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Abstract --- In this paper, we present an architecture-level methodology 
for modeling, analysis, and design of networks-on-chip (NoC), and we 
tested it through two NoC designs. Our methodology 1) can be used to 
design both regular-topology NoC and application-specific NoC, 2) uses 
real communication traces to guide design and performance analysis, 3) 
is based on circuit-level models and floorplan to estimate power and 
area, and 4) uses widely available tools, OPNET, Design Compiler, and 
SPICE, which make the methodology ready to use. The methodology 
can quickly and accurately estimate the performance, power, and area 
of a NoC at architecture level, and it can efficiently model different 
types of NoCs. The methodology can be easily incorporated into a 
traditional design flow. Using this methodology, we designed a bus-
based NoC and a crossbar-based NoC for a high-performance 
embedded video SoC design in a 0.13um technology. We analyzed their 
performance, power, and area in detail. We find that the crossbar-based 
NoC not only has 62.5% higher performance but also consumes 82% 
less power compared to the bus-based NoC. The crossbar-based NoC 
uses 88% less silicon area and 123% more metal area than the bus-
based NoC. This methodology also helped to refine the crossbar-based 
NoC design and save additional 57% power. Our study shows that 
interconnections dominate power and area in NoC designs, and only 
comparing the logic circuits of NoCs will give wrong conclusions. 

I. INTRODUCTION 
As an effective way to reduce cost, improve reliability, and 

produce versatile products, system-on-chip (SoC) design not only 
implements function units, but also emphasizes cooperation among 
function units to improve performance and reduce cost. On-chip 
communication subsystem decides how effective the cooperation is, 
and it gradually grows from ad-hoc interconnections into 
sophisticated networks-on-chip (NoC). NoC was introduced by 
several researchers [1] [5] [6] [7]. Many on-chip communication 
architectures were developed based on buses, for example, AMBA from 
ARM [9], CoreConnect from IBM [13], MicroNetwork from Sonics 
[10], and Wishbone from Silicore [20]. Other on-chip 
communication architectures were inspired by multi-computer 
networks and telecommunication networks [12] [15] [23] [24] [25]. 

Several NoC design methodologies were introduced in previous 
work. Kumar presented a design methodology specifically for a 2-D 
mesh type of NoC [3]. Siegmund presented a methodology to model 
and synthesize NoCs for SystemC designs [11]. Jalabert proposed a 
tool to instantiate NoCs based on user-defined topologies [4]. 
Goossens proposed a methodology to provide both guaranteed and 
best-effort services in NoC [2]. These methodologies are confined to 
either specific NoC topologies or customized NoC technologies and 
components. Power and area are considered in the NoC 
methodologies, but not accurate. A methodology, which can 
efficiently design any types of NoCs and give accurate performance, 
power, and area results, can help designers to choose different NoCs 
for different applications. 

In this paper, we propose a general architecture-level methodology 
for modeling, analysis, design of networks-on-chip (NoC). Compared 
to previous work, our methodology can be used to design any types 
of NoCs. It helps to efficiently design a NoC and accurately analyze 
all three import characters, performance, power, and area (both the 
metal area and silicon area). Our methodology can be easily 
incorporated into the traditional design flow. It adapts OPNET [19] 

and uses Design Compiler and SPICE. We tested the methodology by 
two NoC designs, a bus-based NoC and a crossbar-based NoC, which 
were designed for a high-performance embedded video system-on-chip. 

The next section gives an overview of the methodology. 
Corresponding steps in the methodology are described in detail and 
illustrated in sections III through X. Section XI shows the time spent on 
each step and draws the conclusions about our methodology. 

II. NOC DESIGN METHODOLOGY 
In this section, we give an overview of the methodology, and more 

details will be illustrated by examples in the following sections. Our 
methodology starts with the computation architecture design (figure 1). 
Computation architecture describes the behaviors of the designed 
system and the computation units used to implement the system 
functions. One method of computation architecture design is using two 
models---behavior model and computation architecture model. The 
behavior model is partitioned and mapped to the computation 
architecture model. 

power & area analysis

computation architecture design

communication modeling & analysis

performance analysis

networks-on-chip architecture design
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NoC logic & circuit design

topology & protocol design

 
Fig. 1. A methodology for NoC 

NoC architecture design follows the computation architecture 
design, which partitions a behavior model and maps it onto an 
computation architecture model. The first step is communication 
modeling and analysis. Communication patterns can be gotten from 
communication traces in the computation architecture simulation, and it 
shows the communication requirements, which are the key of NoC 
design. Communication analysis extracts the communication patterns of 
the application and computation architecture. The pattern includes 
communication types, information sizes, and communication 
frequencies among all the computation units. Communication pattern 
information is used to direct the design of protocol and topology. 

