
A Case Study of On-Chip Sensor Network
in Multiprocessor System-on-Chip

Yu Wang1,2, Jiang Xu2, Shengxi Huang1, Weichen Liu2, Huazhong Yang1
1EE. Dept, TNList, Tsinghua University, Beijing, China,

2Mobile Computing System Lab, Dept. of ECE
Hong Kong University of Science and Technology, Hong Kong, China

ABSTRACT
Reducing feature sizes and power supply voltage allows
integrating more processing units (PUs) on multiprocessor
system-on-chip (MPSoC) to satisfy the increasing demands of
applications. However, it also makes MPSoC more susceptible to
various reliability threats, such as high temperature and
power/ground (P/G) noise. As the scale and complexity of
MPSoC continuously increase, monitoring and mitigating
reliability threats at run time could offer better performance,
scalability, and flexibility for MPSoC designs. In this paper, we
propose a systematic approach, on-chip sensor network (SENoC),
to collaboratively detect, report, and alleviate run-time threats in
MPSoC. SENoC not only detects reliability threats and shares
related information among PUs, but also plans and coordinates the
reactions of related PUs in MPSoC. SENoC is used and explained
in our case study to alleviate the impacts of simultaneous
switching noise in MPSoC’s P/G network during power gating.
Based on the detailed noise behaviors under different scenarios
derived by our circuit-level MPSoC P/G noise simulation and
analysis platform, simulation results show that SENoC helps to
achieve on average 26.12% performance improvement compared
with the traditional stop-go method with 1.4% area overhead in an
8*8-core MPSoC in 45nm.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Analysis and
Design Aids, C.0 [Computer Systems Organization: General]:
Modeling of computer architecture.

General Terms
Design, Reliability.

Keywords
Sensor network, reliability, dynamic control, low-power, noise,
power grid, system-on-chip

1. INTRODUCTION
Multiprocessor system-on-chip (MPSoC) is becoming a

favorite choice to satisfy the ever-growing performance
demanded by applications [1,2,3]. On one hand, shrinking feature

size allows for more and better functions on MPSoC. On the other
hand, it also makes MPSoC more susceptible to various reliability
threats, such as high temperature and power/ground (P/G) noise.
Improving reliability has become an important aspect of MPSoC
design.

Tiny on-chip sensors can measure various run-time
parameters, such as noise, temperature, switching activity, clock
duty-cycle, and technology parameters [4,5,6,7,8]. Petrescu et al.
proposed a signal integrity architecture to monitor various on-chip
physical parameters, especially voltage and temperature [4].
Poirier et al. and McGowen et al. described the control system on
a 90-nm Itanium processor which utilizes on-chip sensors to
measure power and temperature and modulates voltage and
frequency to optimize performance [5, 6]. Sohn et al. proposed a
sensor-based solution for SRAM to overcome the uncertainty and
fluctuation of device parameters [7, 8]. These works show that the
information gathered by on-chip sensors can be used to
effectively improve the reliability and performance of different
functional units. Several methods are proposed to collect useful
information at run time. Chan et al. proposed to use system
management bus to communicate between IP cores and the
thermal-aware power management IP for system-level power
management [9]. Yin et al. proposed a hierarchical architecture to
collect run-time parameters using network-on-chip (NoC) [10].
Ciordas et al. proposed a monitoring service framework to support
the run-time observability of NoC behaviors and application
debugging [11, 12].

As the scale and complexity of MPSoC continuously
increase, a systematic approach that not only detects reliability
threats but also mitigates such threats accordingly at run time
could potentially offer better performance, scalability, and
flexibility for MPSoC designs. In this paper, we propose a
systematic approach, on-chip sensor network (SENoC), to
collaboratively detect, report, and alleviate run-time threats in
MPSoC. SENoC not only detects reliability threats and shares
related information among processing units (PUs), but also plans
and coordinates the reactions of related PUs in MPSoC. SENoC is
integrated with NoC to ensure that critical information and
decision is delivered in a timely fashion.

To highlight the details of our idea, SENoC is used and
explained in a case study to alleviate the impacts of simultaneous
switching noise in MPSoC’s P/G network during power gating.
Tight low power requirements force MPSoC to aggressively adopt
low power techniques. While power gating can dramatically
reduce leakage power in MPSoC, it exacerbates simultaneous
switching noise on the power delivery network, and can result in
performance degradation and even functional errors. SENoC
offers an effective solution to simultaneous switching noise in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-352-5/09/11…$10.00.

241

MPSoC’s P/G network. Based on the detailed noise behaviors
under different scenarios derived by our circuit-level MPSoC P/G
noise simulation and analysis platform, simulation results show
that SENoC helps to achieve on average 26.198% performance
improvement compared with the traditional stop-go method with
1.4% area overhead in an 8*8-core MPSoC in 45nm.

The rest of the paper is organized as follows. Section 2 gives
an overview of SENoC. Serving as the basis of our case study, the
circuit-level modeling for power gating induced P/G noise is
presented in Section 3. In section 4, we focus on the behavior
models of the key components in SENoC and formalize their
mechanisms. Section 5 shows the implementation and simulation
results. Section 6 concludes the paper.

