
An Efficient Technique for Analysis of Minimal Buffer
Requirements of Synchronous Dataflow Graphs with

Model Checking

Weichen Liu
Hong Kong University of
Science and Technology

Hong Kong, China
weichen@cse.ust.hk

Zonghua Gu
Zhejiang University
Hangzhou, China

zonghua@gmail.com

Jiang Xu
Hong Kong University of
Science and Technology

Hong Kong, China
jiang.xu@ust.hk

Yu Wang
Tsinghua University

Beijing, China
yu-

wang@tsinghua.edu.cn

Mingxuan Yuan
Hong Kong University of
Science and Technology

Hong Kong, China
csyuan@cse.ust.hk

ABSTRACT
Synchronous Dataflow (SDF) is a widely-used model of com-
putation for digital signal processing and multimedia appli-
cations, which are typically implemented on memory con-
strained hardware platforms. SDF can be statically ana-
lyzed and scheduled, and the memory requirement for cor-
rect execution can be predicted at compile time. In this
paper, we present an efficient technique based on model-
checking for exact analysis of minimal buffer requirement of
an SDF graph to guarantee deadlock-free execution. Per-
formance evaluation shows that our approach can achieve
significant performance improvements compared to related
work.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modeling techniques

General Terms
Algorithms, Performance

Keywords
Scheduling, memory management, model checking,
synchronous dataflow, optimization

1. INTRODUCTION
Synchronous Dataflow (SDF) [14] is a widely-used model

of computation for signal processing and multimedia appli-
cations. An SDF graph consists of actors that produce/consume

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$10.00.

a constant number of tokens on its output/input edges at
every firing. SDF can be statically analyzed and scheduled,
and can be used to generate efficient implementations in
terms of (data and code) memory size and runtime overhead.
Since embedded systems running DSP applications typically
have limited memory resource, it is desirable to minimize the
memory size requirement of the software implementation.
The memory requirement of an application consists of two
parts: code memory and data buffer memory. Code mem-
ory can be minimized by constructing a Single-Appearance
Schedule (SAS) [15], in which each actor invocation appears
exactly once in the program body, but this may lead to a
significant increase in data memory. Some authors [16] have
developed efficient quasi-static scheduling techniques to min-
imize data memory with (slightly) increased runtime over-
head. In this paper, we assume that this increased runtime
overhead is acceptable, so that we do not require the sched-
ule to be a SAS. We focus on minimizing the data memory,
and present an approach based on the model-checker SPIN
to find the minimum buffer size requirement of an SDF graph
that guarantees its deadlock-free execution.

The rest of the paper is structured as follows: we dis-
cuss background and related work in Section 2; present the
Bounded Greedy Algorithm (BGA) for the schedulability
test of SDF graphs in Section 3. We present the SPIN model
for minimal buffer analysis in Section 4; performance evalu-
ation results in Section 5, and conclusions in Section 6.

2. BACKGROUND AND RELATED WORK
We first introduce some notations used in the paper. For

a given SDF graph G(V, E), the Buffer Size Distribution
BSD = {b(e) ∈ N | e ∈ E} is a vector of size |E|, where
b(e) is the buffer size of edge e. For a directed edge e, its
source (producer) actor src(e) produces p(e) tokens per fir-
ing; its sink (consumer) actor sink(e) consumes c(e) tokens
per firing. p(e) and c(e) are called the token production and
consumption rate of edge e, respectively. The number of
initial tokens, also called initial delays, on edge e is denoted
d(e). For an actor v ∈ V , in(v) denotes the set of incoming
edges to v; out(v) denotes the set of outgoing edges from v.

61

A
 B
 C
2
 3
 1
 2

Figure 1: A simple SDF graph.

During execution, the current remaining number of tokens
on edge e is denoted r(e).

As an example, Fig. 1 shows a simple SDF graph with
no initial delays. Each invocation of actor A produces 2
tokens on edge AB; each invocation of actor B consumes
3 tokens on edge AB and produces 1 token on edge BC;
each invocation of actor C consumes 2 tokens on edge BC.
For edge AB, src(AB) = A, sink(AB) = B, p(AB) = 2,
c(AB) = 3, d(AB) = 0.

The balance equation for each edge e encodes the con-
straint that the total number of tokens produced is equal to
the total number of tokens consumed in a single iteration of
the periodic schedule:

{
rA ∗ 2 = rB ∗ 3
rB ∗ 1 = rC ∗ 2

with the solution rA = 3; rB = 2; rC = 1, where ri is
the number of invocations of actor i in a periodic sched-
ule. Given the actor ordering ABC, the repetition vector is
(3,2,1). The repetition counts of actors A, B and C are their
respective entries in the repetition vector: 3, 2, 1. The Ex-
pected Schedule Length (ESL) is the sum of repetition counts
of all actors (3+2+1=6). One feasible static schedule is
AAABBC. Starting from a given initial state, if the actors
fire in the sequence AAABBC, then the SDF graph goes
back to the initial state, where there are no tokens on either
edges for the example. Therefore, we can execute this se-
quence of actor firings repeatedly without deadlock caused
by buffer overflow or underflow. In this paper, we assume
that each edge has its separate buffer space without sharing.
The schedule AAABBC has total buffer size requirement of
8, with buffer size distribution {b(AB) = 6, b(BC) = 2}.
Another feasible schedule is AABABC, with a smaller to-
tal buffer size requirement of 6, with buffer size distribution
{b(AB) = 4, b(BC) = 2}. In fact, it turns out that 6 is the
minimum buffer size requirement for this SDF graph, i.e.,
there does not exist any feasible schedule if total buffer size
is less than 6.

