectedProc) = GetOrder(selectedProc)
14: procAvailT imes = GetEarliestAvailableTimes(P)
15: end for
16: time = TimeAdvance(procAvailT imes)
17: end while
18: return mapping M , schedules S

The overall mapping and scheduling algorithm is shown in
Alg. 1. The algorithm finds mapping and scheduling for each
task until the application is finished (Lines 2–17). A ready
queue is used to contain the tasks who get ready to execute
(Line 3). In Lines 4–15, the tasks in the ready queue are all
mapped to some PBs and scheduled in sequence. In Line 6–
12, a task is measured by Eq. 1 and assigned to a PB with
the minimum cost. After obtaining the mapping decision, Line
13 assigns a scheduling sequence number to the task. m(v)
and s(v, p) are the mapping and scheduling result of task v,
and both results are stored in the sets M and S for algorithm
output. Each entry of the vector procAvailT imes keeps the
earliest available time of a PB, i.e., the earliest time instant that
all the tasks already assigned to the PB are finished, and is used
to compute the term f(p) in Equation 2. In Line 16, a global
variable time is used to indicate the current time instant and
is always advanced to the earliest future time with at least one
available PB, i.e., the time to make new decisions. Relevant
task executions and data transmissions are also conducted.
When all the tasks are scheduled, we obtain a feasible mapping

68

and scheduling decision as well as its estimated performance.

D. Statistical traffic pattern generation
With all the results as described in the previous subsections,

we can synthesize statistical traffic patterns for applications,
and provide statistical distributions of task executions and
packet transmissions on NoC-based MPSoCs. A statistical
traffic pattern is given by Ts = {Vs(p) | p ∈ P},
where Vs(p) represents the statistical behaviors of the set of
tasks scheduled and executed on PB p. The task set Vs =
{(s(v), Dt(v), IS(v), OS(v)) | v ∈ V }, where the schedule
of task v is given by a unique sequence number s(v) ≥ 0, and
the execution time of the task in different instances follow the
Gaussian distribution with mean μe and standard deviation σe,
Dt(v) = (μt(v), σt(v)), μt(v) ≥ 0, σt(v) ≥ 0. Suppose task v

is executed on p for l times. Let the execution time of the j-th
(j ∈ [1, l]) execution be tj . The mean and standard deviation
for the Gaussian distribution of v’s execution can be computed
as follows:

μt(v) =
1

l

l∑

j=1

tj , σ2
t (v) =

1

l

l∑

j=1

(tj − μt(v))
2 (4)

The execution condition of task v is given by its in-
put set of information IS(v) = {(vi(e), ni(e),mi(e)) |
e ∈ Ei(v), vi(e) ∈ V }, where Ei(v) ⊆ E is the set
of incoming edges of v, the data on every incoming edge
ni(e) must be ready for v, and the data are obtained from
the corresponding predecessor task vi(e) and read from the
memory space started at mi(e). The result of the task exe-
cution is given by the output set of information OS(v) =
{(vo(e), po(e),mo(e), Dd(e), Di(e)) | e ∈ Eo(v), vo(e) ∈
V, po(e) ∈ P}, where Eo(v) ⊆ E is the set of outgoing
edges of v, and that is to generate some amount of data to
each edge e ∈ Eo(v), the destination is the successor task
vo(e) on PB po(e), and the data are written to the memory
space started at mo(e), respectively. The data size generated
on an edge can be described by the Gaussian distribution
Dd(e) = (μd(e), σd(e)), μd(e) ≥ 0, σd(e) ≥ 0. Suppose the
data sizes generated on edge e in the l times of v’s executions
are d1 . . . dl, respectively. The data size generated on each
outgoing edge of task v can be calculated as follows:

μd(e) =
1

l

l∑

j=1

dj , σ2
d(e) =

1

l

l∑

j=1

(dj − μd(e))
2 (5)

If a successor task vo is on the same PB with v, i.e., po = p,
the data generated by v will be stored in the local memory and
can be used directly by vo. Otherwise, if the successor task
vo is on a different PB, i.e., po �= p, the output data will
be assembled into packets and sent to the target PB via the
on-chip communication network. These packets are generated
during the execution of the task. Our benchmark is compatible
with any packet definition. As an example, we assume a fixed
packet size is used. Thus, a number of packets are needed
to assemble the data. The packet generation interval, which
is the relative distance between two consecutive generated

packets, follows the negative exponential distribution with rate
parameter λi(e), Di(e), λi(e) ≥ 0, for v’s executions. Suppose
the fixed packet size is z. The rate parameter for the negative
exponential distribution of the packet generation intervals can
be computed as follows:

λi(e) =
μd(e)

z · μt(v)
(6)

The defined traffic pattern describes the statistical behaviors
of the application running on the platform. We specify the
deterministic task dependency relations in the generated traffic
by the input and output sets IS(v) and OS(v), and include the
task mapping and scheduling results. Three key components,
the task execution times, the sizes of the data produced by
the tasks and the relative time intervals that these data are
assembled into packets, are described by statistical formula-
tions. The generated pattern is useful for benchmarking NoCs
with similar topologies, and other NoC metrics can be flexibly
chosen.

