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ABSTRACT 
Reducing feature sizes and power supply voltage allows 
integrating more processing units (PUs) on multiprocessor 
system-on-chip (MPSoC) to satisfy the increasing demands of 
applications. However, it also makes MPSoC more susceptible to 
various reliability threats, such as high temperature and 
power/ground (P/G) noise. As the scale and complexity of 
MPSoC continuously increase, monitoring and mitigating 
reliability threats at run time could offer better performance, 
scalability, and flexibility for MPSoC designs. In this paper, we 
propose a systematic approach, on-chip sensor network (SENoC), 
to collaboratively detect, report, and alleviate run-time threats in 
MPSoC. SENoC not only detects reliability threats and shares 
related information among PUs, but also plans and coordinates the 
reactions of related PUs in MPSoC. SENoC is used and explained 
in our case study to alleviate the impacts of simultaneous 
switching noise in MPSoC’s P/G network during power gating. 
Based on the detailed noise behaviors under different scenarios 
derived by our circuit-level MPSoC P/G noise simulation and 
analysis platform, simulation results show that SENoC helps to 
achieve on average 26.12% performance improvement compared 
with the traditional stop-go method with 1.4% area overhead in an 
8*8-core MPSoC in 45nm.   

Categories and Subject Descriptors 
B.8 [Performance and Reliability]: Performance Analysis and 
Design Aids, C.0 [Computer Systems Organization: General]: 
Modeling of computer architecture.  

General Terms 
Design, Reliability. 

Keywords 
Sensor network, reliability, dynamic control, low-power, noise, 
power grid, system-on-chip 

1. INTRODUCTION 
Multiprocessor system-on-chip (MPSoC) is becoming a 

favorite choice to satisfy the ever-growing performance 
demanded by applications [1,2,3]. On one hand, shrinking feature 

size allows for more and better functions on MPSoC. On the other 
hand, it also makes MPSoC more susceptible to various reliability 
threats, such as high temperature and power/ground (P/G) noise. 
Improving reliability has become an important aspect of MPSoC 
design. 

Tiny on-chip sensors can measure various run-time 
parameters, such as noise, temperature, switching activity, clock 
duty-cycle, and technology parameters [4,5,6,7,8]. Petrescu et al. 
proposed a signal integrity architecture to monitor various on-chip 
physical parameters, especially voltage and temperature [4]. 
Poirier et al. and McGowen et al. described the control system on 
a 90-nm Itanium processor which utilizes on-chip sensors to 
measure power and temperature and modulates voltage and 
frequency to optimize performance [5, 6]. Sohn et al. proposed a 
sensor-based solution for SRAM to overcome the uncertainty and 
fluctuation of device parameters [7, 8]. These works show that the 
information gathered by on-chip sensors can be used to 
effectively improve the reliability and performance of different 
functional units. Several methods are proposed to collect useful 
information at run time. Chan et al. proposed to use system 
management bus to communicate between IP cores and the 
thermal-aware power management IP for system-level power 
management [9]. Yin et al. proposed a hierarchical architecture to 
collect run-time parameters using network-on-chip (NoC) [10]. 
Ciordas et al. proposed a monitoring service framework to support 
the run-time observability of NoC behaviors and application 
debugging [11, 12].  

As the scale and complexity of MPSoC continuously 
increase, a systematic approach that not only detects reliability 
threats but also mitigates such threats accordingly at run time 
could potentially offer better performance, scalability, and 
flexibility for MPSoC designs. In this paper, we propose a 
systematic approach, on-chip sensor network (SENoC), to 
collaboratively detect, report, and alleviate run-time threats in 
MPSoC. SENoC not only detects reliability threats and shares 
related information among processing units (PUs), but also plans 
and coordinates the reactions of related PUs in MPSoC. SENoC is 
integrated with NoC to ensure that critical information and 
decision is delivered in a timely fashion. 

To highlight the details of our idea, SENoC is used and 
explained in a case study to alleviate the impacts of simultaneous 
switching noise in MPSoC’s P/G network during power gating. 
Tight low power requirements force MPSoC to aggressively adopt 
low power techniques. While power gating can dramatically 
reduce leakage power in MPSoC, it exacerbates simultaneous 
switching noise on the power delivery network, and can result in 
performance degradation and even functional errors. SENoC 
offers an effective solution to simultaneous switching noise in 
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MPSoC’s P/G network. Based on the detailed noise behaviors 
under different scenarios derived by our circuit-level MPSoC P/G 
noise simulation and analysis platform, simulation results show 
that SENoC helps to achieve on average 26.198% performance 
improvement compared with the traditional stop-go method with 
1.4% area overhead in an 8*8-core MPSoC in 45nm. 

