
Platform-Based Design and the First Generation Dilemma
Jiang Xu and Wayne Wolf

Dept. of ELE, Princeton University
Jiangxu, Wolf@ee.Princeton.edu

Abstract

In this paper, we analyze system-level design
methodologies for platform-based design. Platform-based
design is popular as a way to reduce development time,
but creating the platform is difficult. We introduce the
first generation dilemma problem --- initial designs are
much harder because we do many of the components that
will be used to build the system. We explain the origin of
this problem and give a solution.

1 Introduction

Due to smaller feature sizes, demand for more functional
and cost-efficient products, and shorter times to market,
design complexity is growing rapidly, but design
productivity lags far behind. System-level design tools
are introduced to absorb the growing complexity and
accelerate larger designs. Many system-level design tools
are announced in past two years, including CoWare N2C
[1], Cadence VCC (Virtual Component Co-design),
Innoveda Visual Elite [2], Elanix SystemView [3], and
Synopsys CoCentric System Studio [4].

In this paper, we analyze platform-based design, which
uses an existing base of components and architectures to
reduce design time. One important discovery is that the
platform-based design cannot solve the so-called first
generation dilemma. Developing the first generation of
a platform is much more difficult than using the platform
to create a spin-off design. Tools and methodological
research has emphasized using the platform, but more
attention needs to be paid to developing the platform. We
provide some solutions to this first generation dilemma
and give an example. We will use the Cadence VCC tool
to illustrate our observations, but our results apply to
other system-level tools as well.

The next section introduces system-level design
methodologies. In section 3, we analyze platform-based
design methodologies in more detail and show our
results. We will explain the first generation dilemma and
give our solution and example in section 4. Finally,
conclusions are given in section 5.

2 A typical system-level design methodology

A system-level tool helps users translate design
specifications into chips and code running on hardware.

Embedded systems are the main aim of this kind of tools.
Some embedded systems are small enough to put onto a
single chip, while others are implemented as chip sets
because they are too large or have to be placed
distributively. A typical design flow goes through steps
shown in figure 1.

HW/SW
Partitioning

SW Refinement HW Refinement

IntegrationVerification

Experience/
Previous Designs

Specification

Object Code
and Layout

Performance
Analysis

Figure 1: A typical system-level design flow.

2.1 Typical design flow

Usually a design starts with design specifications. The
specifications describe requirements of a system in
English. They include the expected behavior,
performance, power, area, and testability of a system
design. Designer experience is also an important input to
the design. Sometimes a design is only a new generation
of previous system designs, of which most parts could be
reused.

Based upon experience with previous designs, designers
choose an architecture and partition the design into HW
and SW. If previous designs exist, HW/SW partitioning
and choosing architecture are relative simple, and the
main concern will be how to revise the previous designs.
There are three kinds of revisions. Some redundant
functions will be removed from the system. Most of the
time more functions will be added. Sometimes some
features of the system, including performance, power,
area, or testability, need to be improved. Reusability is

gradually becoming the center of choosing architecture,
where IP cores and customized modules are used.
Recently platform-based design is becoming a main actor
in system-level design [5][6][7][8]. It reuses the whole
platform instead of individual IP cores and significantly
improves the reusability and design efficiency. The
impact of platform-based design to system-level design is
that it converts the HW/SW partitioning into function
mapping and platform revising. At the same time, early
performance analysis is needed to direct the function
mapping and platform revising.

After choosing architecture, designers select IP cores and
customized modules for the architecture. Some
architecture modules are not available, while some need
to be revised. Hardware design will go through register
transfer level design that breaks a module into smaller
function units between registers, logic design that
implements the units by gates, and physical design that
partitions, floor-plans, and routes circuits. The software
part of a design will go through software architecture
analysis that chooses software architecture, dividing
functions into modules, implementation of the modules,
and generation of objective code. There are interfaces
between SW-HW, HW-HW, and SW-SW. Usually in
software architecture analysis SW-SW interfaces are
solved, while SW-HW interfaces, also called device
drivers, are partially solved and may need some change
after real hardware are designed. HW-HW interfaces will
become a big issue if IP cores are incompatible with each
other. A platform-based design only needs a little
interface design if any, which is a great merit. The
integration step combines the software and hardware to
generate the final design, which usually includes layouts
for chips and object code.