The second step is topology and protocol design based on the 
communication requirements. The aim of this step is to use the least 
network resource to fulfill the communication requirements showed by 
the communication pattern. A matured telecommunication system 
design and simulation environment, OPNET [19], is adapted for this 
step. 

To estimate the delay on each interconnection in term of clock 
cycles and analyze power and area of a NoC design, the chip floorplan 
should be estimated in the third step to get some design requirements for 
interconnections. In NoC design, instead of logic circuits, 
interconnections dominate power consumption and area. 

The fourth step, performance analysis, simulates the NoC 
architecture with the communication traces from the computation 
architecture in OPNET. The performance results help to compare 
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different design choices and refine the designs. The minimum system 
frequency will be gotten from the performance. If no design meets the 
performance requirements or has too small performance margin, we 
have to go back to previous steps. 

In the fifth step, logic design can help increase the accuracy of 
power and area analysis, but the interconnection design is the centre of 
the analysis. We use Design Compiler [22] to synthesize logic circuits 
and use Cadence SPICE [21] as the interconnection design and 
simulation environment. It is also possible to automate the 
interconnection design by building an interconnection library, which 
simplifies both the design task to look up a table and the floorplan 
estimation. 

The last step is power and area analysis. Worst-case power to 
transmit 1-bit information is measured for each interconnection using 
SPICE. Worst-case power of logic circuit is estimated based on the 
number of transistors. OPNET records all the activity of NoC. By 
summing the power of each activity, we get the worst-case power of the 
NoC. Silicon and metal area usages are gotten by adding up all the 
design parts. If the power or the area do not meet the requirements, we 
will go back to choose different circuits or redesign the floorplan. In the 
worst case, we have to redesign the topology and protocol. 

To test our methodology, we designed two NoCs for a high-
performance embedded video system-on-chip (SoC). The following 
sections illustrate each step of the methodology. 

III. COMPUTATION ARCHITECTURE DESIGN 
Computation architecture describes the behaviors of the designed 

system and the computation units used to implement the system 
functions. The computation architecture design defines the requirements 
with which the communication architecture would comply. One method 
of computation architecture design is using two models---behavior 
model and computation architecture model--and partitioning and 
mapping the behavior model to the computation architecture model 
(figure 2a). 
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Fig. 2. Computation architecture design, a) method, b) example 
The Smart Camera system [8] is an embedded video processing 

application that can process 150 frames per second. To deliver such a 
high performance a dual-pipeline computation architecture is designed 
(Figure 2b). Each video frame will go through 5 processing stages, 
which are region, contour, ellipse, match, and HMM. Processors P0, P2, 
P4, and P1, P3, P5 form the two pipelines, and processor P6 works for 
both pipelines. Based on the workload, processor P0 handles region, P2 
handles contour, P4 handles both ellipse and match, and P6 handles 
HMM for the both pipelines. Since the Smart Camera system will be put 
into a compact space along with other parts, low power consumption 
will help to reduce the heat-related cost, and smaller chip area can 
reduce the manufacture cost. 

IV. COMMUNICATION MODELING AND ANALYSIS 
Communication trace (figure 3a) recorded from computation 

architecture simulation is a good source for communication analysis. 
Each computation unit has its own trace. A trace has entries to record 
network accesses. An entry includes access interval (between current 
and the last access) in term of number of clock cycle, source, 
destination, operation type, address, data size, and other special 
information related to a particular computation unit. Those traces give 
the communication pattern for a specific application and will help to 
design a suitable NoC in the next step. 

Traces are also used in performance analysis, where they control the 
communication behaviors of corresponding computation units. To 
accelerate the design and simulation, statistical traces can be generated 
from either the recorded trace or the behavior model (figure 3b). In our 
designs, we used Poisson distributions. Compared to using recorded 
traces, we got a 2~3X speedup in performance analysis and about ±5% 
inaccuracy.  
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Fig. 3. a) Recorded communication trace, b) Trace modeling 

V. TOPOLOGY AND PROTOCOL DESIGN 
We suggest using the method in figure 4 to design topology and 

protocol. From the communication trace, requirements for a NoC can be 
derived. Some requirements can be fulfilled directly: the connectivity 
among computation units, the maximum bandwidth, and shortest delay. 
Other requirements can only be found out by simulation, for example 
the average bandwidth, average delay, and maximum delay. However a 
well established protocol tends to give more insides even before running 
simulations. This approach also helps us reuse NoC components. 

