
A Methodology for Design, Modeling, and Analysis of Networks-on-Chip

Jiang Xu, Wayne Wolf
EE, Princeton University

{jiangxu, wolf}@princeton.edu

Joerg Henkel
CS, University of Karlsruhe

henkel@informatik.uni-karlsruhe.de

Srimat Chakradhar
NEC Laboratories America, Inc.

chak@nec-labs.com

Abstract --- In this paper, we present an architecture-level methodology
for modeling, analysis, and design of networks-on-chip (NoC), and we
tested it through two NoC designs. Our methodology 1) can be used to
design both regular-topology NoC and application-specific NoC, 2) uses
real communication traces to guide design and performance analysis, 3)
is based on circuit-level models and floorplan to estimate power and
area, and 4) uses widely available tools, OPNET, Design Compiler, and
SPICE, which make the methodology ready to use. The methodology
can quickly and accurately estimate the performance, power, and area
of a NoC at architecture level, and it can efficiently model different
types of NoCs. The methodology can be easily incorporated into a
traditional design flow. Using this methodology, we designed a bus-
based NoC and a crossbar-based NoC for a high-performance
embedded video SoC design in a 0.13um technology. We analyzed their
performance, power, and area in detail. We find that the crossbar-based
NoC not only has 62.5% higher performance but also consumes 82%
less power compared to the bus-based NoC. The crossbar-based NoC
uses 88% less silicon area and 123% more metal area than the bus-
based NoC. This methodology also helped to refine the crossbar-based
NoC design and save additional 57% power. Our study shows that
interconnections dominate power and area in NoC designs, and only
comparing the logic circuits of NoCs will give wrong conclusions.

I. INTRODUCTION
As an effective way to reduce cost, improve reliability, and

produce versatile products, system-on-chip (SoC) design not only
implements function units, but also emphasizes cooperation among
function units to improve performance and reduce cost. On-chip
communication subsystem decides how effective the cooperation is,
and it gradually grows from ad-hoc interconnections into
sophisticated networks-on-chip (NoC). NoC was introduced by
several researchers [1] [5] [6] [7]. Many on-chip communication
architectures were developed based on buses, for example, AMBA from
ARM [9], CoreConnect from IBM [13], MicroNetwork from Sonics
[10], and Wishbone from Silicore [20]. Other on-chip
communication architectures were inspired by multi-computer
networks and telecommunication networks [12] [15] [23] [24] [25].

Several NoC design methodologies were introduced in previous
work. Kumar presented a design methodology specifically for a 2-D
mesh type of NoC [3]. Siegmund presented a methodology to model
and synthesize NoCs for SystemC designs [11]. Jalabert proposed a
tool to instantiate NoCs based on user-defined topologies [4].
Goossens proposed a methodology to provide both guaranteed and
best-effort services in NoC [2]. These methodologies are confined to
either specific NoC topologies or customized NoC technologies and
components. Power and area are considered in the NoC
methodologies, but not accurate. A methodology, which can
efficiently design any types of NoCs and give accurate performance,
power, and area results, can help designers to choose different NoCs
for different applications.

In this paper, we propose a general architecture-level methodology
for modeling, analysis, design of networks-on-chip (NoC). Compared
to previous work, our methodology can be used to design any types
of NoCs. It helps to efficiently design a NoC and accurately analyze
all three import characters, performance, power, and area (both the
metal area and silicon area). Our methodology can be easily
incorporated into the traditional design flow. It adapts OPNET [19]

and uses Design Compiler and SPICE. We tested the methodology by
two NoC designs, a bus-based NoC and a crossbar-based NoC, which
were designed for a high-performance embedded video system-on-chip.

The next section gives an overview of the methodology.
Corresponding steps in the methodology are described in detail and
illustrated in sections III through X. Section XI shows the time spent on
each step and draws the conclusions about our methodology.

II. NOC DESIGN METHODOLOGY
In this section, we give an overview of the methodology, and more

details will be illustrated by examples in the following sections. Our
methodology starts with the computation architecture design (figure 1).
Computation architecture describes the behaviors of the designed
system and the computation units used to implement the system
functions. One method of computation architecture design is using two
models---behavior model and computation architecture model. The
behavior model is partitioned and mapped to the computation
architecture model.

power & area analysis

computation architecture design

communication modeling & analysis

performance analysis

networks-on-chip architecture design

floorplan estimation

NoC logic & circuit design

topology & protocol design

Fig. 1. A methodology for NoC

NoC architecture design follows the computation architecture
design, which partitions a behavior model and maps it onto an
computation architecture model. The first step is communication
modeling and analysis. Communication patterns can be gotten from
communication traces in the computation architecture simulation, and it
shows the communication requirements, which are the key of NoC
design. Communication analysis extracts the communication patterns of
the application and computation architecture. The pattern includes
communication types, information sizes, and communication
frequencies among all the computation units. Communication pattern
information is used to direct the design of protocol and topology.