The rest of the paper is organized as follows. Section 2 gives 
an overview of SENoC. Serving as the basis of our case study, the 
circuit-level modeling for power gating induced P/G noise is 
presented in Section 3. In section 4, we focus on the behavior 
models of the key components in SENoC and formalize their 
mechanisms. Section 5 shows the implementation and simulation 
results. Section 6 concludes the paper. 

2. AN OVERVIEW OF SENOC 
Besides detecting run-time threats and sharing related 

information among PUs, SENoC also decides and coordinates the 
reactions of all the PUs in MPSoC. SENoC is composed of on-
chip sensors, node agents, and a task manager (TM). It is 
integrated with network-on-chip (NoC) and uses NoC as the 
communication medium. Fig. 1 illustrates the SENoC for a 4*4-
core MPSoC with a mesh-based NoC. 

 

 
Tiny sensors are embedded inside and between PUs to 

measure various parameters, such as voltage and temperature. 
Under normal operating conditions, the parameters are within a 
safe range, and sensors only report them upon requests from the 
node agents. However, sensors will immediately report any 
parameter beyond the safe range to node agents. They are usually 
placed close to the functional units which have high power 
consumption or are sensitive to temperature or voltage conditions. 

Node agents are integrated with NoC routers and connected 
to sensors through network interfaces. Each node agent processes 
the warnings from a group of sensors inside a PU. It will 
preprocess and filter warning as well as compress warnings from 
multiple sensors. Based on the warning severity, a node agent can 
send alert packets to nearby node agents or all the node agents in 
addition to TM. Node agents not only take commands for TM, but 
also collaborate with each other to quickly respond to a threat. 

SENoC uses NoC as the communication medium. We integrate 
the node agent into an input-buffered pipelined NoC router (Fig. 

2). The integration assures SENoC that node agents can send and 
receive packets in NoC in a timely fashion, which is critical to 
SENoC. NoC routers use virtual channels to guarantee the 
delivery time of high-priority alert packets. In addition to unicast, 
multicast is used to send packets simultaneously to multiple node 
agents. SENoC uses four packet types -- command packet, alert 
packet, report packet, and post-alert packet. TM processes packets 
and creates a system-wide plan to minimize threat impacts. It is 
connected to NoC and sends command packets to node agents to 
execute the plan. When receiving a command packet, node agents 
will inform the PU to take specific actions, such as entering sleep 
mode through clock gating. 

 

 
Figure 2. Integrated node agent in NoC router 

3. THE PHYSICAL MODEL OF POWER 
GATING INDUCED P/G NOISE 

SENoC is used in our case study to alleviate the impacts of 
simultaneous switching noise in MPSoC’s P/G network during 
power gating. In order to analyze the performance of SENoC in 
the case study, it is necessary to understand the impacts of power 
gating induced P/G noise among PUs in MPSoC. We build a P/G 
noise simulation and analysis platform and systematically explore 
MPSoC P/G noise behaviors under different power gating 
scenarios [13]. The noise behaviors serve as the basis for the P/G 
noise aware task management methodology based on SENoC. 

The simultaneous switching noise induced by turning on/off 
PUs at different locations in MPSoC is evaluated based on circuit-
level simulations. Assuming all the PUs induce the same rush 
current and have identical capacitance density, inverters are 
placed between power grid nodes and adjacent ground grid nodes 
to represent PU switching activity. A small part of the P/G 
network circuit model is shown in Fig. 3. For the case study, we 
use the 45nm bulk CMOS model [14] for transistors (Vdd=0.8V) 
and the standard cell library is from the Nangate Open Cell 
Library [15] for the whole design. 

MPSoC is modeled with a set of PUs, PU=PUp; p=1, 2, …, N. 
The PU states considering power gating induced P/G noise are 
defined in Table 1. A ToOn/ToOff PU is defined as an attacker. A 
PU, which carries an active task, is defined as an active PU. An 
active PU within the impact range of an attacker is defined as a 
victim. (Please note that some power-on PUs could be Idle or Free, 
and they are not victims in our definition.) For a PU p, Rimpact

p is 
defined as the set of the victims of an attacker p, while PV(p) is 
defined as a set of PU p’s potential victims, namely PV(p)={q| q∈

Figure 1. SENoC on a 4*4-core MPSoC 
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PU, q≠p and q is in the impact range of p}. The number of PU p’s 
potential victims is denoted by NPV(p). 