An SDF graph is schedulable if it has a correct infinite se-
quential execution that executes in bounded memory. The
SDF buffer minimization problem is the problem of finding
the buffer size distribution with minimum total buffer size
while still making the SDF graph schedulable. Ade et al [3]
presented formulas on the upper bounds on the minimum
buffer memory requirement for some restricted subclasses of
delayless, acyclic graphs, including arbitrary-length chain-
structured graphs. But for general SDF graphs, the buffer
minimization problem is NP-complete. Model-checking is
an effective technique for solving NP-complete combinato-
rial optimization and scheduling problems. Geilen [7] and
Gu [9] used the model-checkers SPIN [10] and NuSMV [5],
respectively, to solve the SDF buffer minimization problem,
but the scalability of these techniques is limited due to state
space explosion. In this paper, we use the model-checker
SPIN to solve the buffer minimization problem, but with a
modeling technique that is quite different from those in [7]
and [9]. While it does not change the NP-complete nature

of the problem, performance evaluation shows that our ap-
proach can achieve impressive improvements on scalability
and efficiency, compared to [7] and [9].

Parks [17] presented an algorithm for scheduling a Kahn
Process Network (KPN) in bounded memory if it is possible:
start with a arbitrary bound on the capacity of all buffers;
use any scheduling algorithm that avoids buffer overflow or
underflow; if system deadlocks because of buffer overflow,
increase size of smallest buffer and continue. Since SDF is a
special case of KPN, Parks’ algorithm can also be applied to
an SDF graph to find a buffer size distribution so that the
SDF graph does not deadlock. However, it is not guaranteed
to find the minimum buffer size requierment. To do this,
we add backtracking search to the algorithm, i.e., whenever
deadlock occurs, we determine the set of constraining edges1,
and increase buffer size of each of the constraining edges
in order to resolve the deadlock. When a feasible buffer
size distribution is found, we backtrack and explore other
branches in the search tree in the search for the minimum
feasible buffer size distribution until the entire search tree
has been explored.

3. THE BOUNDED GREEDY ALGORITHM
Let h(v) denote the accumulated number of firings of actor

v since the beginning of execution. The loop count lc(v) of
actor v is the maximum number of times that actor v can
fire consecutively without interleaved firings of other actors,
which is constrained by three factors: number of tokens in
its input buffer(s), number of empty spaces in its output
buffer(s), and its repetition count (entry in the repetition
vector q(v)) minus its accumulated number of firings h(v):

lc(v) = min
{
q(v)− h(v), k(v), l(v)

}
(1)

where

k(v) = min
ei∈in(v)

⌊r(ei)

c(ei)

⌋
(2)

l(v) = min
ej∈out(v)

⌊ b(ej)− r(ej)

p(ej)

⌋
. (3)

The term Bounded Greedy Algorithm is named due to the
fact that each actor fires for the maximum number of times
(greedy) consecutively while respecting the Expected Sched-
ule Length constraint (bounded). After actor v fires for lc(v)
number of times, the number of tokens on its input and/or
output edge buffer(s) are updated as follows (Of course, ac-
tor v does not fire if lc(v) = 0):

∀ei ∈ in(v), r(ei) = r(ei)− lc(v) ∗ c(ei) (4)

∀ej ∈ out(v), r(ej) = r(ej) + lc(v) ∗ p(ej). (5)

Alg. 1 shows the pseudo-code for BGA. The input to
BGA is an SDF graph G and a fixed buffer size distribu-
tion BSD. BGA is a deterministic firing rule: it tries to
fire each actor one-by-one in a fixed order called the Ac-
tor Appearance Order (AAO) (Lines 4-10)2. In each iter-
1Edge e is a constraining edge in a deadlocked state if its
producer actor cannot fire due to insufficient buffer space on
edge e.
2The AAO can be chosen arbitrarily without affecting cor-
rectness of the algorithm, but it does affect its efficiency. If
the SDF graph is a DAG (Directed Acyclic Graph), a good
heuristic is to use one of the topological sorts.

62

Algorithm 1 Bounded Greedy Algorithm (BGA)

Require: SDF graph G with a given buffer size distribution
1: sl = 0
2: while true do
3: prev sl = sl;
4: for each actor v in Actor Appearance Order do
5: lc(v) = ComputeLoopCount(v, G)
6: if lc(v) > 0 then
7: FireActor(v, lc(v), G)
8: sl+ = lc(v)
9: end if

10: end for
11: if sl == ESL(G) then
12: schedulable = true
13: break
14: else if prev sl == sl then
15: schedulable = false
16: break
17: end if
18: end while
19: return schedulable

ation, each actor v fires for lc(v) number of times as de-
termined by Equation (1) (Lines 5 to 9). The actual actor
firing is performed in FireActor(), which consumes (pro-
duces) tokens from its input (output) edges (Line 7) accord-
ing to Equations (4) and (5). This process iterates until
the schedule length reaches the ESL, so a feasible sched-
ule has been found, and we declare schedulable == true;
or none of the actors could fire in the previous iteration
(prev sl == sl), which means that deadlock has occurred, so
we declare schedulable == false. Even though not shown
in Alg. 1, the set of constraining edges can be easily deter-
mined upon detection of a deadlock.

As an example, consider the SDF graph in Fig. 1 with
Expected Schedule Length ESL = 6. Suppose we adopt the
Actor Appearance Order of ABC. Consider different buffer
size distributions:

• If the buffer size distribution is {b(AB) = 6, b(BC) =
2}, then in the first iteration, we try to fire actors A,
B and C in turn. Actor A fires for lc(A) = 3 times;
followed by actor B firing for lc(B) = 2 times; followed
by actor C firing for lc(C) = 1 time. Now the schedule
length sl has reached the ESL 6, so schedulable =
true, and the periodic schedule AAABBC has been
found after the first iteration.