The second step is topology and protocol design based on the
communication requirements. The aim of this step is to use the least
network resource to fulfill the communication requirements showed by
the communication pattern. A matured telecommunication system
design and simulation environment, OPNET [19], is adapted for this
step.

To estimate the delay on each interconnection in term of clock
cycles and analyze power and area of a NoC design, the chip floorplan
should be estimated in the third step to get some design requirements for
interconnections. In NoC design, instead of logic circuits,
interconnections dominate power consumption and area.

The fourth step, performance analysis, simulates the NoC
architecture with the communication traces from the computation
architecture in OPNET. The performance results help to compare

17780-7803-8834-8/05/$20.00 ©2005 IEEE.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 19, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

different design choices and refine the designs. The minimum system
frequency will be gotten from the performance. If no design meets the
performance requirements or has too small performance margin, we
have to go back to previous steps.

In the fifth step, logic design can help increase the accuracy of
power and area analysis, but the interconnection design is the centre of
the analysis. We use Design Compiler [22] to synthesize logic circuits
and use Cadence SPICE [21] as the interconnection design and
simulation environment. It is also possible to automate the
interconnection design by building an interconnection library, which
simplifies both the design task to look up a table and the floorplan
estimation.

The last step is power and area analysis. Worst-case power to
transmit 1-bit information is measured for each interconnection using
SPICE. Worst-case power of logic circuit is estimated based on the
number of transistors. OPNET records all the activity of NoC. By
summing the power of each activity, we get the worst-case power of the
NoC. Silicon and metal area usages are gotten by adding up all the
design parts. If the power or the area do not meet the requirements, we
will go back to choose different circuits or redesign the floorplan. In the
worst case, we have to redesign the topology and protocol.

To test our methodology, we designed two NoCs for a high-
performance embedded video system-on-chip (SoC). The following
sections illustrate each step of the methodology.

III. COMPUTATION ARCHITECTURE DESIGN
Computation architecture describes the behaviors of the designed

system and the computation units used to implement the system
functions. The computation architecture design defines the requirements
with which the communication architecture would comply. One method
of computation architecture design is using two models---behavior
model and computation architecture model--and partitioning and
mapping the behavior model to the computation architecture model
(figure 2a).

a)

behavior model architecture model

mapping

b)

processor
0

processor
5

processor
4

processor
1

processor
2

processor
3

input
agent

processor
6

m em ory data

output
agent

reg ion contour e llipse m atch H M Mvideo
input ou tpu t

behavio r
m ode l

com puta tion
arch itectu re

m ode l

contro l

Fig. 2. Computation architecture design, a) method, b) example
The Smart Camera system [8] is an embedded video processing

application that can process 150 frames per second. To deliver such a
high performance a dual-pipeline computation architecture is designed
(Figure 2b). Each video frame will go through 5 processing stages,
which are region, contour, ellipse, match, and HMM. Processors P0, P2,
P4, and P1, P3, P5 form the two pipelines, and processor P6 works for
both pipelines. Based on the workload, processor P0 handles region, P2
handles contour, P4 handles both ellipse and match, and P6 handles
HMM for the both pipelines. Since the Smart Camera system will be put
into a compact space along with other parts, low power consumption
will help to reduce the heat-related cost, and smaller chip area can
reduce the manufacture cost.

IV. COMMUNICATION MODELING AND ANALYSIS
Communication trace (figure 3a) recorded from computation

architecture simulation is a good source for communication analysis.
Each computation unit has its own trace. A trace has entries to record
network accesses. An entry includes access interval (between current
and the last access) in term of number of clock cycle, source,
destination, operation type, address, data size, and other special
information related to a particular computation unit. Those traces give
the communication pattern for a specific application and will help to
design a suitable NoC in the next step.