 

 
Table 1. PU states in power gating 

PU States Illustrations 
Off state Power gated. 

ToOn state The off to on transition. The start time of the transition 
for PU p to execute task i is defined as ton(i). 

ToOff state The on to off transition. The end time of the transition 
for PU p just finished task i is defined as toff(i). 

Idle state Clock gated (power is on). 
ClkToOff 

state Clock gate transition. 

ClkToOn 
state Clock wake up transition. 

Free state Both power and clock are on, but there is no task 
running on the PU. 

Active state A task is running on the PU. 
 

If we assign a task i to a power gated PU p, the powering-
on/off noise when the task begins/finishes will attack the PUs in 
Rimpact

p which is provided through our P/G model. The noise 
protection method will migrate the data off chip, clock gate the 
victim PUs before powering on or off the attacker, and later wake 
up them when the attacker is fully turned on or off. Fig. 4 shows 
the timing of a power on event, and the timing of a power off event 
is similar. TClkToOff and TClkToOn are the time needed to clock gate a 
PU and to wake it up from the clock gated state, respectively. 
Tonsettle and Toffsettle are the settle time for a PU to power on and 
power off. In order to ensure the reliability of MPSoC, here  Tonsettle
≥max{Tsettle

p, TIsafe
pq , p, q∈PU, q≠p}, Toffsettle≥max{Tsettle

p, 
TIsafe

pq ,  p, q∈PU, q≠p}, where Tsettle
p is the period that p powers 

on, and TIsafe
pq is the period that both p and q return to normal 

voltage level. TION and TIOFF are the noise protection time penalty 
for a victim PU when an attacker powers on and off respectively, 
where TION = TClkToOff + Tonsettle + TClkToOn, TIOFF = TClkToOff + Toffsettle 
+ TClkToOn. Assume that the victim number of PU p as an attacker at 

the moment is Nvictim(p,t). we define Pon(p,t) and Poff(p,t) as the total 
performance penalty to power on and power off attacker p, 
respectively, where Pon(p,t) = TION × Nvictim(p,t), Poff(p,t) = TIOFF  × 
Nvictim(p,t). Initially, these timing parameters, such as TClkToOff, 
Tonsettle, TClkToOn, Toffsettle is the worst case value to ensure the 
reliability, however, with the help of SENoC, these parameter will 
be dynamically decided using on-chip sensors.  

 
Figure 4. Timing of a power-on event.  

Based on the P/G noise simulation and analysis platform, we 
simulate MPSoC with different scales and under different 
conditions. Fig. 5 shows the peak P/G noise levels of PUs induced 
by attackers located at different locations on a 4*4-core MPSoC. 
Different impact ranges can be observed: for PU1 as an attacker, at 
most 5 PUs need protection; for PU2, at most 9 PUs need 
protection; for PU6, all the other active PUs need protection. 
SENoC can help with the voltage level collection, noise 
information transfer, analysis, and planning. The detailed 
procedure will be shown in the next section.  

Figure 3. In order to facilitate the P/G network 
analysis, each wire segment is modeled as a chain of L-

type RLC equivalent circuits. An inverter with a 
capacitance load is used to imitate logics. A decap is 
connected to the intersection points on the vdd/vss 

grids. 

 
Figure 5. Noise level and impact range of power gating 
induced P/G noise in 4*4-core MPSoC. agent in NoC 

4. SENOC FOR MPSOC P/G NOISE 
ALLEVIATION 

In this section, we will describe the mechanisms used by 
SENoC to alleviate the impacts of P/G noise during power gating. 
We formalize our approach by optimizing MPSoC performance 
under the task constraints and PU operation constraints for an 
MPSoC with N PUs and a queue of real-time tasks Task under 
P/G noise attacks. 
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4.1 SENoC Components 
TM is in charge of the entire MPSoC, making system-wide 

decisions of task distribution and PU coordination. The states 
transfer of TM is shown in Fig. 6. 
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TM multicasts command packets to inform PUs of new tasks, 

and receives report packets and post-alert packets. Upon receiving 
a report packet or a post-alert packet, it updates Task Table and 
PU Table shown in Table 2 and Table 3. It should be noted that 
the Transient state of PU in PU Table generalizes all transient 
states, including Idle (clock gated), ToOn, ToOff, ClkToOn, and 
ClkToOff states in Table 1. TM is also in charge of the task 
queues. If Task queue is not empty, it selects one and a useable 
PU to carry on the task. All the tasks should fulfill the timing 
constraints. Then this information is packetized in a command 
packet which will then be multicasted through NoC. 