2. AN OVERVIEW OF SENOC
Besides detecting run-time threats and sharing related

information among PUs, SENoC also decides and coordinates the
reactions of all the PUs in MPSoC. SENoC is composed of on-
chip sensors, node agents, and a task manager (TM). It is
integrated with network-on-chip (NoC) and uses NoC as the
communication medium. Fig. 1 illustrates the SENoC for a 4*4-
core MPSoC with a mesh-based NoC.

Tiny sensors are embedded inside and between PUs to

measure various parameters, such as voltage and temperature.
Under normal operating conditions, the parameters are within a
safe range, and sensors only report them upon requests from the
node agents. However, sensors will immediately report any
parameter beyond the safe range to node agents. They are usually
placed close to the functional units which have high power
consumption or are sensitive to temperature or voltage conditions.

Node agents are integrated with NoC routers and connected
to sensors through network interfaces. Each node agent processes
the warnings from a group of sensors inside a PU. It will
preprocess and filter warning as well as compress warnings from
multiple sensors. Based on the warning severity, a node agent can
send alert packets to nearby node agents or all the node agents in
addition to TM. Node agents not only take commands for TM, but
also collaborate with each other to quickly respond to a threat.

SENoC uses NoC as the communication medium. We integrate
the node agent into an input-buffered pipelined NoC router (Fig.

2). The integration assures SENoC that node agents can send and
receive packets in NoC in a timely fashion, which is critical to
SENoC. NoC routers use virtual channels to guarantee the
delivery time of high-priority alert packets. In addition to unicast,
multicast is used to send packets simultaneously to multiple node
agents. SENoC uses four packet types -- command packet, alert
packet, report packet, and post-alert packet. TM processes packets
and creates a system-wide plan to minimize threat impacts. It is
connected to NoC and sends command packets to node agents to
execute the plan. When receiving a command packet, node agents
will inform the PU to take specific actions, such as entering sleep
mode through clock gating.

Figure 2. Integrated node agent in NoC router

3. THE PHYSICAL MODEL OF POWER
GATING INDUCED P/G NOISE

SENoC is used in our case study to alleviate the impacts of
simultaneous switching noise in MPSoC’s P/G network during
power gating. In order to analyze the performance of SENoC in
the case study, it is necessary to understand the impacts of power
gating induced P/G noise among PUs in MPSoC. We build a P/G
noise simulation and analysis platform and systematically explore
MPSoC P/G noise behaviors under different power gating
scenarios [13]. The noise behaviors serve as the basis for the P/G
noise aware task management methodology based on SENoC.

The simultaneous switching noise induced by turning on/off
PUs at different locations in MPSoC is evaluated based on circuit-
level simulations. Assuming all the PUs induce the same rush
current and have identical capacitance density, inverters are
placed between power grid nodes and adjacent ground grid nodes
to represent PU switching activity. A small part of the P/G
network circuit model is shown in Fig. 3. For the case study, we
use the 45nm bulk CMOS model [14] for transistors (Vdd=0.8V)
and the standard cell library is from the Nangate Open Cell
Library [15] for the whole design.

MPSoC is modeled with a set of PUs, PU=PUp; p=1, 2, …, N.
The PU states considering power gating induced P/G noise are
defined in Table 1. A ToOn/ToOff PU is defined as an attacker. A
PU, which carries an active task, is defined as an active PU. An
active PU within the impact range of an attacker is defined as a
victim. (Please note that some power-on PUs could be Idle or Free,
and they are not victims in our definition.) For a PU p, Rimpact

p is
defined as the set of the victims of an attacker p, while PV(p) is
defined as a set of PU p’s potential victims, namely PV(p)={q| q∈

Figure 1. SENoC on a 4*4-core MPSoC

242

PU, q≠p and q is in the impact range of p}. The number of PU p’s
potential victims is denoted by NPV(p).

Table 1. PU states in power gating

PU States Illustrations
Off state Power gated.

ToOn state The off to on transition. The start time of the transition
for PU p to execute task i is defined as ton(i).

ToOff state The on to off transition. The end time of the transition
for PU p just finished task i is defined as toff(i).

Idle state Clock gated (power is on).
ClkToOff

state Clock gate transition.

ClkToOn
state Clock wake up transition.

Free state Both power and clock are on, but there is no task
running on the PU.

Active state A task is running on the PU.

If we assign a task i to a power gated PU p, the powering-
on/off noise when the task begins/finishes will attack the PUs in
Rimpact

p which is provided through our P/G model. The noise
protection method will migrate the data off chip, clock gate the
victim PUs before powering on or off the attacker, and later wake
up them when the attacker is fully turned on or off. Fig. 4 shows
the timing of a power on event, and the timing of a power off event
is similar. TClkToOff and TClkToOn are the time needed to clock gate a
PU and to wake it up from the clock gated state, respectively.
Tonsettle and Toffsettle are the settle time for a PU to power on and
power off. In order to ensure the reliability of MPSoC, here Tonsettle
≥max{Tsettle

p, TIsafe
pq , p, q∈PU, q≠p}, Toffsettle≥max{Tsettle

p,
TIsafe

pq , p, q∈PU, q≠p}, where Tsettle
p is the period that p powers

on, and TIsafe
pq is the period that both p and q return to normal

voltage level. TION and TIOFF are the noise protection time penalty
for a victim PU when an attacker powers on and off respectively,
where TION = TClkToOff + Tonsettle + TClkToOn, TIOFF = TClkToOff + Toffsettle
+ TClkToOn. Assume that the victim number of PU p as an attacker at

the moment is Nvictim(p,t). we define Pon(p,t) and Poff(p,t) as the total
performance penalty to power on and power off attacker p,
respectively, where Pon(p,t) = TION × Nvictim(p,t), Poff(p,t) = TIOFF ×
Nvictim(p,t). Initially, these timing parameters, such as TClkToOff,
Tonsettle, TClkToOn, Toffsettle is the worst case value to ensure the
reliability, however, with the help of SENoC, these parameter will
be dynamically decided using on-chip sensors.