Traces are also used in performance analysis, where they control the
communication behaviors of corresponding computation units. To
accelerate the design and simulation, statistical traces can be generated
from either the recorded trace or the behavior model (figure 3b). In our
designs, we used Poisson distributions. Compared to using recorded
traces, we got a 2~3X speedup in performance analysis and about ±5%
inaccuracy.

a) b)

recorded traces

trace modeling

statistical traces

behavior model

Fig. 3. a) Recorded communication trace, b) Trace modeling

V. TOPOLOGY AND PROTOCOL DESIGN
We suggest using the method in figure 4 to design topology and

protocol. From the communication trace, requirements for a NoC can be
derived. Some requirements can be fulfilled directly: the connectivity
among computation units, the maximum bandwidth, and shortest delay.
Other requirements can only be found out by simulation, for example
the average bandwidth, average delay, and maximum delay. However a
well established protocol tends to give more insides even before running
simulations. This approach also helps us reuse NoC components.

communicaiton requirements

OPNET

topology and protocol

protocol
candidates

communicaiton trace

Fig. 4. Topology and protocol design method

OPNET is used as the design environment in this step, and it is also
used as the NoC simulator in performance analysis. OPNET can model
many common phenomena in communication systems. It is also a
packet-based simulator, and this feature is particularly useful for most
NoC designs. OPNET also has some disadvantages, and some
adaptations are required to use OPNET for NoCs. First, it is developed
for simulating telecommunication systems and some on-chip features
are not well supported. For example, the smallest time unit is the second,
where on-chip communication architectures need nanosecond or even
picosecond, and the smallest distance unit is meter instead of
micrometer. Second, OPNET assumes asynchronous communication, so
for a synchronous system, designers have to explicitly design a clock
scheme and a distribution network. We made the following adaptations
in OPNET. In link models, 1) disable the propagation delay pipeline
stage and 2) disable the error model. In transmitter and receiver models,
set data rate high enough to eliminate the effects of transmission delay.
(We set data rate to 106 bps, which introduces 1 µs transmission delay.)
In all node models, state transitions should be on clock edges. For the
clock, 1) use one second to represent one clock cycle and 2) build a
clock bus to synchronize the system. We’ve shown some of these
changes in a previous work [14].

We chose to design a bus-based NoC and a crossbar-based NoC for
the Smart Camera system. In the bus-based system, a bus connects all
nodes. A node may be a processor, the input agent, the output agent, or
the on-chip memory. The arbiter decides who can use the bus based on a
priority list and the status of its neighbor processing stages and of its
own. If the previous stage finishes a frame and there is enough space to
store the result in its own share of memory, a processor can process the
finished frame from previous stage. In crossbar-based system, packet
switching is used. The crossbar and a control unit form a switch. The
control unit schedules arriving packets to be sent and resolves the
competing requests for the same port. The scheduling is based on the
node priorities and their status. Packets are used to transfer data and
other information among nodes. There are 4 types of packets, read
packet, write packet, read response packet, and switch response packet.

1779
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 19, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

VI. FLOORPLAN ESTIMATION
We estimate the floorplan to get the length of each interconnection.

The length can decide the delay on the interconnection in term of clock
cycles. In NoC design, instead of logic circuits, interconnections
dominate power consumption and area. While performance of a NoC
design can be estimated at architecture level, power consumption and
area of a NoC design can not be accurately estimated without
interconnections design. Unlike logic circuits, interconnections have
simple structures and are easy to design if the requirements are known.
The requirements for interconnections include the length, the number
and positions of input drivers and output drivers, and the working
frequency. Length and position can be given based on an estimation of
the chip floorplan, where only sizes of function units and their relative
positions are needed. The IP reuse can make the estimation more
accurate.

a)

P1 P5

P4P0 P2

P3

P6
Arbiter

Input
agent

Output
agent

1.25mm 1.25mm

Memory
port

Bus

1.25mm1.25mm

 b)

P1 P5

P4P0 P2

P3

P6
Switch

Input
agent

Output
agent

1.25mm 1.25mm

Memory
port

1.25mm1.25mm

Fig. 5. Floorplans, a) bus-based system, b) crossbar-based system

We use Plasma core [18] for each processor. A Plasma core needs
about 1M transistors to implement. Approximate floorplans for the bus-
based and crossbar-based system are shown in figure 5. Instead of the
best cases, average cases are considered in this step. We use the average
length between two units, which are started and ended in the middle of
the units. The bus is about 5mm long and the arbiter is put in the centre.
The interconnections in crossbar-based system are 2.5 mm and 1.25
mm. The on-chip memory surrounds the processors and is not shown in
the figure.