Table 2. Task Table in Task Manager 
Attributes Illustrations 

IntriRunTime The intrisic run time for the task 
RunTime The actual run time for the task 

MinStartTime The minimum time for the task to start 
StartTime The actual start time for task 

MinEndTime The minimum end time for the task 
EndTime The actual end time for the task 

PUID Which PU is processing the task 

State Processing state of the task. 0: have not started; 1: 
started, including halting and finished 

IsCritical Whether the task is critical 
RequireTime Request time for the task 

Index The index in the task queue regarding topological 
structure of tasks 

 

Table 3. PU Table in Task Manager 
Attributes Illustrations 

Task Which task the PU is processing 
State PU states, including Off, On, Active, Free, Transient 

Useable If a PU is Off or Free, it is useable 
Impact range A matrix indicating whether a PU will impact another PU

Ton, Toff The time of power on, power off for a PU 
Safe Voltage The  current safe voltage level suitable for a PU 
Performance Quality of the PU 

Packets are generated by TM or node agents based on the 
run-time information provided by SENoC, transferred through 
NoC and analyzed by node agents. The detailed information of 
the four types of packets is listed in Table 4. In the table, valid 
receiver refers to those PUs or TM to which the packet 
information will affect their action. 

For all the packets, a tag including information of packets’ 
type, sender and receiver is attached. For command packet, a list 
of victims that TM calculated should also be attached. Therefore, 
a node agent who receives a packet will be capable to decide its 
next action together with the sensor information of the 
corresponding PU. 

A node agent is capable of interpreting information in the 
packets, and extracting run-time information from different 
sensors according to some build-in lookup tables which are shown 
in Table 5. Additionally, node agents will generate packet with 
unified forms to ensure a reliable and secure packet transfer, and 
maintain the efficiency of MPSoC. 

Table 4. Four Packets in SENoC 

Packet 
type 

Illuminations 
Possible 
sender

Valid 
receiver

Transfer 
fashion 

Generation 
condition 

Changes in 
PU state

Command 
packet
(CP) 

TM 
attacker, 
victims multicast 

task queue is 
not empty, 
useable PU 

exists 

victims 
change to 
Transient

Alert 
packet
(AP) 

attacker victims multicast 
the attacker 

powers off or 
on 

attacker 
changes to 
Transient

Post-alert 
packet
(P-AP)

attacker TM,victims multicast 

the attacker is 
stable within 
safe voltage 

level 

attacker 
changes to 
Active or 

Off 

Report 
packet
(RP) 

attacker, 
victims

TM, 
attacker unicast 

when a PU 
transfers to a 
stable state 

according 
to contents 

of the 
packet 

Figure 6. State transfer of TM  

 

Table 5. Table In Node Agent 

Items Illustrations 
Information included Function 

Packetization 
synthesizer 

the templates for 
synthesizing 

information to four 
types of packets 

normalize the format of 
packets 

Packet 
analyzer 

different sorts of 
information in the 
packet and their 

connotations 

decide the next action for local 
PU 

Sensor 
analyzer 

signals from different 
sensors 

correspond to different run-
time information, on-line 

adjustment 

 

PU p becomes an attacker when a task is assigned to it, 
which indicates powering on; or when it is going to power off. 
Upon receiving the command packet, and understanding its role 
of an attacker after analyzing the command packet, PU p should 
know its victims and wait for their report packets. After receiving 
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the report packets from all its victims, it will multicast alert 
packet in the beginning of powering on, and multicast post-alert 
packet at the end of powering on, report its state of Free by 
unicasting report packet to TM when finishing a task. The state-
transfer of an attacker is shown in Fig. 7. 

 

 
PU q becomes a victim when it is operating and neighboring 

PU p’s powering on or off will affect it. In such case, for the sake 
of protecting its own process, q has to pause and go through Idle 
state until p’s powering action exerts no impact on q. Similar to p, 
q also experiences transient state ClkToOff when being protected, 
and ClkToOn when resurging. Report packets are sent to TM and 
attacker, reporting the state and action. The detailed information 
of state transfer and packets sending is shown in Fig. 8. 