communicaiton requirements

OPNET

topology and protocol

protocol 
candidates

communicaiton trace

 
Fig. 4. Topology and protocol design method 

OPNET is used as the design environment in this step, and it is also 
used as the NoC simulator in performance analysis. OPNET can model 
many common phenomena in communication systems. It is also a 
packet-based simulator, and this feature is particularly useful for most 
NoC designs. OPNET also has some disadvantages, and some 
adaptations are required to use OPNET for NoCs. First, it is developed 
for simulating telecommunication systems and some on-chip features 
are not well supported. For example, the smallest time unit is the second, 
where on-chip communication architectures need nanosecond or even 
picosecond, and the smallest distance unit is meter instead of 
micrometer. Second, OPNET assumes asynchronous communication, so 
for a synchronous system, designers have to explicitly design a clock 
scheme and a distribution network. We made the following adaptations 
in OPNET. In link models, 1) disable the propagation delay pipeline 
stage and 2) disable the error model. In transmitter and receiver models, 
set data rate high enough to eliminate the effects of transmission delay. 
(We set data rate to 106 bps, which introduces 1 µs transmission delay.) 
In all node models, state transitions should be on clock edges. For the 
clock, 1) use one second to represent one clock cycle and 2) build a 
clock bus to synchronize the system. We’ve shown some of these 
changes in a previous work [14]. 

We chose to design a bus-based NoC and a crossbar-based NoC for 
the Smart Camera system. In the bus-based system, a bus connects all 
nodes. A node may be a processor, the input agent, the output agent, or 
the on-chip memory. The arbiter decides who can use the bus based on a 
priority list and the status of its neighbor processing stages and of its 
own. If the previous stage finishes a frame and there is enough space to 
store the result in its own share of memory, a processor can process the 
finished frame from previous stage. In crossbar-based system, packet 
switching is used. The crossbar and a control unit form a switch. The 
control unit schedules arriving packets to be sent and resolves the 
competing requests for the same port. The scheduling is based on the 
node priorities and their status. Packets are used to transfer data and 
other information among nodes. There are 4 types of packets, read 
packet, write packet, read response packet, and switch response packet. 
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VI. FLOORPLAN ESTIMATION 
We estimate the floorplan to get the length of each interconnection. 

The length can decide the delay on the interconnection in term of clock 
cycles. In NoC design, instead of logic circuits, interconnections 
dominate power consumption and area. While performance of a NoC 
design can be estimated at architecture level, power consumption and 
area of a NoC design can not be accurately estimated without 
interconnections design. Unlike logic circuits, interconnections have 
simple structures and are easy to design if the requirements are known. 
The requirements for interconnections include the length, the number 
and positions of input drivers and output drivers, and the working 
frequency. Length and position can be given based on an estimation of 
the chip floorplan, where only sizes of function units and their relative 
positions are needed. The IP reuse can make the estimation more 
accurate. 
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Fig. 5. Floorplans, a) bus-based system, b) crossbar-based system 

We use Plasma core [18] for each processor. A Plasma core needs 
about 1M transistors to implement. Approximate floorplans for the bus-
based and crossbar-based system are shown in figure 5. Instead of the 
best cases, average cases are considered in this step. We use the average 
length between two units, which are started and ended in the middle of 
the units. The bus is about 5mm long and the arbiter is put in the centre. 
The interconnections in crossbar-based system are 2.5 mm and 1.25 
mm. The on-chip memory surrounds the processors and is not shown in 
the figure. 

VII. PERFORMANCE ANALYSIS 
After topology and protocol design and floorplan estimation, 

different NoC designs can be simulated in OPNET. C is used to model 
the behavior of each NoC component. Communication traces will be 
used to control the communication behavior of each computation node. 
And the simulation results help to choose potential NoC designs or 
revise a design. Simulation speed is very important for performance 
analysis, which needs to simulate billions of clock cycles to get 
meaningful application-level results. OPNET has a good simulation 
speed. 

We simulated each NoC design for 3x108 clock cycles, and the 
results are shown in table 1. We define the system performance as the 
number of frames being processed in a fixed time. The results show that 
the crossbar-based system has 62.5% higher performance over the bus-
based NoC. Using statistical traces, the results have about ±5% 
difference compared to using recorded traces. However, the simulation 
has a 2~3X speedup by using statistical traces. Because the system need 
to process 150 frames per second, we use the following formula to 
determine the minimum system frequencies. 