• If the buffer size distribution is {b(AB) = 4, b(BC) =
2}, then actor A fires for lc(A) = 2 times; followed by
actor B firing for lc(B) = 1 time; Since lc(C) = 0,
actor C cannot fire. Now sl = 2 + 1 = 3, which is less
than the ESL of 6. Since 2 out of 3 actors have fired,
there is no deadlock. So we continue with the next
iteration to fire actor A for 1 time, actor B for 1 time,
and actor C for 1 time. Now sl = 6, so schedulable =
true, and the periodic schedule AABABC has been
found after two iterations.

• If the buffer size distribution is {b(AB) = 3, b(BC) =
2}, then actor A fires for lc(A) = 1 time. Now there
are not enough tokens on edge AB for actor B to fire,
lc(B) = 0, so we move on to actor C to find that

lc(C) = 0. Since 1 out of 3 actors has fired, there is no
deadlock yet. So we continue with the next iteration
to try to fire A again. But we find that lc(A) = 0
due to insufficient output buffer space on edge AB.
So we move on to actors B and C in turn, and find
lc(B) = 0 and lc(C) = 0. Since none of the actors
are able to fire in this iteration, before the ESL of 6
is reached, we conclude that a deadlock has occurred,
and schedulable = false.

BGA is similar to the firing rule used to construct the Dy-
namic Loop-Count Single-Appearance Schedule (dlcSAS) [16].
The difference is that for the firing rule of dlcSAS, the loop
count is computed without the constraint that it must not
exceed its repetition count, i.e, instead of Equation (1), we
have:

lc(v) = min
{
k(v), l(v)

}

The firing rule for dlcSAS is designed for generating efficient
code from an SDF graph with a given fixed buffer size dis-
tribution. The code size is minimum, i.e., each actor firing
appears only once in the loop, but each actor may have dif-
ferent firing counts in different iterations of loop execution.
(In fact, BGA can also be used as the firing rule in dlcSAS to
generate code.) The buffer size distribution can be set with
any heuristic or optimal scheduling algorithm that guaran-
tees deadlock-free execution of the SDF graph. Therefore,
there is no need for deadlock detection for dlcSAS like in
BGA.

We first present some definitions and theorems excerpted
from [14].

Definition 1 (Topology Matrix). [14] The topol-
ogy matrix of an SDF graph is a matrix with a column for
each actor and a row for each edge. The entry at position
(i, j) is the number of tokens produced by actor j on edge i at
each actor j’s firing. If actor j consumes tokens from edge
i, then this number is negative; and if it is not connected to
edge i, then this number is 0.

Definition 2 (SSSA). [14] Given an SDF graph with
topology matrix Γ and repetition vector q, s.t. Γq = 0, and
an initial state for the edge buffers, the ith actor is runnable
at a given time if it has not been run qi times and run-
ning it will not cause buffer underflow, i.e., the number of
tokens goes negative. An SDF Sequential Scheduling Algo-
rithm (SSSA) is any algorithm that schedules an actor if it
is runnable, updates edge buffers and stops (terminates) only
when no more actors are runnable. If an SSSA terminates
before each actor has been fired the number of times specified
in the q vector, then it is said to be deadlocked.

Theorem 1. [14] Given an SDF graph with topology ma-
trix Γ and repetition vector q s.t. Γq = 0, if a PASS (periodic
admissible sequential schedule) with period p = 1T q exists,
where 1T is a row vector full of ones, any SSSA algorithm
will find such a PASS.

According to Theorem 1, whenever multiple actors are
runnable during the simulation, an SSSA can make an ar-
bitrary choice as to which one to fire, and it will always
terminate and find a periodic admissible sequential schedule
(PASS) with length equal to the Expected Schedule Length,

63

A
 B
 C
2
 3
 1
 2

4D
 2D

3
2
 1
 2

Figure 2: The SDF graph in Fig. 1 with backedges
encoding buffer size constraints b(AB) = 4 and
b(BC) = 2.

or it will run into a deadlock before such a PASS is found3.
On the other hand, if an SDF graph causes an SSSA to run
into a deadlock before a PASS is found, then it will cause
any other SSSA to also run into a deadlock. Hence The-
orem 1 is equivalent to the statement that an SDF graph
is schedulable if and only if it is schedulable with an SSSA.
Since BGA is obviously an SSSA, we can conclude that an
SDF graph is schedulable if and only if it is schedulable with
BGA.

In the above discussions, there are no buffer size con-
straints for the SDF graph. Consider the definition of runnable:
“actor i is runnable if it has not been run qi times and run-
ning it will not cause buffer underflow. ” If each edge has a
limited buffer size, then we need to add one additional con-
straint to the definition of runnable to be“actor i is runnable
if it has not been run qi times and running it will not cause
buffer underflow or overflow.” Since buffer size constraints
can be encoded by adding additional back-edges to the orig-
inal SDF graph without buffer size constraints to generate a
new SDF graph without explicit buffer size constraints [18],
the schedulability of an SDF graph with buffer size con-
straints can be checked by testing the new SDF graph with-
out buffer size constraints. Since BGA can be applied on the
SDF graph with back-edges encoding buffer size constraints,
which is still an SDF graph in nature, the discussions above
still hold true for SDF graphs with buffer size constraints.
As an example, the SDF graph in Fig. 1 with buffer size con-
straints b(AB) = 4 and b(BC) = 2 can be encoded as the
SDF graph in Fig. 2, where two additional back-edges with
initial tokens are added to model the buffer size constraints.
(If the original SDF graph already contains backedges, some
edges may become redundant after adding the backedges,
but this procedure is still valid.)

We can now conclude that an SDF graph with a given
buffer size distribution is schedulable if and only if it is
schedulable with BGA. This statement serves as the theoret-
ical foundation for this paper.