VII. PERFORMANCE ANALYSIS
After topology and protocol design and floorplan estimation,

different NoC designs can be simulated in OPNET. C is used to model
the behavior of each NoC component. Communication traces will be
used to control the communication behavior of each computation node.
And the simulation results help to choose potential NoC designs or
revise a design. Simulation speed is very important for performance
analysis, which needs to simulate billions of clock cycles to get
meaningful application-level results. OPNET has a good simulation
speed.

We simulated each NoC design for 3x108 clock cycles, and the
results are shown in table 1. We define the system performance as the
number of frames being processed in a fixed time. The results show that
the crossbar-based system has 62.5% higher performance over the bus-
based NoC. Using statistical traces, the results have about ±5%
difference compared to using recorded traces. However, the simulation
has a 2~3X speedup by using statistical traces. Because the system need
to process 150 frames per second, we use the following formula to
determine the minimum system frequencies.

)(
sec)/(150103)(

8

frameframesprocessed
frameHzfrequencysystemMinimum ××

=

Table 1. Performance analysis result
 bus-based crossbar-based

processed frame in 3x108 cycles 56 91
min. system frequency (MHz) 804 495

performance improvement -- 62.5%
processed frame using statistical traces 54 95

difference 3.6% 4.4%
VIII. NOC LOGIC AND CIRCUIT DESIGN

Compared to the interconnections, NoC logic only requires very
little power and area. People can choose to only design the
interconnection circuit without the NoC logic. The behaviors of logic
circuits are defined by topology and protocol design. The behaviors
should be represented in a hardware description language and then
synthesized. We used Verilog to represent the logic circuits and

synthesized them using Design Compiler. Other languages and
synthesized tools can also be used.

Interconnection design requires a good wire model and transistor
model (figure 6). The design uses SPICE to find out the proper sizes and
number of transistors according to the requirements. Lengths are given
by the floorplan estimation, and working frequency is given by
performance analysis. Interconnection design is easily automated by
building a table of interconnections for the target technology, which
simplifies the design to table lookup. Interconnection can use different
technologies, such as low-swing, differential, and wave-pipelining [16].
Based on performance analysis, we choose 1GHz system frequency for
both the bus-based and crossbar-based system. We choose 130nm
aluminum technology, which has a 1.5v power supply. We use the
typical wire dimensions from the Berkeley Predictive Technology
Model [17]. We model a wire as a fine-grained lumped RLC network,
and consider the coupling capacitance. Since the coupling inductance
has a significant effect at 130 nm technology, mutual inductances are
considered up to the 3rd neighboring wires. Interconnections were
designed and simulated in Cadence SPICE.

interconnection requirements

SPICE

power and area of interconnection

transistor modelwire model

Fig. 6. Interconnection design method

The bus-based NoC includes the arbiter and interconnections, which
are composed by input driver chains, transmission gates, metal wires,
and output drivers. The bus interconnections use global metal layer, and
the arbiter control interconnections use intermediate metal layer. The
crossbar-based NoC has four parts, the control unit, links between the
nodes and the switch, input buffers, and the crossbar. The
interconnections in links are on the global metal layer.

IX. POWER ANALYSIS
A Power

The power of a NoC design is calculated as the following formula.
Each part of NoC is designed and simulated separated. The number of
each type of activity is recorded during OPNET performance analysis.
The power of each type of activity is measure in SPICE simulation. The
total power is the sum of power of all types of activity on all NoC parts.
Worst-case power is used for each NoC part. For logic circuits, the
worst case happens when all the transistors switch at the same time. For
interconnections, all the input patterns are simulated, and the one using
the most power is the worst case.

∑ ×=
typesactivity

JactivityperpoweractivitiesofNoJPower)(.)(

Table 2. Power of bus-based NoC
Table3. Power of crossbar-

based NoC
control unit 4.61 pJ/cycle

crossbar 0.30 pJ/bit
input buffer 0.014 pJ/bit

link (1.25mm) 0.67 pJ/bit
link (2.5mm) 1.28 pJ/bit

Tables 2 and 3 list the power for each part in the bus-based and
crossbar-based NoCs respectively. In the bus-based NoC, bus
interconnections are the most power-hungry. Considering the number of
interconnections in the bus, the arbiter uses less than 1% power of all the
bus interconnections. Arbiter control interconnections also consume
relative little power. In the crossbar-based NoC, considering the number
of interconnections, the control unit consumes less power than the
interconnections.