)(
sec)/(150103)(

8

frameframesprocessed
frameHzfrequencysystemMinimum ××

=

Table 1. Performance analysis result 
 bus-based crossbar-based

processed frame in 3x108 cycles 56 91 
min. system frequency (MHz) 804 495 

performance improvement -- 62.5% 
processed frame using statistical traces 54 95 

difference 3.6% 4.4% 
VIII. NOC LOGIC AND CIRCUIT DESIGN 

Compared to the interconnections, NoC logic only requires very 
little power and area. People can choose to only design the 
interconnection circuit without the NoC logic. The behaviors of logic 
circuits are defined by topology and protocol design. The behaviors 
should be represented in a hardware description language and then 
synthesized. We used Verilog to represent the logic circuits and 

synthesized them using Design Compiler. Other languages and 
synthesized tools can also be used. 

Interconnection design requires a good wire model and transistor 
model (figure 6). The design uses SPICE to find out the proper sizes and 
number of transistors according to the requirements. Lengths are given 
by the floorplan estimation, and working frequency is given by 
performance analysis. Interconnection design is easily automated by 
building a table of interconnections for the target technology, which 
simplifies the design to table lookup. Interconnection can use different 
technologies, such as low-swing, differential, and wave-pipelining [16]. 
Based on performance analysis, we choose 1GHz system frequency for 
both the bus-based and crossbar-based system. We choose 130nm 
aluminum technology, which has a 1.5v power supply. We use the 
typical wire dimensions from the Berkeley Predictive Technology 
Model [17]. We model a wire as a fine-grained lumped RLC network, 
and consider the coupling capacitance. Since the coupling inductance 
has a significant effect at 130 nm technology, mutual inductances are 
considered up to the 3rd neighboring wires. Interconnections were 
designed and simulated in Cadence SPICE. 

interconnection requirements

SPICE

power and area of interconnection

transistor modelwire model

 
Fig. 6. Interconnection design method 

The bus-based NoC includes the arbiter and interconnections, which 
are composed by input driver chains, transmission gates, metal wires, 
and output drivers. The bus interconnections use global metal layer, and 
the arbiter control interconnections use intermediate metal layer. The 
crossbar-based NoC has four parts, the control unit, links between the 
nodes and the switch, input buffers, and the crossbar. The 
interconnections in links are on the global metal layer. 

IX. POWER ANALYSIS 
A Power 

The power of a NoC design is calculated as the following formula. 
Each part of NoC is designed and simulated separated. The number of 
each type of activity is recorded during OPNET performance analysis. 
The power of each type of activity is measure in SPICE simulation. The 
total power is the sum of power of all types of activity on all NoC parts. 
Worst-case power is used for each NoC part. For logic circuits, the 
worst case happens when all the transistors switch at the same time. For 
interconnections, all the input patterns are simulated, and the one using 
the most power is the worst case.  

∑ ×=
typesactivity

JactivityperpoweractivitiesofNoJPower )(.)(  

Table 2. Power of bus-based NoC 
Table3. Power of crossbar-

based NoC 
control unit 4.61 pJ/cycle

crossbar 0.30 pJ/bit 
input buffer 0.014 pJ/bit 

link (1.25mm) 0.67 pJ/bit 
link (2.5mm) 1.28 pJ/bit 

Tables 2 and 3 list the power for each part in the bus-based and 
crossbar-based NoCs respectively. In the bus-based NoC, bus 
interconnections are the most power-hungry. Considering the number of 
interconnections in the bus, the arbiter uses less than 1% power of all the 
bus interconnections. Arbiter control interconnections also consume 
relative little power. In the crossbar-based NoC, considering the number 
of interconnections, the control unit consumes less power than the 
interconnections. 