We adopt BGA in this paper, but any other SSSA can
also be used in its place without affecting correctness. If
running BGA on an SDF graph leads to a deadlock due to
insufficient buffer sizes on a set of constraining edges, we can
increase the buffer sizes on one of these edges to resolve the
deadlock and run BGA again. If this run leads to a dead-
lock again due to insufficient buffer sizes on another set of
constraining edges, we can increase the buffer sizes on these
edges and run BGA again. This process can be repeated
until deadlock is resolved permanently, and a feasible buffer
size distribution is found. However, it is not sufficient to ar-
bitrarily choose one of the constraining edges to increase its
buffer size, and stop when deadlock is resolved permanently,

3Of course, different choices among multiple enabled actors
may result in schedules with different quality attributes, i.e.,
buffer size, runtime overhead, etc.

A

1

B

D

C

F

E

7

7
7

1

2

2

1

3

2

H

G

1

1

3

7

1

1

2

1

[7]
 [7]

[7]
 [7]

[3]
[2]

[2]

[2]

[2]

Figure 3: An example SDF graph. Numbers in
square brackets denote initial edge buffer sizes.

since it may not lead to the optimal solution with minimum
buffer size requirement. Instead, we need to exhaustively
try to increase the buffer size on each of the constraining
edges in turn, each choice forming one branch of the search
tree. Following different branches along the search tree can
lead to different total buffer size requirements. We call this
algorithm BGA with Buffer Increase. We use an example to
illustrate this point.

Figure 3 shows an SDF graph from [7] (Ex.9 in Table 3).
The repetition vector is (14a, 2b, 14c, 7d, 7e, 14f , 2g, 14h)
(with slight abuse of notation). All edges are initially empty.
Suppose we assign buffer size on each edge as (7, 7, 2, 2, 3, 2,
2, 7, 7) in the edge order of (ab, bc, ad, ec, de, fd, eh, fg,
gh), based on the minimum buffer size Equation (7) in Sec-
tion 4.1. Fig. 4 shows the partial search tree. After the
initial schedule (2a, 2f , d, e, 2a, 2f , d, 2a, 2f), a deadlock
state is encountered with token distribution (6, 0, 2, 2, 3, 2,
2, 6, 0). The constraining edges are (ad, fd, de, ec, eh). We
can choose to increase buffer size on either one of these 5
edges to resolve the deadlock, either temporarily or perma-
nently:

• Increase buffer size on edge ad by 1 to follow the left-
most search tree branch. Then after schedule (a, b, 2c),
another deadlock state is encountered with token dis-
tribution (0, 5, 3, 0, 3, 2, 2, 6, 0), with constraining edges
(ad, fd, de, eh). We then continue to go down the search
tree to increase buffer size on one of these edges, but
subsequent steps are omitted in the figure.

• Increase buffer size on edge fd by 1. This is similar to
the previous case.

• Increase buffer size on edge de by 3. The deadlock is
resolved permanently, and we have obtained a feasible
buffer size distribution of (7, 7, 2, 2, 6, 2, 2, 7, 7) with to-
tal buffer size 42.

• Increase buffer size on edge ec by 2. The deadlock is
not resolved, with constraining edges (ad, fd, de, eh).
We can continue the search tree to increase buffer size
on one of these edges. Suppose we choose to increase
buffer size on edge eh by 2. Now the deadlock is re-
solved permanently, and we have obtained a feasible
buffer size distribution of (7, 7, 2, 2, 3, 4, 4, 7, 7) with to-
tal buffer size 43.

• Increase buffer size on edge eh by 2. This is similar to
the previous case.

This example shows that increasing buffer size on the con-
straining edge de by 3 to resolve the first deadlock leads to a

64

B.S. (7,7,2,2,3,2,2,7,7)=39

T.D.(6,0,2,2,3,2,2,6,0)

C.E.{ad,fd,de,ec,eh}

Deadlocked

B.S. (7,7,3,2,3,2,2,7,7)=40

T.D.(0,5,3,0,3,2,2,6,0)

C.E.{ad,fd,de,eh}

Deadlocked

B.S. (7,7,2,3,3,2,2,7,7)=40

T.D.(6,0,2,2,3,3,0,0,5)

C.E.{ad,fd,de,ec}

Deadlocked

B.S. (7,7,2,2,6,2,2,7,7)=42

No deadlock

B.S. (7,7,2,2,3,4,2,7,7)=41

T.D.(6,0,2,2,3,2,2,6,0)

C.E.{ad,fd,de,eh}

Deadlocked

B.S. (7,7,2,2,3,2,4,7,7)=41

T.D.(6,0,2,2,3,2,2,6,0)

C.E.{ad,fd,de,ec}

Deadlocked

B.S. (7,7,2,2,3,4,4,7,7)=43

No deadlock

B.S. (7,7,2,2,3,2,2,7,7)=39

T.D.(0,0,0,0,0,0,0,0,0)

After (2a 2f d e 2a 2f d 2a 2f)

Increase ad by 1. After (a b 2c)
 Increase fd by 1. After (f g 2h)
 Increase de by 3
 Increase ec by 2
 Increase eh by 2

Increase one of {ad,fd,de,eh}

Details omitted

Increase one of {ad,fd,de,ec}

Details omitted

Increase one of {ad,fd,de}

Details omitted

Increase one of {ad,fd,de}

Details omitted

Increase eh by 2
 Increase ec by 2

Figure 4: Partial search tree for the minimum buffer size distribution for the example in Fig. 3. B.S: Buffer
Size; T.D.: Token Distribution; C.E.: Constraining Edges. B.S. and T.D. are in the edge order of (ab, bc, ad,
ec, de, fd, eh, fg, gh).

0
 1
 2

ch[0]
 ch[1]

2
 3
 1
 2

Figure 5: The same SDF graph as in Fig. 1, with
different actor and edge labels to be consistent with
the SPIN model.

feasible buffer size requirement of 42, while increasing buffer
size on the constraining edge ec or eh by 2 to resolve the first
deadlock leads to a feasible buffer size requirement of 43.
Therefore, we need to explore both branches of the search
tree to find the optimal solution of 42.