Table 4. Average power consumption of processing one frame
 bus-based NoC crossbar-based NoC

process one frame 334 uJ 137 uJ
overhead 43% 44%

Table 4 shows the average power consumed by the two NoCs to
process a frame. The crossbar-based NoC uses 59% less power than the

arbiter 2.76
pJ/cycle

control bus 5.79 pJ/bit
address bus 5.56 pJ/bit

data bus 5.57 pJ/bit
1.25mm arbiter control 0.35 pJ/bit
2.5mm arbiter control 0.71 pJ/bit

1780
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 19, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

bus-based NoC to process a frame. In addition to data, some overhead
information transferred by the NoCs is used to facilitate data transfer.
The overheads are about the same in both NoCs. The overhead is 43%
in the bus-based NoC and 44% in the crossbar-based NoC.
B Additional Power Saving

A detailed analysis on the power consumption helps us to save more
power. In the bus-based NoC, the position of each node only affects
power consumption on the arbiter control interconnections, which
accounts for less than 0.4% of total power consumption, and the power
consumed by the bus is not affected by the node position. However, in
the crossbar-based NoC, the node position directly affects the power
consumption. Table 5 shows the power consumption for read operation
between different node positions. The rows are request node positions,
and the columns are the target node positions. We mark the positions
from the left to right in figure 6 as 0 to 4. For example, the input agent
and processor P0 are at position 0, the processors P3 and P4 are at
position 2, and so on. Based on the table 5, we refine the floorplan as
figure 7. Since all the processors are the same, we only change the
functions of some processors and move the memory port to the centre.
The refined floorplan only needs 59uJ to process a frame, which saves
additional 57% power. And this also makes the crossbar-based NoC
uses 82% less power than the bus-based NoC. A better floorplan need to
move the switch more left, and the exact position is decided by the
communication traffic, which is affected by the Smart Camera
algorithm.

Table 5. Power consumption between different positions
position 0 1 2 3 4

0 164pJ 130 pJ 94 pJ 130 pJ 164 pJ
1 130 pJ 96 pJ 59 pJ 96 pJ 130 pJ
2 92 pJ 59 pJ 22 pJ 59 pJ 92 pJ
3 130 pJ 96 pJ 59 pJ 96 pJ 130 pJ
4 164 pJ 130 pJ 94 pJ 130 pJ 164 pJ

 Table 6. Silicon and metal area

Fig. 7. Refined floorplan
X. AREA ANALYSIS

We estimate silicon area and metal area in the bus-based NoC and
crossbar-based NoC in table 6. The silicon area is the sum of all the
logic circuit, interconnection drivers, and transmission gate. For the
crossbar-based NoC, the silicon area also includes the input buffers. The
metal area includes all the interconnections, except the interconnections
in logic circuits. The crossbar-based NoC uses only 12.5% the silicon
area of the bus-based NoC. Logic circuits only account for 0.7% of the
silicon area in the bus-based NoC and 12% of the silicon area in the
crossbar-based NoC. The crossbar-based NoC use 123% more metal
area than the bus-based NoC. Since our crossbar design is not compact,
the crossbar-based NoC could use less metal area.

XI. RESULTS AND COMPARISON
Table 7. Approximated times spent on each step (person*day)

 bus-based crossbar-based
comm. modeling & analysis 7
topology & protocol design 3 8

floorplan estimation 2 2
performance analysis 7 10
logic circuit design 3 5

NoC logic & circuit design 7 9
power & area analysis 3 3

total 32 43
Table 7 lists the times we spent on each steps. Because the

communication analysis, performance analysis and interconnection
designs involve a lot of modeling and simulation tasks, those steps are
most time consuming. Compared to other methodologies, our
methodology 1) uses real communication trace to guide design and

performance analysis, 2) is based on circuit-level model to estimate
power and area, and 3) use widely available tools, OPNET, Design
Compiler, and SPICE. These differences lend our methodology several
advantages. First, the methodology can efficiently design different types
of NoCs. Second, it can quickly and accurately estimate the
performance, power, and area of a NoC at architecture level. Third, it
uses communication trace which improves the speed and quality of
design and analysis. Fourth, it uses widely available tools which make it
ready to use.