E. Recorded traffic pattern generation

Besides statistical traffic patterns discussed in Section II-D,
the methodology also generates recorded traffic patterns with
detailed communication traces. A recorded traffic pattern is
generated during cycle-accurate simulations for an applica-
tion model on a NoC simulation platform with the mapping
and scheduling result. It contains more accurate computation
and communication traces, where all the task execution and
packet generation events are recorded. The recorded traffic
patterns are reusable on NoCs with different configurations
but the same topology. Since the exact packet delays among
processors are related with specific NoC configurations, the
recorded traffic patterns keep the packet dependencies instead
of exact timings. When the traffic patterns are applied to a
different NoC configuration, all the temporal relations can be
reconstructed correctly.

A recorded traffic pattern is given by Tr = {Vr(p) |
p ∈ P}, where Vr(p) represents the recorded behaviors of
the set of tasks scheduled and executed on PB p. The tasks
Vr = {(s(v), t(v), IS(v), OS(v)) | v ∈ V }, where task
v has execution time t, and the unique sequence number
for scheduling it on p is s(v). The execution condition of
task v is given by its input set of information IS(v) =
{(vi(e), ni(e),mi(e)) | e ∈ Ei(v), vi(e) ∈ V }, where
Ei(v) ⊆ E is the set of incoming edges of v, the data on
every incoming edge ni(e) must be ready for v, and the data
are obtained from the corresponding predecessor task vi(e)
and read from the memory space started at mi(e). The result
of the task execution is given by the output set of information
OS(v) = {(vo(e), po(e),mo(e), do(e)) | e ∈ Eo(v), vo(e) ∈
V, po(e) ∈ P}, where Eo(v) ⊆ E is the set of outgoing
edges of v, and that is to generate data of size do(e) to edge
e ∈ Eo(v), the destination is the successor task vo(e) on PB
po(e), and the data are written to the memory space started
at mo(e), respectively. The data size do(e) determines the
number of packets that may be delivered through the network.

69

16 32 64
0.8

1

1.2

1.4

1.6

1.8

2

Number of PUs

N
or

m
al

iz
ed

 th
ro

ug
hp

ut STAT
REC
UNI

(a) Mesh

16 32 64
0.8

1

1.2

1.4

1.6

1.8

2

Number of PUs

N
or

m
al

iz
ed

 th
ro

ug
hp

ut STAT
REC
UNI

(b) Torus

16 32 64
0.8

1

1.2

1.4

1.6

1.8

2

Number of PUs

N
or

m
al

iz
ed

 th
ro

ug
hp

ut STAT
REC
UNI

(c) Fattree

16 32 64
0.8

1

1.2

1.4

1.6

1.8

2

Number of PUs

N
or

m
al

iz
ed

 th
ro

ug
hp

ut STAT
REC
UNI

(d) Average

Fig. 4. Normalized throughput under different traffic patterns on mesh/torus/fattree-based 16-core, 32-core and 64-core MPSoCs.

16 32 64
0

0.5

1

1.5

2

2.5

3

Number of PUs

N
or

m
al

iz
ed

 p
ac

ke
t d

el
ay STAT

REC
UNI

(a) Mesh

16 32 64
0

0.5

1

1.5

2

2.5

3

Number of PUs

N
or

m
al

iz
ed

 p
ac

ke
t d

el
ay STAT

REC
UNI

(b) Torus

16 32 64
0

0.5

1

1.5

2

2.5

3

Number of PUs

N
or

m
al

iz
ed

 p
ac

ke
t d

el
ay STAT

REC
UNI

(c) Fattree

16 32 64
0

0.5

1

1.5

2

2.5

3

Number of PUs

N
or

m
al

iz
ed

 p
ac

ke
t d

el
ay STAT

REC
UNI

(d) Average

Fig. 5. Normalized end-to-end packet delay under different traffic patterns on mesh/torus/fattree-based 16-core, 32-core and 64-core MPSoCs.