Active ClkToOff

ClkToO
n Idle

RP to attacker

RP to TM

Finish
ClkToOn

Receive CP

Finish ClkToOff

Sensors detect 
safe voltage level 

on local PU  

 

4.2 Overall Operation in SENoC 
The operations of SENoC can be classified into the 

powering-on operation, and powering-off operation which are 
almost the same. We use the powering on operation as an example 
as follows. When there are tasks ready to process, TM selects 
Task i to operate: 

1.1) If there is some PUs in Transient state, do nothing. 

1.2) If there is no PU in Transient state, TM selects PU p to 
operate Task i, and calculate the theoretical operating time for 
later reference. This operation is as following: 

1.2.1) If there is no Free or Off PU, do nothing. 

1.2.2) If there is a Free PU, then this PU will be selected. TM 
packetizes a command packet to multicast, and updates PU Table. 
PU p carries out Task i after receiving and analyzing the 
command packet. 

1.2.3) If there is an Off PU p with the least number of victims and 
relatively good Performance, PU p will be selected and becomes 
an attacker. A new Safe Voltage will be calculated by TM 
according to its Performance and previous Safe Voltage. TM 
multicasts command packet. After a node agent receives the 
command packet, it will know the role of itself, an attacker or a 
victim. Assume PU q is one of PU p’s victims, and it transfers to 
ClkToOff state after receiving command packet. During ClkToOff, 
it makes preparation for clock gating, including sending data to 
external memory (off-chip memory). Victim q unicasts report 
packet to attacker p after finishing such operations, transfers to 
Idle state during the same period. 

After receiving report packets from all its victims, attacker p 
multicasts alert-packet, transfers to ToOn state during when it 
switches on sleep transistors and powers on. When its sensors 
report safe voltage level, a post-alert packet is generated and 
multicasted. A report packet will be sent to TM, then PU Table 
and Task Table are updated. Meanwhile, attacker p transfers to 
Active state and executes Task i. During the Idle state of victim q, 
it transfers to ClkToOn state after its own sensors detect Safe 
Voltage of attacker p. During the ClkToOn state, PU q prepares 
for resurging from clock gating, including loading relevant data 
from off-chip memory, etc. Victim q unicasts report packet to TM 
after finishing these actions, and at the meantime transfers to 
Active state, continuing the previous task. TM will update PU q’s 
information after receiving this report packet. After receiving all 
the report packets, TM will update items in PU Table and Task 
Table, including PUs’ state and Performance, Task i’s EndTime, 
etc. And then TM will move on to the next action: assign a task or 
turn off a PU. 

Figure 7. State tranfer of Attackers  

4.3 Task Scheduling Algorithms Used by TM 
We adopt a Greedy Heuristic algorithm to perform dynamic 

task scheduling in MPSoC. In comparison to the on-line 
adjustment method, the corresponding stop-go algorithm is also 
implemented to simulate working process of an MPSoC without 
SENoC. The total execution time of a task Tend, and the times that 
the PU has been clock-gated (CP) and powered on/off (PT) during 
the execution of a task are all examined as parameters to measure 
the performance of MPSoC. 

The on-line task scheduling algorithm (GH) is shown from 
line 4 to 24 in Fig. 9. This program simulates the process 
discussed in Section 4.2. The algorithm also includes the strategy 
for on-line task assignment and PU distribution. GH algorithm 
always runs the task with the earliest release time. If there are 
several tasks with the earliest treq(i), GH chooses to always run 
the task with the longest IntriRunTime. When we choose a PU to 
execute the new task (D2 in line 7 of Fig. 10), GH gives first 

Figure 8. State tranfer of Victims  
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priority to Free PUs. If there is no Free PU, consider Off PUs. If 
there are several Free PUs, GH chooses the PU with minimal 
NPV(p). If there are several Off PUs as candidates, GH always 
powers on the PU with the minimal Pon(p,t) (total performance 
penalty to power on and off p). When it entails powering off, GH 
chooses to always power off the PU with the minimal NPV(p). If 
there are several PUs waiting for powering off (D3 in line 18 of 
Fig. 10), the selection rule of GH is similar to the rule of 
powering on a PU. 

Greedy Heuristic (GH) algorithm for power gating induced 
P/G noise-aware on-line task assignment and scheduling 

Input: the task set Task (including DAG Link, treq (i), 
length_p(i)); the PU set PU (including the impact relation 
between PUs); Tonsettle, Toffsettle, TClkToOff, TClkToOn. 

Output: Tend, CP, PT and the task assignment.  