2.2 Performance analysis and verification

Verification ensures that a design realizes all functions of
a system under certain timing constraints as described by
specifications. Performance analysis tries to reveal
limitations of a design on timing. Performance analysis
can take place in many steps in a typical system-level
design flow. An accurate early performance analysis can
help designers make right decisions and save efforts and
time. Usually early performance analysis is fast because
relative few details involve, while it also tends to be
inaccurate due to the same reason. On the contrary, late
performance analysis is slow and more accurate. The
earliest step, which can take a performance analysis, is
HW/SW partitioning.

In platform-based design, the performance models of
previous designs are bases of performance analysis for a
new design, and they make an early performance analysis
possible. In the SW refinement step, HW refinement step,

and object code/layout step, performance analysis ensures
that a gradually detailed design satisfies specifications.
Verification could also happen in the SW refinement
step, HW refinement step, and object code/layout step.

3 Platform-based design methodology

Platform-based design uses IP blocks to build system
architectures. Based upon Cadence VCC version 2.1, we
will analysis its design flow and methodology in detail.

Specification

Behavior
Modeling

Architecture
Modeling

Mapping

Experience/
Previouse Designs

IP Cores and
Customized Modules

Performance
Analysis

Hardware
Refinement

Software
Refinement

Integration

VCC Boundary

Co-verification

Interface
Refinement

Object Code
and Layout

Figure 2: Platform-based design flow using Cadence
VCC.

3.1 Design flow

The platform-based design flow using VCC is shown in
figure 2. It begins with specifications and finally
generates a logic-level design. Synthesis, physical design,
and verification are accomplished by other tools. For
example, VCC can export a design to Seamless Co-
Verification Environment from Mentor Graphics [9]. So
VCC must closely cooperate with other tools to complete
a design. VCC divides the HW/SW partitioning step in
the typical design flow into behavior modeling,
architecture modeling, and mapping. This separation
facilitates platform-based design and IP reuse, but it also
poses some problems.

Behavior modeling is a key step for three reasons. First,
behavior model details the function constraints of the

specifications. Second, it will be used to develop object
code running on hardware. Third, it will also be used to
develop hardware. Behavior model could be written in
many languages, including C, C++, SDL, and STD. They
are VCC versions and compatible with the standards. We
find C and C++ are more convenient because a lot of
experience from other designs and tools. When writing
behavior model, designers need to choose a language
style between software-oriented style and hardware-
oriented style. Software-oriented style will ease the
generation of an efficient object code, while it won’t be
good for hardware design, and vice versa. There is
currently no programming technology that lets us easily
translate between hardware-oriented and software-
oriented descriptions in any language. There is unlikely
to be such a solution any time soon because the software
and hardware computational models are fundamentally
different.

 Black Box White Box Clear Box
Language C++,

SPW,
SDL,
OMI

WhiteBox
C

STD,
Textual

SDL

Simulated Yes Yes Yes
Analyzed No Yes Yes
Synthesizing No No Yes

Table 1: Categories of behavior model.

VCC has three categories of behavior models, namely
black box, white box, and clear box, which are
distinguished by the language used (table 1). For
example, a block box could be directly used to functional
simulation, but not the performance analysis and
hardware and software synthesis; it could be
implemented by C++, SPW, SDL, or OMI. The last three
language forms are used to import models from other
tools. If using black box behavior model to analyze
performance, designers must manually implement
performance model, which captures the performance of
the black box behavior model. And the capture easily
betrays the performance of the original model. On the
other hand, it is almost impossible to transform a
behavior model between the three categories without an
overhaul, because they use different languages. For this
reason and also because C could easily be transformed to
other languages, beginning from white box behavior
model gives more flexibility.