4. THE SPIN MODEL
The SPIN model implements BGA with Buffer Increase as

discussed in the previous section. Table 1 shows the SPIN
model for the SDF graph in Fig. 5, which is the same SDF
graph as Fig. 1, but with different actor and edge labels to
be consistent with the SPIN model. Table 2 explains the
key notations in the model. Lines 27-30, lines 31-34, lines
35-38 describe firing rules of actors 0, 1 and 2, respectively.
Take actor 1 for example:

1. Line 31: calculate np[1] (nc[1]), the maximum al-
lowed number of firings for actor 1 without buffer over-
flow on its output edge 1 (buffer underflow on its input
edge 0).

2. Line 32: obtain the loop count as the minimum value
between nf[1], np[1] and nc[0]. It is the maximum
allowed number of firings for actor 1 without exceeding
its repetition count, or causing any buffer overflow or
underflow.

3. Lines 33-34: fire actor 1 and update its input/output
edge buffers (ch[0] and ch[1]), remaining allowed num-
ber of firings (nf[1]), and the current schedule length
(sl).

After one iteration of BGA (Lines 27-38), if there is no
progress, i.e., the schedule length before this iteration prev_sl

is the same as the schedule length after it sl (Line 40), this

Table 2: Key notations used in the SPIN model.
sz[i] Buffer size of edge i

ch[i] Current number of tokens on edge i

nf[j] Maximum allowed number of firings of actor j before
its repetition count is reached

np[i] Maximum allowed number of firings of the producer
actor of edge i without buffer overflow on edge i

nc[i] Maximum allowed number of firings of the consumer
actor of edge i without buffer underflow on edge i

sl Current schedule length (sum of all actor firing counts
so far)

prev_sl Schedule length (in the previous iteration of the BGA)

ESL Expected schedule length (sum of repetition counts of
all actors)

lc Loop count of an actor

ACTOR Number of actors

EDGE Number of edges

implies that none of the actors could fire during the BGA,
and the system has run into a deadlock. Recall that Edge i
is a constraining edge in a deadlocked state if np[i] == 0,
i.e., its producer actor cannot fire due to insufficient buffer
space on edge i, so the buffer size on edge i is increased to the
size that allows exactly one additional firing of its producer
actor. The new buffer size is obtained by summing up the
current number of tokens on the edge and the production
rate of its producer actor (See Line 6 for the definition of
the macro INCREASE). In case there are multiple constrain-
ing edges, one is chosen nondeterministically to increase its
buffer size, each choice forming one branch of the search tree.
For clarification, the general form of buffer size increase is
as follows:

if ::IsConstraining(ch[0]) -> IncreaseBufferSize(ch[0],p[0]);
::IsConstraining(ch[1]) -> IncreaseBufferSize(ch[1],p[1]);
:: ...
::IsConstraining(ch[EDGE-1]) ->

IncreaseBufferSize(ch[EDGE-1],p[EDGE-1]);
fi;

During model-checking, SPIN will exhaustively explore all
candidate edges to increase each one’s buffer size due to the

65

Table 1: SPIN model for the example in Fig. 5 (Line 42 is optional, as explained in Section 4.1).
--
01 #define sum sz[0]+sz[1] 23 proctype BGA() {

24 int prev_sl;
02 #define MAXPROD(i,p) np[i] = (sz[i]-ch[i])/p 25 do :: atomic {
03 #define MAXCONS(i,c) nc[i] = ch[i]/c 26 prev_sl = sl;
04 #define PRODUCE(i,p) ch[i] = ch[i]+p*lc
05 #define CONSUME(i,c) ch[i] = ch[i]-c*lc 27 MAXPROD(0,2);
06 #define INCREASE(i,p) sz[i] = ch[i]+p 28 lc = MIN2(nf[0], np[0]);
07 #define COUNT(j) nf[j] = nf[j]-lc; sl = sl+lc 29 if :: lc>0 -> PRODUCE(0,2); COUNT(0);
08 #define MIN2(x,y) ((x<y) -> x:y) 30 :: else fi;
09 #define MIN3(x,y,z) ((x<y) -> MIN2(x,z):MIN2(y,z)) 31 MAXPROD(1,1); MAXCONS(0,3);
10 #define ACTOR 3 32 lc = MIN3(nf[1], np[1], nc[0]);
11 #define EDGE 2 33 if :: lc>0 -> PRODUCE(1,1); CONSUME(0,3); COUNT(1);
12 #define ESL 6 34 :: else fi;

35 MAXCONS(1,2);
13 int sl, lc, nf[ACTOR]; 36 lc = MIN2(nf[2], nc[1]);
14 int ch[EDGE], sz[EDGE], np[EDGE], nc[EDGE]; 37 if :: lc>0 -> CONSUME(1,2); COUNT(2);

38 :: else fi;
15 init {
16 atomic { 39 if :: sl == ESL -> break :: else fi;
17 sz[0] = 4; sz[1] = 2; 40 if :: prev_sl == sl ->
18 ch[0] = 0; ch[1] = 0; sl = 0; 41 if :: np[0] == 0 -> INCREASE(0,2);
19 nf[0] = 3; nf[1] = 2; nf[2] = 1; 42 /*:: np[1] == 0 -> INCREASE(1,1);*/
20 run BGA(); 43 fi;
21 } 44 :: else fi;
22 } 45 } od;}
--

nondeterminstic choice construct above, instead of stopping
at a feasible but suboptimal solution. This guarantees op-
timality of the final solution. (The “atomic” keyword in the
SPIN model is used to preserve atomicity of the operations,
which prevents expansions of useless intermediate states and
improves the search efficiency.)