Figure 4. Timing of a power-on event.

Based on the P/G noise simulation and analysis platform, we
simulate MPSoC with different scales and under different
conditions. Fig. 5 shows the peak P/G noise levels of PUs induced
by attackers located at different locations on a 4*4-core MPSoC.
Different impact ranges can be observed: for PU1 as an attacker, at
most 5 PUs need protection; for PU2, at most 9 PUs need
protection; for PU6, all the other active PUs need protection.
SENoC can help with the voltage level collection, noise
information transfer, analysis, and planning. The detailed
procedure will be shown in the next section.

Figure 3. In order to facilitate the P/G network
analysis, each wire segment is modeled as a chain of L-

type RLC equivalent circuits. An inverter with a
capacitance load is used to imitate logics. A decap is
connected to the intersection points on the vdd/vss

grids.

Figure 5. Noise level and impact range of power gating
induced P/G noise in 4*4-core MPSoC. agent in NoC

4. SENOC FOR MPSOC P/G NOISE
ALLEVIATION

In this section, we will describe the mechanisms used by
SENoC to alleviate the impacts of P/G noise during power gating.
We formalize our approach by optimizing MPSoC performance
under the task constraints and PU operation constraints for an
MPSoC with N PUs and a queue of real-time tasks Task under
P/G noise attacks.

243

4.1 SENoC Components
TM is in charge of the entire MPSoC, making system-wide

decisions of task distribution and PU coordination. The states
transfer of TM is shown in Fig. 6.

rec
eiv

ed

sent

Fini
sh

dec
idi

ng

TM multicasts command packets to inform PUs of new tasks,

and receives report packets and post-alert packets. Upon receiving
a report packet or a post-alert packet, it updates Task Table and
PU Table shown in Table 2 and Table 3. It should be noted that
the Transient state of PU in PU Table generalizes all transient
states, including Idle (clock gated), ToOn, ToOff, ClkToOn, and
ClkToOff states in Table 1. TM is also in charge of the task
queues. If Task queue is not empty, it selects one and a useable
PU to carry on the task. All the tasks should fulfill the timing
constraints. Then this information is packetized in a command
packet which will then be multicasted through NoC.

Table 2. Task Table in Task Manager
Attributes Illustrations

IntriRunTime The intrisic run time for the task
RunTime The actual run time for the task

MinStartTime The minimum time for the task to start
StartTime The actual start time for task

MinEndTime The minimum end time for the task
EndTime The actual end time for the task

PUID Which PU is processing the task

State Processing state of the task. 0: have not started; 1:
started, including halting and finished

IsCritical Whether the task is critical
RequireTime Request time for the task

Index The index in the task queue regarding topological
structure of tasks

Table 3. PU Table in Task Manager
Attributes Illustrations

Task Which task the PU is processing
State PU states, including Off, On, Active, Free, Transient

Useable If a PU is Off or Free, it is useable
Impact range A matrix indicating whether a PU will impact another PU

Ton, Toff The time of power on, power off for a PU
Safe Voltage The current safe voltage level suitable for a PU
Performance Quality of the PU

Packets are generated by TM or node agents based on the
run-time information provided by SENoC, transferred through
NoC and analyzed by node agents. The detailed information of
the four types of packets is listed in Table 4. In the table, valid
receiver refers to those PUs or TM to which the packet
information will affect their action.

For all the packets, a tag including information of packets’
type, sender and receiver is attached. For command packet, a list
of victims that TM calculated should also be attached. Therefore,
a node agent who receives a packet will be capable to decide its
next action together with the sensor information of the
corresponding PU.

A node agent is capable of interpreting information in the
packets, and extracting run-time information from different
sensors according to some build-in lookup tables which are shown
in Table 5. Additionally, node agents will generate packet with
unified forms to ensure a reliable and secure packet transfer, and
maintain the efficiency of MPSoC.

Table 4. Four Packets in SENoC

Packet
type

Illuminations
Possible
sender

Valid
receiver

Transfer
fashion

Generation
condition

Changes in
PU state

Command
packet
(CP)

TM
attacker,
victims multicast

task queue is
not empty,
useable PU

exists

victims
change to
Transient

Alert
packet
(AP)

attacker victims multicast
the attacker

powers off or
on

attacker
changes to
Transient

Post-alert
packet
(P-AP)

attacker TM,victims multicast

the attacker is
stable within
safe voltage

level

attacker
changes to
Active or

Off

Report
packet
(RP)

attacker,
victims

TM,
attacker unicast

when a PU
transfers to a
stable state

according
to contents

of the
packet

Figure 6. State transfer of TM

Table 5. Table In Node Agent

Items Illustrations
Information included Function

Packetization
synthesizer

the templates for
synthesizing

information to four
types of packets

normalize the format of
packets

Packet
analyzer

different sorts of
information in the
packet and their

connotations

decide the next action for local
PU

Sensor
analyzer

signals from different
sensors

correspond to different run-
time information, on-line

adjustment

PU p becomes an attacker when a task is assigned to it,
which indicates powering on; or when it is going to power off.
Upon receiving the command packet, and understanding its role
of an attacker after analyzing the command packet, PU p should
know its victims and wait for their report packets. After receiving

244

the report packets from all its victims, it will multicast alert
packet in the beginning of powering on, and multicast post-alert
packet at the end of powering on, report its state of Free by
unicasting report packet to TM when finishing a task. The state-
transfer of an attacker is shown in Fig. 7.