XII. CONCLUSIONS
In this paper, we presented an architecture-level methodology for

design, modeling, and analysis of networks-on-chip (NoC), and we
tested it through two NoC designs. Our methodology is based on widely
available tools, which make the methodology ready to use. Our
methodology not only can help to efficiently design and model NoC but
also can accurately estimate the performance, power, and area of NoC.
The methodology can be easily incorporated into traditional design
flow. Using the methodology, we designed a bus-based NoC and a
crossbar-based NoC for a high-performance embedded video SoC. This
methodology helped refine the crossbar-based NoC design and saved
additional 57% power. Our methodology shows that interconnections,
not logic circuits, dominate power and area in NoC designs, and only
compared the logic circuits of NoCs will give wrong conclusions.

REFERENCES
[1] L. Benini, G. De Micheli, “Networks on chip: a new paradigm for systems on chip

design”, Design, Automation and Test in Europe Conference and Exhibition, 2002
[2] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, "Networks on

Silicon: Combining Best-Effort And Guaranteed Services" Design, Automation
and Test in Europe Conference and Exhibition, 2002

[3] S. Kumar, A. Jantsch, Juha-Pekka Soininen, M. Forsell, M. Millberg, J. Öberg, K.
Tiensyrjä, A. Hemani, “A network on chip architecture and design methodology”,
IEEE Computer Society Annual Symposium on VLSI, 2002

[4] A. Jalabert, S. Murali, L. Benini, G. De Micheli,"XpipesCompiler: a tool for
instantiating application specific networks on chip", Design, Automation and Test
in Europe Conference and Exhibition, 2004

[5] W. Dally, B. Towles, “Route packets, not wires: on-chip interconnection
networks”, Design Automation Conference, 2001

[6] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A. Sangiovanni-
Vincentelli, “Addressing the system-on-a-chip interconnect woes through
communication-based design”, Design Automation Conference, 2001.

[7] A. Hemani, A. Jantsch, etc, “Network on chip: An architecture for billion transistor
era”, IEEE NorChip Conference, 2000

[8] W. Wolf, B. Ozer, T. Lv, "Smart cameras for embedded systems," IEEE
Computer, 35(9), September 2002, pp. 48-53

[9] D. Flynn, “AMBA: enabling reusable on-chip designs”, IEEE Micro, 17(4), 1997
[10] D. Wingard, “MicroNetwork-based integration for SOCs”, Design Automation

Conference, 18-22 June 2001
[11] R. Siegmund, D. Muller, “Efficient modeling and synthesis of on-chip

communication protocols for network-on-chip design”, IEEE International
Symposium on Circuits and Systems, 2003

[12] J. Liang, S. Swaminathan, R. Tessier, "aSoC: a scalable, single-chip
communications architecture", International Conference on Parallel Architectures
and Compilation Techniques, 2000

[13] R. Hofmann, B. Drerup, “Next generation CoreConnect processor local bus
architecture”, Annual IEEE International ASIC/SOC Conference, 25-28 , 2002

[14] J. Xu, W. Wolf, Joerg Henkel, Srimat Chakradhar, Tiehan Lv, “A Case Study in
Networks-on-Chip Design for Embedded Video”, Design, Automation and Test in
Europe Conference and Exhibition, 2004

[15] M. Millberg, E. Nilsson, R. Thid, S. Kumar, A. Jantsch, "The Nostrum backbone-a
communication protocol stack for Networks on Chip", VLSI Design, 2004

[16] J. Xu, W. Wolf, “Wave Pipelining for Application-specific Networks-on-Chip”,
Compilers, Architecture, and Synthesis for Embedded System, 2002

[17] http://www-device.eecs.berkeley.edu/~ptm/interconnect.html
[18] www.opencores.org
[19] www.opnet.com
[20] www.silicore.net
[21] www.cadance.com
[22] www.synopsis.com
[23] M. Taylor, “The Raw prototype design documentation” v5.00, 2003
[24] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, C.A. Zeferino, ”SPIN: a

scalable, packet switched, on-chip micro-network”, DATE 2003
[25] M. Forsell, “A scalable high-performance computing solution for networks on

chips”, IEEE Micro, Volume: 22 , Issue: 5 , 2002

 bus-based crossbar-based
silicon area 0.51mm2 0.064mm2
metal area 0.35mm2 0.78mm2

Switch

Memory
portP1 P5

P0P6 P2

P3

P4

Input
agent

Output
agent

1781
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 19, 2009 at 08:49 from IEEE Xplore. Restrictions apply.