The following LTL formula is used to check the minimal
buffer requirement:

<> (sum > BOUND)

This means that we challenge the model-checker SPIN to
prove that“every schedule will eventually require total buffer
size strictly larger than a user-specified BOUND.” If this is
proven true, then BOUND is a safe lower bound on the buffer
size requirement, but it may not be a tight bound, so we
increment the value of BOUND and invoke SPIN again; If this
is proven to be false, then SPIN has found a schedule with
total buffer size <=BOUND as a counter example, so we decre-
ment the value of BOUND and invoke SPIN again. The min-
imum buffer size requirement is the value BOUND such that
the LTL formula is true for BOUND-1 but false for BOUND. Bi-
nary search can be used to narrow down the range of the
minimum buffer size requirement.

The model encoding in [7, 9] does not assume any knowl-
edge of edge buffer sizes, and does not impose any deter-
ministic firing rule. It keeps track of the maximum number
of tokens on each edge, and all possible interleavings among
actor firings are explored to check if the specified BOUND is
feasible. In contrast, we assume a known initial buffer size
distribution, and use the deterministic firing rule BGA to
detect deadlocks: actors fire in a fixed order (the order is
actors (0, 1, 2) in Table 1); each actor fires for its loop count
obtained with Equation (1) in each iteration of BGA un-
til either the Expected Schedule Length (ESL) is reached,
so the current given buffer size distribution is feasible; or
the system runs into deadlock and one of the constraining
edges is nondeterministically chosen to increase its buffer
size (BGA). The edge buffers are increased until either a fea-
sible solution with total buffer size sum <= BOUND is found

(the LTL formula <> (sum > BOUND) is proven false); or the
total buffer size has exceeded BOUND without finding a feasi-
ble solution. In our approach, the search space consists of all
possible ways of choosing one among multiple constraining
edges to increase its buffer size to allow one additional firing
of the producer actor; in [7, 9], the search space consists of
all possible schedules (interleavings of actor firings), and the
job of the model-checker is to find one with total buffer size
sum <= BOUND.

While different encodings of the SDF buffer minimization
problem do not change the NP-completeness nature of the
problem, we offer the following explanation for why our ap-
proach is much more efficient than [7, 9]: It is a NP-complete
problem to check if the SDF graph is schedulable if only the
total buffer size bound is known: the deterministic firing rule
BGA cannot be used without the knowledge of the buffer size
distribution, but there are an exponential number of buffer
size distributions with the same total buffer size, as in [7, 9].
On the other hand, it is very easy to check if the SDF graph
is schedulable if the exact buffer size distribution is known:
BGA or any other SSSA can be used to do this with number
of steps not exceeding the Expected Schedule Length, as in
our approach. However, this does not help us much if it
is necessary to exhaustively explore all possible buffer size
distributions with the same total buffer size. Instead of ex-
haustive exploration, we only explore a small subset of pos-
sible buffer size distributions by selectively increasing buffer
sizes only on the constraining edges at a deadlock state to
allow one additional firing of the producer actor. This re-
duces the search space drastically. It is somewhat similar to
the approach of Directed Model-Checking [6], where domain-
specific knowledge is used to guide the model-checker to-
wards promising regions of the state space by pruning away
many uninteresting branches of the search tree. (In fact, we
can also exploit domain-specific knowledge to optimize the
model encoding in [7, 9] by limiting the schedule length to
not exceed the Expected Schedule Length.)

66

A

B

C

6
 5

2

10
 6

1

Figure 6: An SDF graph example to show that bslb(e)
may not be a tight bound.

4.1 Setting Initial Edge Buffer Sizes
Now we answer the question of how to set the initial edge

buffer sizes (sz[i] in the init process in the SPIN model).
The initial buffer size on each edge in the SPIN model should
be safe, i.e., it is guaranteed to be less than or equal to the
edge buffer size in the optimal solution. At the same time,
it should be as large as possible to reduce the search space.

For any edge e with token production (consumption) rate
of p(e) (c(e)), and d(e) number of initial tokens, the Buffer
Size Upper Bound bsub(e) is set to be large enough to con-
tain the number of tokens produced by its producer actor
src(e) if it fires consecutively for its repetition count plus
the number of initial delays:

bsub(e) = p(e) ∗ q(src(e)) + d(e), (6)

where q(v) is the repetition count of actor v.
The Buffer Size Lower Bound on edge e for all possible

valid schedules is given as [4]:

bslb(e) =





p(e) + c(e)− g(e) + d(e) mod g(e),
if d(e) < p(e) + c(e)− g(e)

d(e), otherwise,
(7)

where g(e) = gcd(p(e), c(e)).This bound is determined solely
based on the token production/consumption rates and initial
buffer size on the edge e, and independent of the rest of
the SDF graph. Hence it may not be a very tight bound.
As an example, consider the SDF graph in Fig. 6. The
minimum buffer size of edge AC obtained from Equation (7)
is bslb(AC) = 6 + 5 − 1 = 10. However, we can derive a
larger minimum buffer size of 30 as follows: Actor C can
fire only after both actors A and B have fired at least once
to produce enough tokens on edges AC and BC. Actor B
can fire only after actor A has fired 5 times to produce 10
tokens on edge AB. This implies that buffer size on edge AC
must be at least 30 to accommodate the 30 tokens produced
by 5 firings of A. Obviously, using the larger buffer size of
30 as the initial buffer size helps to reduce search tree depth
and search space compared to the smaller buffer size of 10.

If the buffer size lower and upper bounds of an edge are
equal, then its buffer size is fixed and never needs to be
changed. We can omit it in the nondeterministic choice for
buffer size increase in the SPIN model in order to improve
model-checking efficiency. For example, Line 42 in Table 1
can be removed, since buffer size lower and upper bounds
for edge 1 are both 2. It turns out that this situation is quite
common for many practical applications.