1  Initialize variables; 
2  Time node t=0; 
3  do 

4      if there are requested tasks and their inputs are ready 
5          D1: choose a task i to assign; 
6          if timing constrains are satisfied 

7              D2: choose a PU p to execute task i; 
8              if available PU p exists 

9                  if chosen PU p is Off 
10                     if Nvictim(p,t)>0 (PU p has some victims) 
11                         protect victims; 
12                         power on PU p to execute task i; 

13                     else 
14                         power on PU p to execute task i; 

15                 else 
16                     assign task i to PU p; 

17     else if there are PUs waiting to power off 
18         D3: choose a PU p to power off; 
19         if timing constrains are satisfied 

20             if Nvictim(p,t)>0 
21                 protect victims; 
22                 power off PU p; 

23             else 
24                 power off PU p; 
25     t++; 

26 while there is an un-finished task or an on PU 

 
GH’s corresponding stop-go algorithm protects all the active 

PUs during powering on or off a PU, without concern of real 
voltage impact as GH does. Therefore, a system without SENoC 

can adopt stop-go algorithm, which is simpler and safer, but 
conservative according to our P/G noise model. 

5. IMPLEMENTATION AND 
SIMULATION RESULTS 

We first show a detailed time analysis for SENoC. Based on 
the analysis, simulations are performed to measure the 
performance of MPSoC with and without SENoC. 

5.1 Time Consumption Analysis for SENoC 
SENoC and PUs consume time in several ways, such as the 

signal transfer time and processing time (Table 6). Take the case 
shown in Fig. 5 as an example. Assume attacker p is the northwest 
PU in MPSoC, and victim q is on the right of it. Since there are 6 
routers in the path from attacker p’s node agent to TM , the time 
consumed for packets to transfer is Ttrans(pm) = TR+ TRR+ TR+ TRR 
+TR+ TRR +TR+ TRR+ TR + TRR+ TR  =  6TR+ 5TRR. Upon receiving 
a packet, the node agent should analyze the contents and then 
send it to its PU through NI, and from NI to PU. This process 
consumes time Treceive = Tana + TRN + TNP. For TM, it should also 
receive data through its interface with router, and analyze the 
packet, then change relevant information in PU Table and Task 
Table. This period is TTMreceive = TRT + Tana + Tupdate. When a PU 
needs to send a packet, first it should send necessary information 
to node agent through NI, then node agent will packetize the 
information. This process consumes time Tsend = TNP + TNR + Tpac. 
When TM needs to send a packet, it should packetize and send the 
package to the router beside it through its interface with the router. 
This period is TTMsend =  Tpac +  TRT. The ClkToOn period contains 
the time that node agent send relevant data to off-chip memory to 
save. This period is Tsend + Ttransfer + TRm, in which Ttransfer is the 
period of data transfer from PU to off-chip memory through 
routers on NoC and can be calculated the same way as Ttrans(pm) 
mentioned above. The period of loading data during ClkToOn can 
be derived in similar method. 

Considering a series of operations and their time 
consumption regarding the powering-on operation, PU p is to be 
powered on and carry out a task. From that TM has selected task i 
for PU p and calculated p’s victims, to that p is executing task i 
with all its victims resurged and TM has already known, this 
period of time can be calculated as follows. Consider the 
circumstance that there is no Free PU. TM selects task i and PU p 
to undertake i. This decision period is Tdec. Assume that state(p) = 
Off. PU p becomes attacker and PU q is one of p’s victims. 

Fig. 10 shows the actions of TM, attacker p and victim q 
along with time. TM generates a command packet, which 
consumes TTMsend, and multicasts it. Victim q transfers to 
ClkToOff state after receiving it, making preparation for clock 
gating, including sending data to off-chip memory to save, all of 
which consumes time Ttrans(qm) + Treceive + TClkToOff(q). Victim q 
unicasts report packet after finishing such operations, and 
transfers to Idle state during the same period, which consumes 
time Ttrans(pq) = TR + TRR + TR in this case.  TM waits until 
report packet from all the victims have reached. Up to now, the 
total time is max{ Ttrans(qm) + Treceive + TClkToOff(q) + Tsend + 
ttrans(pq) + Treceive | q is p’s victim }.Then attacker p multicasts 
alert packet, which costs Tsend. After that, attacker p transfers to 
ToOn state during which it powers on, including switching on 
sleep transistors within safe voltage level, transferring and loading 

Figure 9. On-line gready heuristic algorithm for SENoC 
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relevant data, etc. This process consumes time Tonsettle(p).  Then p 
multicasts post-alert packet, consuming it Tsend and then enters 
Active state, beginning to execute task i. Post-alert transfers to 
TM, making it update lookup tables. This process consumes 
Ttrans(pm) + TTMreceive. The last part of TM’s timeline suggests that 
there are two parallel operations: one dealing with victims, the 
other with attacker. 