The architecture model is simply implemented by
choosing IP cores and customized modules and
connecting them together. VCC doesn’t need the
implementation details of IP cores or customized
modules to analyze performance; instead it needs
performance models, which summarize the timing

characteristics of IP cores and customized modules. For
example, a performance model of a microprocessor is
about the times needed for each instruction. Logic-level
implementation is needed only when the design will be
exported to other tools to continue a design.

By mapping a behavior model onto an architecture
model, VCC partitions the specified functions, which are
detailed by behavior model, into software and hardware.
Then performance is analyzed based upon the mapping,
and necessary adjustment is following. Interface
refinement chooses proper communication methods
among hardware and software to meet the performance
requirements. It usually takes place after major mapping
decisions have been made. Finally, the design can be
exported to a co-verification tool and other tools to finish
the synthesis and object code generation.

3.2 Performance analysis

Designers use performance analysis to evaluate
architecture model, mapping, and interfaces. And
designers adjust design decisions by looking at analysis
results. The accuracy of performance directly affects the
whole design. VCC needs a performance model for every
IP core and customized modules in architecture model
and for some module in behavior model. A performance
model describes functions of a model and the timing
properties of the functions. VCC first extracts the
scheduling information from behavior model. Then based
upon mapping, it counts on the timing properties of each
module and gets the performance of the whole design.

Performance models decide the accuracy of performance
analysis. VCC gives a complete structure for performance
modeling, but it doesn’t help designers estimate the
fundamental timing properties of each modules.
Designers are asked to give timing information
themselves and by whatever means. For the IP cores and
customized modules, this won’t be a problem; but for
many yet unavailable modules, timing information is
hard to gather accurately. That inaccurate information
finally affects the result of performance analysis.

4 First generation dilemma

The above methodology facilitates platform-based design
and derivative design by emphasizing the central idea,
which is to achieve performance constraints through
mapping adjustment and architecture model refinement.
It assumes that designers either have enough IP cores or
customized modules for a design or have previous
designs. But for many first generation designs, there are
only some IP cores and a few customized modules
available at the beginning, and most modules will be
designed or purchased after several critical design

decisions are made. This poses a problem to the platform-
based design. On one hand, at beginning, there are no
enough IP cores and customized modules to show
accurate performance of an architecture model. On the
other hand, designers depend on the performance analysis
results to make decisions to design customized modules
and choose or purchase new IP cores. We call this
problem the first generation dilemma. The dilemma
reveals that platform-based design is not purely choosing
and mapping to architectures and IP cores. Architecture
design is still needed in some circumstances.

Behavior
Modeling

Architecture
Modeling

Mapping Performance
Analysis

VCC Boundary

Adjusting
Requirements

Choosing IP Cores
and Designing

Customized Modules

Figure 3: Revised platform-based design flow.

We can overcome this dilemma by modifying the
platform-based design methodology. We need to change
the central idea of the methodology. Rather than trying to
achieve performance constraints through mapping
adjustment and architecture model refinement, designers
should find out what the performance constraints on the
whole system means for new modules in a particular
mapping and architecture model. To do this, first
designers should try to decide an architecture model and
a mapping, then through performance analysis designers
can convert the performance constraints on the whole
system to requirements for every single unavailable
module (figure 3). Those requirements must be first
screened by designer’s experience before the next step.
Any unrealistic requirements must be gotten rid of by
either mapping adjustment or architecture revising. Based
upon the requirements, designers can either purchase new
IP cores or design customized modules. If some modules
can’t be realized because the requirements for them are
too strict, designers need to adjust mapping or revise
architecture model. To save the designs of modules that
satisfy the requirements, they should be treated as the
available customized modules without constrain the

requirements. Extra modules may be added to relieve
those too strict requirements. Then a second set of
requirements can be found through performance analysis.
This modification is compatible with the original design
methodology, and it solves the first design dilemma. In
this solution, system-level design will be a lot of easy, if
designers have performance models in their libraries
before purchasing any IP cores and they can use them in
system-level performance analysis.