PU q becomes a victim when it is operating and neighboring

PU p’s powering on or off will affect it. In such case, for the sake
of protecting its own process, q has to pause and go through Idle
state until p’s powering action exerts no impact on q. Similar to p,
q also experiences transient state ClkToOff when being protected,
and ClkToOn when resurging. Report packets are sent to TM and
attacker, reporting the state and action. The detailed information
of state transfer and packets sending is shown in Fig. 8.

Active ClkToOff

ClkToO
n Idle

RP to attacker

RP to TM

Finish
ClkToOn

Receive CP

Finish ClkToOff

Sensors detect
safe voltage level

on local PU

4.2 Overall Operation in SENoC
The operations of SENoC can be classified into the

powering-on operation, and powering-off operation which are
almost the same. We use the powering on operation as an example
as follows. When there are tasks ready to process, TM selects
Task i to operate:

1.1) If there is some PUs in Transient state, do nothing.

1.2) If there is no PU in Transient state, TM selects PU p to
operate Task i, and calculate the theoretical operating time for
later reference. This operation is as following:

1.2.1) If there is no Free or Off PU, do nothing.

1.2.2) If there is a Free PU, then this PU will be selected. TM
packetizes a command packet to multicast, and updates PU Table.
PU p carries out Task i after receiving and analyzing the
command packet.

1.2.3) If there is an Off PU p with the least number of victims and
relatively good Performance, PU p will be selected and becomes
an attacker. A new Safe Voltage will be calculated by TM
according to its Performance and previous Safe Voltage. TM
multicasts command packet. After a node agent receives the
command packet, it will know the role of itself, an attacker or a
victim. Assume PU q is one of PU p’s victims, and it transfers to
ClkToOff state after receiving command packet. During ClkToOff,
it makes preparation for clock gating, including sending data to
external memory (off-chip memory). Victim q unicasts report
packet to attacker p after finishing such operations, transfers to
Idle state during the same period.

After receiving report packets from all its victims, attacker p
multicasts alert-packet, transfers to ToOn state during when it
switches on sleep transistors and powers on. When its sensors
report safe voltage level, a post-alert packet is generated and
multicasted. A report packet will be sent to TM, then PU Table
and Task Table are updated. Meanwhile, attacker p transfers to
Active state and executes Task i. During the Idle state of victim q,
it transfers to ClkToOn state after its own sensors detect Safe
Voltage of attacker p. During the ClkToOn state, PU q prepares
for resurging from clock gating, including loading relevant data
from off-chip memory, etc. Victim q unicasts report packet to TM
after finishing these actions, and at the meantime transfers to
Active state, continuing the previous task. TM will update PU q’s
information after receiving this report packet. After receiving all
the report packets, TM will update items in PU Table and Task
Table, including PUs’ state and Performance, Task i’s EndTime,
etc. And then TM will move on to the next action: assign a task or
turn off a PU.

Figure 7. State tranfer of Attackers

4.3 Task Scheduling Algorithms Used by TM
We adopt a Greedy Heuristic algorithm to perform dynamic

task scheduling in MPSoC. In comparison to the on-line
adjustment method, the corresponding stop-go algorithm is also
implemented to simulate working process of an MPSoC without
SENoC. The total execution time of a task Tend, and the times that
the PU has been clock-gated (CP) and powered on/off (PT) during
the execution of a task are all examined as parameters to measure
the performance of MPSoC.

The on-line task scheduling algorithm (GH) is shown from
line 4 to 24 in Fig. 9. This program simulates the process
discussed in Section 4.2. The algorithm also includes the strategy
for on-line task assignment and PU distribution. GH algorithm
always runs the task with the earliest release time. If there are
several tasks with the earliest treq(i), GH chooses to always run
the task with the longest IntriRunTime. When we choose a PU to
execute the new task (D2 in line 7 of Fig. 10), GH gives first

Figure 8. State tranfer of Victims

245

priority to Free PUs. If there is no Free PU, consider Off PUs. If
there are several Free PUs, GH chooses the PU with minimal
NPV(p). If there are several Off PUs as candidates, GH always
powers on the PU with the minimal Pon(p,t) (total performance
penalty to power on and off p). When it entails powering off, GH
chooses to always power off the PU with the minimal NPV(p). If
there are several PUs waiting for powering off (D3 in line 18 of
Fig. 10), the selection rule of GH is similar to the rule of
powering on a PU.

Greedy Heuristic (GH) algorithm for power gating induced
P/G noise-aware on-line task assignment and scheduling

Input: the task set Task (including DAG Link, treq (i),
length_p(i)); the PU set PU (including the impact relation
between PUs); Tonsettle, Toffsettle, TClkToOff, TClkToOn.