During the Idle state of victim q, its own sensors detect safe 
voltage level at local PU, and node agent is aware of that, 
consuming time Tsafe(q) + Tsa(q). It transfers to ClkToOn state. 
The ClkToOn state consumes TClkToOn(q). Victim q unicasts report 
packet after finishing actions in ClkToOn. After packetization, it 
transfers to Active state, continuing the previous task. This report 
packet transfers to TM which will then update PU Table. This 
process consumes Tsend + Ttrans(qm) + TTMreceive. Finally, from all 
victims begin clock gating, to all of them resurged and TM knows 
that, victims do not perturb each other, so this period should be 
max{ Ttrans(qm) + Treceive + TClkToOff(q) + Tsend + Tsafe(q) + Tsa(q) + 
TClkToOn(q) + Tsend + Ttrans(qm) + TTMreceive | q is p’s victim }. 
Since the actions of attacker and victims do not interrupt each 
other, these two actions parallel that attacker enters ToOn state 
and that victims resurge to Active state after entering ClkToOff 
state. Therefore the total time for a whole process of powering-on 
is expressed as  max { max { Ttrans(qm) + Treceive + TClkToOff(q) + 
Tsend + Ttrans(pq) + Treceive | q is p’s victim } + Tsend + Tonsettle(p) + 

Tsend + Ttrans(pm) + TTMreceive, max { Ttrans(qm) + Treceive + TClkOff(q) 
+ Tsend＋  Tsafe(q) + Tsa(q) + TClkToOn(q) + Tsend + Ttrans(qm) + 
TTMreceive | q is p’s victim }}. The period that TM updates the 
tables should be max{max{Ttrans(qm)+TTMreceive| q is p’s victim}, 
Ttrans(pm)+TTMreceive+Δt (p’s P-AP begins sending, q’s RP begins 
sending)}, in which Δt (p’s P-AP begins sending, q’s RP begins 
sending) represents the duration after q’s RP begins sending  and 
before p’s P-AP begins sending. 

5.2 Implementation and Simulation Setup 
The simulations are based on the MPSoC P/G noise 

simulation and analysis platform. The simulations assume that the 
average power consumption of a single PU is 30mW, and the area 
of a single PU is 660μm×660μm. Based on SPICE simulation 
results using 45nm standard logic cells, the noise toleration of 
Vdd-Vss is set to be 100mV, and hence Vsafe is set to be 700mV. 
The corresponding Rimpact of each attacker p is derived for 4*4-
core to 8*8-core MPSoCs. The P/G network RLC parameters are 
obtained from PTM interconnect model [14]. 

We adopt four basic topological structures of tasks to make 
comparison: (1) TASKNC: tasks with No Correlation, (2) TASKSP: 
several Sequential tasks in Parallel, (3) TASKTT: Tree-connected 
Tasks, (4) TASKFC: Fully Correlated tasks (a connected DAG with 
multiple inputs and multiple outputs). What is more, for task 
number of 60 and 80, we adopt two sub-structures for each of SP, 
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Figure 10. Actions of TM, Attacker p and Victim q in time  
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TT, and FC: structure expanded by depth (designated as a) and by 
width (designated as b), from 40-task structures. 

5.3 Simulation Results 
In our simulation, we test MPSoC using SENoC and stop-go 

method for 6 to 80 tasks with different task structures. The actual 
execution time is longer than ideal execution time for all the cases 
in our study. Difference in task structures, MPSoC scales, task 
numbers and algorithms affects execution time differently. We 
define rai (SENoC)= (Tend (SENoC)- Tend_i) / Tend_i to measure the 
efficiency of the method with SENoC, in which Tend_i denotes the 
ideal finih time for all the tasks assuming that power gating is not 
adopted. To compare different methods directly, we define rGs = 
(Tend(stop-go) - Tend(SENoC) ) / Tend(stop-go)  to compare SENoC 
method and stop-go method. rai, rGs, CP and PT for different task 
structures in 8*8 MPSoC are listed in Table 7. 