Next, we present the TLB (Tight Lower Bound) Algo-
rithm for obtaining a tighter (larger) initial buffer size on
an edge e than using the lower bound Equation (7) as in [7,
9]. The initial buffer size on edge e is set to be the lower
bound value obtained with Equation (7), and buffer sizes on
all other edges are set to infinity, i.e., there is no buffer size

Algorithm 2 Tight Lower Bound Algorithm

Require: SDF graph G
1: for each edge e in G do
2: tlb(e) = ∞, sz(e) = ∞
3: end for
4: for each edge e in G do
5: for each candidate b(e) ∈ CAND(e) by binary search

do
6: schedulable = BGA(G)
7: if schedulable = true and b(e) < tlb(e) then
8: tlb(e) = b(e)
9: end if

10: end for
11: sz(e) = ∞
12: end for
13: return tlb(e) for every edge e

constraints on these edges. Run BGA in Alg. 1 to detect po-
tential deadlocks. If deadlock is detected, then increase the
buffer size on edge e to allow one more firing of its producer
actor. Keep doing this until there is no more deadlock. Al-
ternatively, we can use binary search between the lower and
upper bounds on the buffer size to narrow down the range
and eventually find the correct buffer size bound. This al-
gorithm is run for every edge, then the obtained buffer size
bounds are used as the initial buffer sizes in the SPIN model.
The TLB algorithm is orthogonal to our SPIN model, and
can also be incorporated into the models in [7, 9] to improve
their efficiency.

The set of candidate buffer sizes CAND(e) include the
series of buffer sizes between the lower bound bslb(e) and
upper bound bsub(e) with increments of step size equal to
the greatest common divisor of its token production and
consumption rates gcd(p(e), c(e)).

CAND(e) = {bslb(e) + i ∗ gcd(p(e), c(e)) |
0 ≤ i ≤ (bsub(e)− bslb(e))/gcd(p(e), c(e))}. (8)

It can be easily shown that limiting the search space to the
set of candidate edges in CAND(e) will not lead to loss of
any optimal solution: the number of tokens on edge e after
its producer actor fires for x times and its consumer actor
fires for y times is x∗p(e)−y∗c(e)+d(e), which can be written
as i ∗ gcd(p(e), c(e)) + d(e). Taking into account the lower
and upper bound constraints, we can derive that the set of
buffer sizes CAND(e) as defined in Equation (8) is identical
to the set of all possible legal numbers of tokens on edge e
during execution of any schedule with length ≤ ESL, hence
we can safely limit the search space to the set CAND(e).

Alg. 2 shows the pseudo-code for the TLB algorithm. All
edge buffer sizes are initially set to ∞. At Line 5, a candi-
date buffer size for edge e is chosen from the set CAND(e),
using binary search between bslb(e) and bsub(e) with step
size gcd(p(e), c(e)) until the minimum feasible buffer size is
found. At Line 6, the BGA is invoked to check if the SDF
graph is schedulable for the given buffer size distribution. It
is a polynomial-time algorithm that runs very fast in prac-
tice.

5. PERFORMANCE EVALUATION
We use both real-world DSP and multimedia applications

and synthetic SDF graphs for performance comparison with

67

Table 3: SDF examples used in the experiments.
Exp.S.L. stands for Expected Schedule Length; B.S.
stands for Buffer Size.

Ex Model
No. No. Exp. Opt.

Actors Edges S.L. B.S.

1 Sample rate ([7]) 6 5 612 32

2 Modem ([7]) 16 19 48 38

3 Carrier-sync ([11]) 8 8 17 20

4 H.263 ([12]) 7 7 203 595

5 H.264 ([13]) 11 12 403 991

6 Mp3 ([2]) 9 11 102 4645

7 Inmarsat ([8]) 22 26 4515 1542

8 Fig.7 in [7] 6 8 45 83

9 Fig.8 in [7] 8 9 74 42

10 Synthetic1 [1] 11 16 705 166

11 Synthetic2 [1] 15 22 127 516

the techniques in [7] and [9], using the model-checker SPIN
and NuSMV, respectively. Table 3 shows the details of the
examples used. The complexity of model-checking for an
SDF graph is not only dependent on the number of ac-
tors and edges in the graph, but also highly dependent on
the topology and token production/consumption rates. The
examples include Sample rate converter, Modem, Carrier-
synchronizer, H.263/H.264 decoder, MP3 decoder, Inmarsat
satellite receiver, Fig.7 and Fig.8 in [7]. We also manually
constructed two larger synthetic examples (Ex.10 & Ex.11,
available online at [1]) to demonstrate the efficiency of our
approach. Ex.10 is obtained by concatenating two copies
of Ex.8, and Ex.11 is an artificial one. Since all three ap-
proaches produce optimal results, we focus on the compar-
ison of time and memory usage of the model-checker. The
experiments are conducted on a workstation running Fedora
Linux Core with 4 × AMD Opteron 844 (1.8GHz) CPU and
8GB RAM.

In Table 4, “BGA” stands for our technique presented in
this paper; “Geilen” stands for the technique in [7]4; and
“Gu” stands for the technique proposed in [9]. Rows labeled
“feas.” contain results for model checking sessions when
the correct BOUND is tested in the LTL formula <> (sum >

BOUND), which is proven false, and a feasible schedule is re-
turned as the counter example. Rows labeled “infeas.” con-
tain results when BOUND-1 is tested in the LTL formula <>

(sum > BOUND), which is proven true. “OOM” and “OOT”
stand for “Out of Memory (system memory usage exceeds
8GB) and “Out of Time” (algorithm running time exceeds
a pre-defined threshold of 5 hours), respectively. We can
see that the BGA technique consistently outperforms the
other two techniques. Our BGA technique finished model-
checking sessions for all the test cases within a maximum
of 7.75 seconds and 64.1 MB memory usage, while Geilen’s
technique experienced OOM for 2 out of the 11 examples,
and Gu’s technique experienced OOT for 4 examples, in-
cluding H.264 decoder, Inmarsat satellite receiver and the
two synthetic examples5. Except these cases of OOM and

4The initial buffer size on each edge e is set to be bslb(e) as
computed with Equation (7), which is shown to help improve
performance compared to setting it to 0 [7].
5Since NuSMV uses symbolic encoding of the state space,
its memory usage does not necessarily grow with state space
size, hence it may experience OOT before OOM; Since SPIN

Table 4: Performance comparison of our approach
with those by Geilen [7] and Gu [9].