Output: Tend, CP, PT and the task assignment.

1 Initialize variables;
2 Time node t=0;
3 do

4 if there are requested tasks and their inputs are ready
5 D1: choose a task i to assign;
6 if timing constrains are satisfied

7 D2: choose a PU p to execute task i;
8 if available PU p exists

9 if chosen PU p is Off
10 if Nvictim(p,t)>0 (PU p has some victims)
11 protect victims;
12 power on PU p to execute task i;

13 else
14 power on PU p to execute task i;

15 else
16 assign task i to PU p;

17 else if there are PUs waiting to power off
18 D3: choose a PU p to power off;
19 if timing constrains are satisfied

20 if Nvictim(p,t)>0
21 protect victims;
22 power off PU p;

23 else
24 power off PU p;
25 t++;

26 while there is an un-finished task or an on PU

GH’s corresponding stop-go algorithm protects all the active

PUs during powering on or off a PU, without concern of real
voltage impact as GH does. Therefore, a system without SENoC

can adopt stop-go algorithm, which is simpler and safer, but
conservative according to our P/G noise model.

5. IMPLEMENTATION AND
SIMULATION RESULTS

We first show a detailed time analysis for SENoC. Based on
the analysis, simulations are performed to measure the
performance of MPSoC with and without SENoC.

5.1 Time Consumption Analysis for SENoC
SENoC and PUs consume time in several ways, such as the

signal transfer time and processing time (Table 6). Take the case
shown in Fig. 5 as an example. Assume attacker p is the northwest
PU in MPSoC, and victim q is on the right of it. Since there are 6
routers in the path from attacker p’s node agent to TM , the time
consumed for packets to transfer is Ttrans(pm) = TR+ TRR+ TR+ TRR
+TR+ TRR +TR+ TRR+ TR + TRR+ TR = 6TR+ 5TRR. Upon receiving
a packet, the node agent should analyze the contents and then
send it to its PU through NI, and from NI to PU. This process
consumes time Treceive = Tana + TRN + TNP. For TM, it should also
receive data through its interface with router, and analyze the
packet, then change relevant information in PU Table and Task
Table. This period is TTMreceive = TRT + Tana + Tupdate. When a PU
needs to send a packet, first it should send necessary information
to node agent through NI, then node agent will packetize the
information. This process consumes time Tsend = TNP + TNR + Tpac.
When TM needs to send a packet, it should packetize and send the
package to the router beside it through its interface with the router.
This period is TTMsend = Tpac + TRT. The ClkToOn period contains
the time that node agent send relevant data to off-chip memory to
save. This period is Tsend + Ttransfer + TRm, in which Ttransfer is the
period of data transfer from PU to off-chip memory through
routers on NoC and can be calculated the same way as Ttrans(pm)
mentioned above. The period of loading data during ClkToOn can
be derived in similar method.

Considering a series of operations and their time
consumption regarding the powering-on operation, PU p is to be
powered on and carry out a task. From that TM has selected task i
for PU p and calculated p’s victims, to that p is executing task i
with all its victims resurged and TM has already known, this
period of time can be calculated as follows. Consider the
circumstance that there is no Free PU. TM selects task i and PU p
to undertake i. This decision period is Tdec. Assume that state(p) =
Off. PU p becomes attacker and PU q is one of p’s victims.

Fig. 10 shows the actions of TM, attacker p and victim q
along with time. TM generates a command packet, which
consumes TTMsend, and multicasts it. Victim q transfers to
ClkToOff state after receiving it, making preparation for clock
gating, including sending data to off-chip memory to save, all of
which consumes time Ttrans(qm) + Treceive + TClkToOff(q). Victim q
unicasts report packet after finishing such operations, and
transfers to Idle state during the same period, which consumes
time Ttrans(pq) = TR + TRR + TR in this case. TM waits until
report packet from all the victims have reached. Up to now, the
total time is max{ Ttrans(qm) + Treceive + TClkToOff(q) + Tsend +
ttrans(pq) + Treceive | q is p’s victim }.Then attacker p multicasts
alert packet, which costs Tsend. After that, attacker p transfers to
ToOn state during which it powers on, including switching on
sleep transistors within safe voltage level, transferring and loading

Figure 9. On-line gready heuristic algorithm for SENoC

246

relevant data, etc. This process consumes time Tonsettle(p). Then p
multicasts post-alert packet, consuming it Tsend and then enters
Active state, beginning to execute task i. Post-alert transfers to
TM, making it update lookup tables. This process consumes
Ttrans(pm) + TTMreceive. The last part of TM’s timeline suggests that
there are two parallel operations: one dealing with victims, the
other with attacker.