Table 6. Types of Time Consumption 

Time Illustrations 
Start point Terminal 

TRR router A A’s neighboring router B 

TNR PU’s NI nearest router 

TRN router nearest PU’s NI 

Tsa sensor local node agent 

TRm 

router’s interface with 
memory memory 

memory router’s interface with 
memory 

TRT 
router beside TM TM 

TM router beside TM 

TNP 
NI PU 

PU NI 

Tpac packetization time 

Tana packet analyzing time 

TR the period for a router to make decision 

Tsafe 
the period from a victim enters Idles state to its sensors 

detect safe voltage level 

Tsafe
p 

the period from attacker p powers on to its voltage level 
is stable within safe range 

TClkToOff(q) the time q costs during ClkToOff state 

tClkToOn(q) the time q costs during ClkToOn state 

Tonsettle(p) the time p costs during ToOn state 

Tupdate 
the time that TM updates information in PU Table and 

Task Table 

 
Table 7 shows that MPSoC with SENoC achieves impressive 

Tend improvement compared with MPSoC without SENoC. 
Especially, the improvement is obvious for task structures that 
many tasks run in parallel like TASKNC.  For 8*8-core MPSoC, on 
average, we have rGs = 26.20%, which shows that SENoC helps to 
achieve an average performance improvement of 26.20%. We 
estimate the area overhead based on the 45nm design and the NoC 
simulations using NS2 [16]. The area overhead of the SENoC for 
8*8-core MPSoC are 1.4%. 

Table 7. Performance of 8*8-core MPSoC (CP: Clock Gated 
Times; PT: Power On/Off Times) 

#Task Task 
structure

SENoC Stop-go 
rGs1(%)

rai (%) CP PT CP PT

6 NC 2.758 10 12 30 12 17.150 

8 NC 3.1143 20 16 56 16 29.845 

10 NC 1.6253 32 20 90 20 30.522 

12 NC 1.4768 39 24 132 24 32.319 

20 NC 2.4386 90 40 380 40 46.151 

40 NC 3.4001 196 80 1560 80 59.613 

40 SP 0.8987 22 18 56 16 7.434 

40 TT 1.0313 146 54 450 54 26.371 

40 FC 1.0991 34 28 114 28 11.999 

60 NC 1.2925 285 120 3540 120 68.254 

60 SP_a 0.8803 28 20 56 16 5.075 

60 SP_b 2.37 46 28 132 24 9.173 

60 TT_a 1.3756 233 84 958 179 29.998

60 TT_b 7.6552 276 90 1312 189 31.912

60 FC_a 0.8923 56 38 156 36 10.206 

60 FC_b 2.4025 95 44 262 38 14.863 

80 NC 95.236 320 128 4032 128 43.767 

80 SP_a 0.7593 30 20 56 16 3.771 

80 SP_b 0.7966 91 38 30 12 14.296 

80 TT_a 1.453 385 126 56 16 35.332 

80 TT_b 0.7782 382 128 90 20 40.239 

80 FC_a 0.934 90 56 132 24 12.719 

80 FC_b 1.0342 169 62 380 40 21.552 
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Figure 11. Performance improvement of MPSoC using 

SENoC with 40 tasks under different task structures and 

Fig. 11 shows the performance improvement of MPSoC 
using SENoC with 40 tasks under different task structures and 
MPSoC scales. The performance improvement increases 
dramatically as the MPSoC scale increases in TASKNC. However, 
for task structures NC, FC and TT, the increase in performance 
improvement is not so obvious. This is because for TASKNC, tasks 
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can run in parallel. Generally, the trend of increase in 
performance improvement slows down when MPSoC scale 
increases. This is due to the fact that a relatively small number of 
PUs can handle the given set of tasks. 

Besides, CP and PT while using SENoC decreases 
drastically in most cases. This indicates SENoC helps to decrease 
the time of power off and on, thus effectively avoid powering 
on/off induced P-G noise. Therefore, MPSoC will work more 
safely with higher reliability when using SENoC. 

6. CONCLUSIONS 
This paper proposes a systematic approach, on-chip sensor 

network (SENoC), which not only detects reliability threats and 
shares related information among PUs, but also plans and 
coordinates the reactions of related PUs in MPSoC. SENoC is 
integrated with NoC to ensure that critical information and 
decision is delivered in a timely fashion. SENoC is used in our 
case study to alleviate the impacts of simultaneous switching 
noise in MPSoC’s P/G network during power gating. Based on 
the detailed noise behaviors under different scenarios derived by 
our circuit-level MPSoC P/G noise simulation and analysis 
platform, the case study shows that SENoC helps to achieve on 
average 22.2% performance improvement compared with the 
traditional stop-go method with 1.4% area overhead in an 8*8-
core MPSoC in 45nm. 
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