16 32 64
0.9

1

1.1

1.2

1.3

Number of PUs

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

STAT
REC

(a) Mesh

16 32 64
0.9

1

1.1

1.2

1.3

Number of PUs

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

STAT
REC

(b) Torus

16 32 64
0.9

1

1.1

1.2

1.3

Number of PUs

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

STAT
REC

(c) Fattree

16 32 64
0.9

1

1.1

1.2

1.3

Number of PUs

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

STAT
REC

(d) Average

Fig. 6. Normalized application performance under different traffic patterns on mesh/torus/fattree-based 16-core, 32-core and 64-core MPSoCs.

Since the exact timing between task executions and com-
munications is dependent on the simulation platform and can
be affected by the topology, routing algorithm, etc., using
it in new simulations with different setting will result in
inaccuracy and make the result unrealistic. The recorded
traffic pattern eliminates such temporal relations, while keeps
the data dependencies among tasks in it, which is always
true though the hardware environment changes. The timing
will be generated according to the real dependencies in the
applications and is guaranteed to be the correct semantics.
This enhances the reusability of our traffic suite. NoC designs
with similar topology to the given traffic pattern can use it to
evaluate the performance of their platform.

III. PERFORMANCE EVALUATION AND ANALYSIS

We conduct extensive performance evaluations to verify
the effectiveness of the proposed traffic generation method-
ology, and compare the NoC performance evaluation results
based on MCSL benchmark suite with the traditional uniform
traffic patterns. We develop a NoC simulation platform us-
ing SystemC for cycle-accurate simulations. We derive the
application models from the real applications presented in
[15], [16] for the traffic generation methodology, and list
their details in Table II. Each application is mapped to mesh-
based, torus-based, and fattree-based NoCs on homogenous
MPSoCs with 16, 32, and 64 PBs (in 4*4, 4*8 and 8*8

for mesh and torus). Using MCSL and traditional uniform
traffic patterns, we compare two important aspects of NoCs
including network throughput and end-to-end packet delay
under different topologies and network sizes. The injection
rates of the uniform traffic patterns are set as the averages of
the corresponding recorded traffic patterns to mimic the real
conditions. In addition, MCSL can also be used to evaluate
the overall applications performance in terms of application
completion speed. Each application is run in pipeline for 10
iterations, and the average of all application in MCSL is used
as the result for a particular network topology and size. In all
the simulations, we use a fixed packet size of 8 flits and 32
bits per flit.

TABLE II
THE REALISTIC APPLICATIONS USED FOR PERFORMANCE EVALUATION.

App. Description No. tasks
SAMPLE Sample rate converter 612

H263E H.263 encoder 201
H264DH H.264 decoder with high resolution 6343
H264DL H.264 decoder with low resolution 403
ROBOT Robot control 88
FPPPP SPEC fpppp 334

SATELL Satellite receiver 4515
SPARSE Sparse matrix solver 96

Figures 4–6 show the respective NoC performance results

70

based on the statistical and recorded traffic patterns of the
realistic applications in the MCSL benchmark suite (marked
by STAT and REC), and those results for the uniform traffic
patterns (marked by UNI). The network throughput, packet de-
lay and application’s performance values based on the recorded
traffic on the 16-core mesh-based NoCs are normalized to 1,
and other results are given by relative values to these baselines.
The average results in all the last subfigures are normalized
to the 16-core recorded results.

There are several observations from the performance eval-
uation results. First, the MCSL benchmark suite shows sig-
nificantly different NoC performance results comparing to the
uniform traffic patterns. Since the injection rates of the uniform
traffic patterns are set to the averages of the corresponding
recorded traffic patterns to mimic the real conditions, their
network throughput on the same platform should be close,
as the result in Figure 4 shows on average 1.1% difference.
Though the network workload is similar, the end-to-end packet
delay shows significant difference, as shown in Figure 5.
Compared to the uniform traffic, the realistic traffic patterns
show on average 87.3% difference on the three NoCs. The
difference is even larger in particular applications. A main
reason for the huge difference is that the real traffic of an
application often has local concentrations at a certain time
and the concentrations move along time in the network,
while uniform traffic patterns generate equally distributed
traffic across the network. In comparison, the traffic patterns
generated from real applications in the MCSL benchmark suite
describe the real situations more accurately than the uniform
traffic patterns, and thus will be more effective for evaluating
NoC performances to obtain realistic results and conclusions.