During the Idle state of victim q, its own sensors detect safe
voltage level at local PU, and node agent is aware of that,
consuming time Tsafe(q) + Tsa(q). It transfers to ClkToOn state.
The ClkToOn state consumes TClkToOn(q). Victim q unicasts report
packet after finishing actions in ClkToOn. After packetization, it
transfers to Active state, continuing the previous task. This report
packet transfers to TM which will then update PU Table. This
process consumes Tsend + Ttrans(qm) + TTMreceive. Finally, from all
victims begin clock gating, to all of them resurged and TM knows
that, victims do not perturb each other, so this period should be
max{ Ttrans(qm) + Treceive + TClkToOff(q) + Tsend + Tsafe(q) + Tsa(q) +
TClkToOn(q) + Tsend + Ttrans(qm) + TTMreceive | q is p’s victim }.
Since the actions of attacker and victims do not interrupt each
other, these two actions parallel that attacker enters ToOn state
and that victims resurge to Active state after entering ClkToOff
state. Therefore the total time for a whole process of powering-on
is expressed as max { max { Ttrans(qm) + Treceive + TClkToOff(q) +
Tsend + Ttrans(pq) + Treceive | q is p’s victim } + Tsend + Tonsettle(p) +

Tsend + Ttrans(pm) + TTMreceive, max { Ttrans(qm) + Treceive + TClkOff(q)
+ Tsend＋ Tsafe(q) + Tsa(q) + TClkToOn(q) + Tsend + Ttrans(qm) +
TTMreceive | q is p’s victim }}. The period that TM updates the
tables should be max{max{Ttrans(qm)+TTMreceive| q is p’s victim},
Ttrans(pm)+TTMreceive+Δt (p’s P-AP begins sending, q’s RP begins
sending)}, in which Δt (p’s P-AP begins sending, q’s RP begins
sending) represents the duration after q’s RP begins sending and
before p’s P-AP begins sending.

5.2 Implementation and Simulation Setup
The simulations are based on the MPSoC P/G noise

simulation and analysis platform. The simulations assume that the
average power consumption of a single PU is 30mW, and the area
of a single PU is 660μm×660μm. Based on SPICE simulation
results using 45nm standard logic cells, the noise toleration of
Vdd-Vss is set to be 100mV, and hence Vsafe is set to be 700mV.
The corresponding Rimpact of each attacker p is derived for 4*4-
core to 8*8-core MPSoCs. The P/G network RLC parameters are
obtained from PTM interconnect model [14].

We adopt four basic topological structures of tasks to make
comparison: (1) TASKNC: tasks with No Correlation, (2) TASKSP:
several Sequential tasks in Parallel, (3) TASKTT: Tree-connected
Tasks, (4) TASKFC: Fully Correlated tasks (a connected DAG with
multiple inputs and multiple outputs). What is more, for task
number of 60 and 80, we adopt two sub-structures for each of SP,

2009年4月

decision
made

8日
2009年5月1日

CP made

009年4月 - 2009年5月1日
TTMsend

8日

2009年7月1日 - 2009年8月1日
Tsend

2009年11月1日 - 2009年12月1日
Tsend

2009年4月8日 - 2009年5月1日
Ttrans(qm)

2009年12月1日

RP begins
sending
to TM.

Q enters Active
2009年9月1日

sensors
detect

safe voltage
level

2009年5月1日

receive
CP

2009年8月1日 - 2009年9月1日
Tsafe

2009年6月1日

data sent to
processor,

enters
ClkToOff

2009年7月1日

finish
ClkToOff,

begins
packing
RP to p

2009年4月8日

CP begins
sending

2009年8月1日

RP begins
sending

to P.
Q enters

Idle

2009年5月1日 - 2009年6月1日
Treceive

2009年6月1日 - 2009年7月1日
TClkToOff

2009年10月1日 - 2009年11月1日
TClkToOn

2009年9月1日 - 2009年10月1日
Tsa

2009年11月1日

finish
ClkToOn,

Begins
Packing

RP to TM
2009年10月1日

data
sent to
NA,

q enters
ClkToOn

2009年4月8日 - 2009年5月1日
Ttrans(pm)

2009年4月8日

CP begins
sending

2009年5月1日

receive
CP

2009年5月1日 - 2009年6月1日
Treceive

2009年6月1日

data sent to
processor

2009年9月1日

q’s RP
begins

sending

2009年10月1日

receive
 q’s RP

2009年5月1日

receive
P-AP2009年6月1日

p’s data
updated

2009年5月1日 - 2009年6月1日
TTMreceive

2009年5月1日 - 2009年6月1日
TTMreceive

2009年4月8日 - 2009年5月1日
Ttrans(qm)

2009年6月1日 - 2009年7月1日
Wait for all victim's data

2009年6月1日

q’s data
updated

2009年5月1日

receive
RP

2009年4月8日

q’s RP
begins

sending

2010年3月1日

P-AP
begins

sending,
p enters
active

2010年2月1日

finish
ToOn,
begins

packing
P-AP2010年1月1日

AP begins
sending,
p enters
ToOn

2009年12月1日

All
victims’

RP data sent
to processor

2010年2月1日 - 2010年3月1日
Tsend

2010年1月1日 - 2010年2月1日
Tonsettle

2009年12月1日 - 2010年1月1日
Tsend

2009年10月1日 - 2009年11月1日
Treceive

2009年11月1日

q’s data
sent to

processor

2009年11月1日 - 2009年12月1日
Wait for

all victim's
 data

2009年7月1日

all
victim’s

data updated

2009年9月1日 - 2009年10月1日
Ttrans(pq)

2009年5月1日 - 2009年11月1日
wait for victims’ and attacker’s RP

2009年4月1日

P’s P-AP
begins

sending

2009年4月1日 - 2009年5月1日
Ttrans(pm)

TM

Attacker p

Victim q

2009年6月1日 - 2009年10月1日
wait for victims’ RP

RP—report packet

CP—command packet

AP—alert packet P-AP—post-alert packet

abbreviations

NA—node agent

2009年12月1日
p begins

packing AP

TM—task manager

Figure 10. Actions of TM, Attacker p and Victim q in time

247

TT, and FC: structure expanded by depth (designated as a) and by
width (designated as b), from 40-task structures.