Ex Cond
Time Usage (s) Memory Usage (MB)

BGA Geilen Gu BGA Geilen Gu

1
feas. 0.01 0.01 0.28 3.6 8.7 26.0

infeas. 0 1.38 0.01 3.6 23.5 2.5

2
feas. 0 10.1 1.34 3.6 115.9 27.5

infeas. 0.1 80.9 0.7 3.6 744.2 24.0

3
feas. 0.1 0.06 0.01 3.6 9.3 0.3

infeas. 0 0.04 0 3.6 3.6 11.3

4
feas. 0 3.32 0.2 3.6 44.3 19.4

infeas. 0.1 7.83 0.04 3.6 82.1 10.2

5
feas. 0.02 0.03 OOT 3.6 9.3 OOT

infeas. 0.99 25.7 216.0 10.4 252.0 325.4

6
feas. 0 0 6.21 3.6 8.5 81.9

infeas. 0.01 15.7 5.7 3.6 149.5 65.4

7
feas. 0.03 0.39 9608.7 3.6 29.8 321.8

infeas. 0.01 6.42 OOT 3.6 72.1 OOT

8
feas. 0 0.01 6.65 3.6 3.6 29.2

infeas. 0.01 0.07 6.33 3.6 3.6 28.7

9
feas. 0.1 2.16 0.16 3.6 34.5 23.2

infeas. 0 1.7 0.06 3.6 28.7 2.5

10
feas. 6.0 OOM OOT 50.2 OOM OOT

infeas. 7.75 OOM OOT 64.1 OOM OOT

11
feas. 0.01 OOM OOT 3.6 OOM OOT

infeas. 0 OOM OOT 3.6 OOM OOT

OOT, Geilen’s technique uses up to 80.9 seconds and 774.2
MB memory, and Gu’s technique uses up to 9608.7 seconds
and 325.4 MB memory.

6. CONCLUSIONS
In this paper, we have proposed an exact technique for

buffer memory minimization of SDF graphs based on model-
checking. Our model encoding exploits domain-specific knowl-
edge of SDF graphs for effective pruning and reduction of
the search space. Performance evaluation shows significant
improvements of efficiency and scalability over existing tech-
niques based on model-checking.

7. REFERENCES
[1] http://www.cse.ust.hk/~weichen/sdf_ex.html.

[2] http://www.es.ele.tue.nl/sadf/.

[3] M. Ade, R. Lauwereins, and J. A. Peperstraete. Data
memory minimisation for synchronous data flow
graphs emulated on DSP-FPGA targets. In Design
Automation Conference, pages 64–69, 1997.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996.

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An OpenSource Tool for
Symbolic Model Checking. In International Conference
on Computer-Aided Verification (CAV), 2002.

uses explicit-state encoding of the state space, its memory
usage grows with state space size, hence it may experience
OOM before OOT.

68

[6] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed
explicit model checking with hsf-spin. In M. B. Dwyer,
editor, SPIN, volume 2057 of Lecture Notes in
Computer Science, pages 57–79. Springer, 2001.

[7] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with
model checking. In DAC ’05: Proceedings of the 42nd
annual conference on Design automation, pages
819–824, New York, NY, USA, 2005. ACM Press.

[8] S. Goddard and K. Jeffay. Managing memory
requirements in the synthesis of real-time systems
from processing graphs. In Real-Time Technology and
Applications Symposium, 1998. Proceedings. Fourth
IEEE, pages 59–70, Jun 1998.

[9] Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng,
and G. Yu. Static scheduling and software synthesis
for dataflow graphs with symbolic model-checking. In
RTSS ’07: Proceedings of the 28th IEEE International
Real-Time Systems Symposium, pages 353–364,
Washington, DC, USA, 2007. IEEE Computer Society.

[10] G. J. Holzmann. The model checker spin. IEEE Trans.
Software Eng., 23(5):279–295, 1997.

[11] J. Horstmannshoff and H. Meyr. Optimized system
synthesis of complex rt level building blocks from
multirate dataflow graphs. In ISSS, pages 38–43, 1999.

[12] D. Kim, M. Kim, and S. Ha. A case study of system
level specification and software synthesis of multimode
multimedia terminal. In ESTImedia, pages 57–64,
2003.

[13] S. Kwon, H. Jung, and S. Ha. H.264 decoder
algorithm specification and simulation in simulink and
peace. In International SoC Design Conference, pages
9–12, Oct 2004.

[14] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Trans. Comput., 36(1):24–35, 1987.

[15] P. K. Murthy and S. S. Bhattacharyya. Memory
Management for Synthesis of DSP Software. CRC
Press, 2006.

[16] H. Oh, N. Dutt, and S. Ha. Memory optimal single
appearance schedule with dynamic loop count for
synchronous dataflow graphs. In ASP-DAC ’06:
Proceedings of the 2006 conference on Asia South
Pacific design automation, pages 497–502, New York,
NY, USA, 2006. ACM Press.

[17] T. M. Parks. Bounded Scheduling of Process Networks.
PhD thesis, 1994.

[18] S. Stuijk, M. Geilen, and T. Basten. Exploring
trade-offs in buffer requirements and throughput
constraints for synchronous dataflow graphs. Design
Automation Conference, 2006 43rd ACM/IEEE, pages
899–904, 24-28 July 2006.

69