Second, the network and applications’ performances be-
tween the statistical and recorded traffic patterns are consistent
in the experimental results. The overall throughput difference
is 1.9%, and the average difference on packet delay is 5.5%.
Figure 6 also shows that the performance of the applications in
terms of running time only has an average of 2.1% difference
for the two traffic patterns. The maximum difference in par-
ticular applications is 16.8%. Recorded traffic patterns offer
sections of realistic NoC communications during application
executions. They can be used to study detailed NoC behaviors
in a short simulation time. Statistical traffic patterns include the
runtime uncertainties in NoC communications. Although, they
are not as accurate as the recorded traffic patterns for specific
periods of application executions, statistical traffic patterns are
useful to explore overall NoC characteristics through long-time
simulations.

IV. CONCLUSION

For the first time, a realistic NoC traffic benchmark suite
is systematically developed based on real applications and
publicly released. The benchmark suite provides an essential
tool for NoC studies. It captures not only the communica-
tion behaviors in NoCs but also the temporal dependencies
among them. It can be easily incorporated into existing NoC
simulators to substantially improve NoC simulation accuracy.

MCSL provides two types of traffic patterns, recorded traffic
patterns and statistical traffic patterns. The former offer de-
tailed communication traces for comprehensive NoC studies,
while the latter help to accelerate NoC explorations at the
cost of accuracy. The traffic generation methodology creating
MCSL uses the formal task communication graph model to
capture both communication and computation requirements of
applications. Application mapping and scheduling on MPSoCs
are optimized by the methodology to truthfully reflect the com-
munication behaviors in practical MPSoC designs. Possible
future extensions include deploying the flexibility to support
more architectural choices like topology and allow different
mapping and scheduling strategies.

ACKNOWLEDGEMENT

This work is supported by RGC, Hong Kong SAR.

REFERENCES

[1] W. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” Design Automation Conference, 2001. Proceedings,
pp. 684–689, 2001.

[2] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “H. 264 hdtv decoder
using application-specific networks-on-chip,” in Multimedia and Expo,
2005. ICME 2005. IEEE International Conference on, july 2005, pp.
1508 –1511.

[3] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Comput. Surv., vol. 38, no. 1, p. 1, 2006.

[4] STMicroelectronics, “Stmicroelectronics unveils innovative network-on-
chip technology for new system-on-chip interconnect paradigm,” 2005.

[5] C. Grecu, A. Ivanov, P. Pande, A. Jantsch, E. Salminen, and R. Mar-
culescu, “An initiative towards open network-on-chip benchmarks,” in
OCI-IP White Paper, 2007.

[6] G. Varatkar and R. Marculescu, “On-chip traffic modeling and synthesis
for mpeg-2 video applications,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 12, no. 1, pp. 108 – 119, 2004.

[7] V. Soteriou, H. Wang, and L. Peh, “A statistical traffic model for on-
chip interconnection networks,” in Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2006. MASCOTS 2006.
14th IEEE International Symposium on, 2006, pp. 104 – 116.

[8] J. H. Bahn and N. Bagherzadeh, “A generic traffic model for on-chip
interconnection networks,” in NoCArc, First International Workshop on
Network on Chip Architectures, 2008.

[9] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Islam, and M. Akbar,
“Gpnocsim - a general purpose simulator for network-on-chip,” in Infor-
mation and Communication Technology, 2007. ICICT ’07. International
Conference on, mar. 2007, pp. 254 –257.

[10] J. Xi and P. Zhong, “A system-level network-on-chip simulation frame-
work integrated with low-level analytical models,” in Computer Design,
2006. ICCD 2006. International Conference on, oct. 2006, pp. 383 –388.

[11] C. Grecu, A. Ivanov, R. Saleh, C. Rusu, L. Anghel, P. Pande, and
V. Nuca, “A flexible network-on-chip simulator for early design space
exploration,” in Microsystems and Nanoelectronics Research Confer-
ence, 2008. MNRC 2008. 1st, oct. 2008, pp. 33 –36.

[12] P. Wolkotte, P. Holzenspies, and G. Smit, “Fast, accurate and detailed
noc simulations,” in Networks-on-Chip, 2007. NOCS 2007. First Inter-
national Symposium on, may. 2007, pp. 323 –332.

[13] www.ece.ust.hk/∼eexu.
[14] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo graph

theory for task mapping and scheduling on multiprocessor systems,”
IEEE Transactions on Parallel and Distributed Systems, 2010.

[15] H. J. S. Kwon and S. Ha, “H.264 decoder algorithm specification
and simulation in simulink and peace,” in International SoC Design
Conference, pages 9-12, 2004.

[16] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms,” Journal of Scheduling, vol. 5,
no. 5, pp. 379–394, 2002.

71