5.3 Simulation Results
In our simulation, we test MPSoC using SENoC and stop-go

method for 6 to 80 tasks with different task structures. The actual
execution time is longer than ideal execution time for all the cases
in our study. Difference in task structures, MPSoC scales, task
numbers and algorithms affects execution time differently. We
define rai (SENoC)= (Tend (SENoC)- Tend_i) / Tend_i to measure the
efficiency of the method with SENoC, in which Tend_i denotes the
ideal finih time for all the tasks assuming that power gating is not
adopted. To compare different methods directly, we define rGs =
(Tend(stop-go) - Tend(SENoC)) / Tend(stop-go) to compare SENoC
method and stop-go method. rai, rGs, CP and PT for different task
structures in 8*8 MPSoC are listed in Table 7.

Table 6. Types of Time Consumption

Time Illustrations
Start point Terminal

TRR router A A’s neighboring router B

TNR PU’s NI nearest router

TRN router nearest PU’s NI

Tsa sensor local node agent

TRm

router’s interface with
memory memory

memory router’s interface with
memory

TRT
router beside TM TM

TM router beside TM

TNP
NI PU

PU NI

Tpac packetization time

Tana packet analyzing time

TR the period for a router to make decision

Tsafe
the period from a victim enters Idles state to its sensors

detect safe voltage level

Tsafe
p

the period from attacker p powers on to its voltage level
is stable within safe range

TClkToOff(q) the time q costs during ClkToOff state

tClkToOn(q) the time q costs during ClkToOn state

Tonsettle(p) the time p costs during ToOn state

Tupdate
the time that TM updates information in PU Table and

Task Table

Table 7 shows that MPSoC with SENoC achieves impressive

Tend improvement compared with MPSoC without SENoC.
Especially, the improvement is obvious for task structures that
many tasks run in parallel like TASKNC. For 8*8-core MPSoC, on
average, we have rGs = 26.20%, which shows that SENoC helps to
achieve an average performance improvement of 26.20%. We
estimate the area overhead based on the 45nm design and the NoC
simulations using NS2 [16]. The area overhead of the SENoC for
8*8-core MPSoC are 1.4%.

Table 7. Performance of 8*8-core MPSoC (CP: Clock Gated
Times; PT: Power On/Off Times)

#Task Task
structure

SENoC Stop-go
rGs1(%)

rai (%) CP PT CP PT

6 NC 2.758 10 12 30 12 17.150

8 NC 3.1143 20 16 56 16 29.845

10 NC 1.6253 32 20 90 20 30.522

12 NC 1.4768 39 24 132 24 32.319

20 NC 2.4386 90 40 380 40 46.151

40 NC 3.4001 196 80 1560 80 59.613

40 SP 0.8987 22 18 56 16 7.434

40 TT 1.0313 146 54 450 54 26.371

40 FC 1.0991 34 28 114 28 11.999

60 NC 1.2925 285 120 3540 120 68.254

60 SP_a 0.8803 28 20 56 16 5.075

60 SP_b 2.37 46 28 132 24 9.173

60 TT_a 1.3756 233 84 958 179 29.998

60 TT_b 7.6552 276 90 1312 189 31.912

60 FC_a 0.8923 56 38 156 36 10.206

60 FC_b 2.4025 95 44 262 38 14.863

80 NC 95.236 320 128 4032 128 43.767

80 SP_a 0.7593 30 20 56 16 3.771

80 SP_b 0.7966 91 38 30 12 14.296

80 TT_a 1.453 385 126 56 16 35.332

80 TT_b 0.7782 382 128 90 20 40.239

80 FC_a 0.934 90 56 132 24 12.719

80 FC_b 1.0342 169 62 380 40 21.552

4*4 5*5 6*6 7*7 8*8
0

10

20

30

40

50

60

MPSoC scale

40
TA

SK
 ti

m
e

im
pr

ov
em

en
t r
G
s(
%
)

TASKNC

TASKSP

TASKTT

TASKFC

Figure 11. Performance improvement of MPSoC using

SENoC with 40 tasks under different task structures and

Fig. 11 shows the performance improvement of MPSoC
using SENoC with 40 tasks under different task structures and
MPSoC scales. The performance improvement increases
dramatically as the MPSoC scale increases in TASKNC. However,
for task structures NC, FC and TT, the increase in performance
improvement is not so obvious. This is because for TASKNC, tasks

248

can run in parallel. Generally, the trend of increase in
performance improvement slows down when MPSoC scale
increases. This is due to the fact that a relatively small number of
PUs can handle the given set of tasks.

Besides, CP and PT while using SENoC decreases
drastically in most cases. This indicates SENoC helps to decrease
the time of power off and on, thus effectively avoid powering
on/off induced P-G noise. Therefore, MPSoC will work more
safely with higher reliability when using SENoC.