Table 4. Average power consumption of processing one frame 
 bus-based NoC crossbar-based NoC 

process one frame 334 uJ 137 uJ 
overhead 43% 44% 

Table 4 shows the average power consumed by the two NoCs to 
process a frame. The crossbar-based NoC uses 59% less power than the 

arbiter 2.76 
pJ/cycle 

control bus 5.79 pJ/bit 
address bus 5.56 pJ/bit 

data bus 5.57 pJ/bit 
1.25mm arbiter control 0.35 pJ/bit 
2.5mm arbiter control 0.71 pJ/bit 
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bus-based NoC to process a frame. In addition to data, some overhead 
information transferred by the NoCs is used to facilitate data transfer. 
The overheads are about the same in both NoCs. The overhead is 43% 
in the bus-based NoC and 44% in the crossbar-based NoC. 
B Additional Power Saving 

A detailed analysis on the power consumption helps us to save more 
power. In the bus-based NoC, the position of each node only affects 
power consumption on the arbiter control interconnections, which 
accounts for less than 0.4% of total power consumption, and the power 
consumed by the bus is not affected by the node position. However, in 
the crossbar-based NoC, the node position directly affects the power 
consumption. Table 5 shows the power consumption for read operation 
between different node positions. The rows are request node positions, 
and the columns are the target node positions. We mark the positions 
from the left to right in figure 6 as 0 to 4. For example, the input agent 
and processor P0 are at position 0, the processors P3 and P4 are at 
position 2, and so on. Based on the table 5, we refine the floorplan as 
figure 7. Since all the processors are the same, we only change the 
functions of some processors and move the memory port to the centre. 
The refined floorplan only needs 59uJ to process a frame, which saves 
additional 57% power. And this also makes the crossbar-based NoC 
uses 82% less power than the bus-based NoC. A better floorplan need to 
move the switch more left, and the exact position is decided by the 
communication traffic, which is affected by the Smart Camera 
algorithm. 

Table 5. Power consumption between different positions 
position 0 1 2 3 4 

0 164pJ 130 pJ 94 pJ 130 pJ 164 pJ 
1 130 pJ 96 pJ 59 pJ 96 pJ 130 pJ 
2 92 pJ 59 pJ 22 pJ 59 pJ 92 pJ 
3 130 pJ 96 pJ 59 pJ 96 pJ 130 pJ 
4 164 pJ 130 pJ 94 pJ 130 pJ 164 pJ 

    Table 6. Silicon and metal area 

Fig. 7. Refined floorplan 
X. AREA ANALYSIS 

We estimate silicon area and metal area in the bus-based NoC and 
crossbar-based NoC in table 6. The silicon area is the sum of all the 
logic circuit, interconnection drivers, and transmission gate. For the 
crossbar-based NoC, the silicon area also includes the input buffers. The 
metal area includes all the interconnections, except the interconnections 
in logic circuits. The crossbar-based NoC uses only 12.5% the silicon 
area of the bus-based NoC. Logic circuits only account for 0.7% of the 
silicon area in the bus-based NoC and 12% of the silicon area in the 
crossbar-based NoC. The crossbar-based NoC use 123% more metal 
area than the bus-based NoC. Since our crossbar design is not compact, 
the crossbar-based NoC could use less metal area. 

XI. RESULTS AND COMPARISON 
Table 7. Approximated times spent on each step (person*day) 

 bus-based crossbar-based
comm. modeling & analysis  7 
topology & protocol design 3 8 

floorplan estimation 2 2 
performance analysis 7 10 
logic circuit design 3 5 

NoC logic & circuit design 7 9 
power & area analysis 3 3 

total 32 43 
Table 7 lists the times we spent on each steps. Because the 

communication analysis, performance analysis and interconnection 
designs involve a lot of modeling and simulation tasks, those steps are 
most time consuming. Compared to other methodologies, our 
methodology 1) uses real communication trace to guide design and 

performance analysis, 2) is based on circuit-level model to estimate 
power and area, and 3) use widely available tools, OPNET, Design 
Compiler, and SPICE. These differences lend our methodology several 
advantages. First, the methodology can efficiently design different types 
of NoCs. Second, it can quickly and accurately estimate the 
performance, power, and area of a NoC at architecture level. Third, it 
uses communication trace which improves the speed and quality of 
design and analysis. Fourth, it uses widely available tools which make it 
ready to use. 

XII. CONCLUSIONS 
In this paper, we presented an architecture-level methodology for 

design, modeling, and analysis of networks-on-chip (NoC), and we 
tested it through two NoC designs. Our methodology is based on widely 
available tools, which make the methodology ready to use. Our 
methodology not only can help to efficiently design and model NoC but 
also can accurately estimate the performance, power, and area of NoC. 
The methodology can be easily incorporated into traditional design 
flow. Using the methodology, we designed a bus-based NoC and a 
crossbar-based NoC for a high-performance embedded video SoC. This 
methodology helped refine the crossbar-based NoC design and saved 
additional 57% power. Our methodology shows that interconnections, 
not logic circuits, dominate power and area in NoC designs, and only 
compared the logic circuits of NoCs will give wrong conclusions. 
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