Bridge

Processor1 Processor2

Central Bus

SRAM

SRAM
Controller

 Arbiter

Media
Accelerator

Peripheral Bus Arbiter

DMA
Controller

GPIOExternal
Memory
Interface

PCI
Interface

Available

Unavailable
IP Core

Unavailable
Customized

Modules

Smart
Monitor

Figure 4: A multimedia embedded chip.

An example is the design of a multimedia embedded chip.
We’ve already captured the details of its specification,
and there are only several modules in our library. First,
we design the architecture showed in figure 4. The white
modules are in the library. We are going to use some IP
cores for the dark ones and design the shadowed ones.
Second, we initiate a performance model for each
unavailable module to capture requirements on them.
Then, performance analysis results are used to adjust
those performance models. After several iterations, a set
of performance models, which carry requirements on
each module, is used to choose IP cores and design
customized modules. During designing the media
accelerator, our design cannot meet the requirements. We
go back to adjust the performance model for the media
accelerator and redirect some workload to a processor.
After the adjustment, performance analysis shows the
whole design meet the performance requirements.
Without overhauling the media accelerator, we
accomplish the chip design.

5 Conclusions

Platform-based design subdivides HW/SW partitioning
into behavior modeling, architecture modeling, and
mapping. In this way it supports IP reuse, PBD, and
derivative design. Behavior model captures the details of
design specifications and is used both in software design
and hardware design, but the choice between a software-

oriented behavior model and a hardware-oriented one is
difficult. Early performance analysis helps designers
make design decisions at architecture-level, and this
could save a lot of efforts and time for designers; but the
accuracy of performance analysis depends on timing
information given by designers. System-level design
tools can provide structures to fill the timing information
in, but it can’t help much to guarantee the accuracy, and a
timing mistake could affect the whole design. So to
benefit from platform-based design designers must be
very carefully to estimate timing properties of modules.
System-level design tools must closely cooperate with
other tools to complete a design. System-level tools can
only generate gate-level result and do functional
verification. So other tools are needed to do software
refinement, hardware refinement, and system verification.
So carefully choosing tools to cooperate with the system-
level design system is important for a design.

Platform-based design methodology has difficulties to
deal with the first generation dilemma, because it is
optimized for IP reuse, platform-based design, and
derivative design. We pose a modification to the
methodology to solve this problem.

6 Acknowledgments

This paper was improved due to the valuable comments
from reviewers.

References

[1] S. Tsasakou, N.S. Voros, M. Koziotis, D. Verkest, A.

Prayati and A. Birbas, "Hardware-software co-design
of embedded systems using CoWare's N2C
methodology for application development",
Proceedings of IEEE International Conference on
Electronics, Circuits and Systems, 1999, pp. 59-62.

[2] www.innoveda.com
[3] A.P. Nash,G. Freeland, T. Bigg, "Practical W-

CDMA receiver and transmitter system design and
simulation", 1st International Conference on ’3G
Mobile Communication Technologies, 2000, pp. 117-
121.

[4] http://www.synopsys.com
[5] A. Sangiovanni-Vincentelli, G. Martin, "Platform-

based design and software design methodology for
embedded systems", IEEE Design & Test of
Computers, 2001, pp. 23-33.

[6] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A.
Sangiovanni-Vincentelli, "System-level design:
orthogonalization of concerns and platform-based
design", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2000, pp.
1523-1543.

[7] Jeroen A.J. Leijten, Jef L. Van Meerbergen, Adwin
H. Timmer, Jochen A.G. Jess, "Prophid: a platform-
based design method", Design Automation for
Embedded Systems, SEP 2000, pp. 5-37.

[8] Masamichi Kawarabayashi, Jin-Qin Lu, Kazunori
Goto, Patrick W. Fung, "System level design
methodology for System on a Chip", NEC Research
and Development, JUL 2000, pp. 248-252.

[9] Cadence VCC2.1 manuals