6. CONCLUSIONS
This paper proposes a systematic approach, on-chip sensor

network (SENoC), which not only detects reliability threats and
shares related information among PUs, but also plans and
coordinates the reactions of related PUs in MPSoC. SENoC is
integrated with NoC to ensure that critical information and
decision is delivered in a timely fashion. SENoC is used in our
case study to alleviate the impacts of simultaneous switching
noise in MPSoC’s P/G network during power gating. Based on
the detailed noise behaviors under different scenarios derived by
our circuit-level MPSoC P/G noise simulation and analysis
platform, the case study shows that SENoC helps to achieve on
average 22.2% performance improvement compared with the
traditional stop-go method with 1.4% area overhead in an 8*8-
core MPSoC in 45nm.

7. ACKNOWLEDGMENTS
The authors are grateful to the reviewers, who offer us

helpful suggestions to improve this paper. This work is partially
supported by National Natural Science Foundation of China
(No.60870001), 863 project (No. 2009AA01Z130), and partially
by Hong Kong SAR RGC Earmarked Research Grant 621108 and
Hong Kong University of Science and Technology PDF.

8. REFERENCES
[1] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J.

Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla,
C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar. An 80-tile
sub-100-w teraflops processor in 65-nm cmos. IEEE Journal
of Solid-State Circuits, 43(1):29–41, 2008.

[2] Shane Bell, Bruce Edwards, John Amann, Rich Conlin,
Kevin Joyce, Vince Leung, John MacKay, Mike Reif,
Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang
Miao, Carl Ramey, David Wentzlaff, Walker Anderson,
Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan
Montenegro, Jay Stickney, and John Zook. Tile64tm
processor: A 64-core soc with mesh interconnect. In Proc.
Digest of Technical Papers. IEEE International Solid-State
Circuits Conference ISSCC 2008, pages 88–598, 2008.

[3] Shekhar Borkar. Thousand core chips: a technology
perspective. In DAC ’07: Proceedings of the 44th annual
conference on Design automation, pages 746–749, New
York, NY, USA, 2007. ACM.

[4] V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, and J.
Wieling, “Monitors for a signal integrity measurement
system,” Solid-State Circuits Conference, 2006. ESSCIRC
2006. Proceedings of the 32nd European, pp. 122–125, Sept.
2006.

[5] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger,
“Power and temperature control on a 90nm itanium-family
processor,” Solid-State Circuits Conference, 2005. Digest of
Technical Papers. ISSCC. 2005 IEEE International, pp. 304–
305 Vol. 1, Feb. 2005.

[6] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican,
W. Parks, and S. Naffziger, “Power and temperature control
on a 90-nm itanium family processor,” Solid-State Circuits,
IEEE Journal of, vol. 41, no. 1, pp. 229–237, Jan. 2006.

[7] K. Sohn, N. Cho, H. Kim, K. Kim, H.-S. Mo, Y.-H. Suh, H.-
G. Byun, and H.-J. Yoo, “An autonomous sram with on-chip
sensors in an 80nm double stacked cell technology,” VLSI
Circuits, 2005. Digest of Technical Papers. 2005 Symposium
on, pp. 232–235, June 2005.

[8] K. Sohn, H.-S. Mo, Y.-H. Suh, H.-G. Byun, and H.-J. Yoo,
“An autonomous sram with on-chip sensors in an 80-nm
double stacked cell technology,” Solid-State Circuits, IEEE
Journal of, vol. 41, no. 4, pp. 823–830, April 2006.

[9] C. Chan, Y. Chang, H. Ho, and H. Chiueh, “A thermal-aware
power management soft-ip for platform-based soc designs,”
System-on-Chip, 2004. Proceedings. 2004 International
Symposium on, pp. 181–184, Nov. 2004.

[10] Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka
Rantala, Ethiopia Nigussie, Jouni Isoaho, Hannu Tenhunen.
Hierarchical Agent Architecture for Scalable NoC Design
with Online Monitoring Services Proceedings of MICRO 41

[11] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J.
Meerbergen. An event-based network-on-chip monitoring
service. In Proc. of the 9th IEEE International High-Level
Design Validation and Test Workshop, pages 149–154, 2004.

[12] C. Ciordas, K. Goossens, A. Radulescu, and T. Basten. Noc
monitoring: impact on the design flow. In Proc. IEEE
International Symposium on Circuits and Systems ISCAS
2006, pages 1981–1984, 2006.

[13] Yan Xu, Weichen Liu, Yu Wang, Jiang Xu, Xiaoming Chen,
Huazhong Yang, “On-line MPSoC Scheduling Considering
Power Gating Induced Power/Ground Noise”, in ISVLSI
2009, Tampa, USA, pp. 109-114.

[14] Nanoscale Integration and Modeling (NIMO) Group, ASU.
Predictive Technology Model (PTM). [Online]. Available:
http://www.eas.asu.edu/˜ptm/

[15] Nangate Open Cell Library. [Online]. Available: http: //www.
opencelllibrary.org

[16] NS2, http://nsnam.isi.edu/nsnam

249

	1. INTRODUCTION
	2. AN OVERVIEW OF SENOC
	3. THE PHYSICAL MODEL OF POWER GATING INDUCED P/G NOISE
	4. SENOC FOR MPSOC P/G NOISE ALLEVIATION
	4.1 SENoC Components
	4.2 Overall Operation in SENoC
	4.3 Task Scheduling Algorithms Used by TM

	5. IMPLEMENTATION AND SIMULATION RESULTS
	5.1 Time Consumption Analysis for SENoC
	5.2 Implementation and Simulation Setup
	5.3 Simulation Results

	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

