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As data-driven analysis methods powered by artificial intelligence have matured, research on visual attention prediction has 
advanced markedly. However, gaze-point data from eye-tracking devices are often characterized by high noise levels, lim-
iting accuracy in representing real driver behavior. Thus, we proposed the Differential 2D Gaussian Ellipse (D2DGE) rep-
resentation, which captures gaze distribution within a time window to reduce noise from devices or unconscious glances. 
To validate D2DGE, a Generative Adversarial Imitation Learning model was trained on both raw gaze data and the D2DGE 
data, and we assessed the similarity between the raw and generated data using the Kullback-Leibler divergence. Then, we 
compared the five parameters of D2DGE representation between novice and experienced drivers. Results show that the 
D2DGE data can better approximate the raw data and contains richer information than raw gaze data. The findings indicate 
that the D2DGE can be a promising alternative to describe gaze distribution during driving.

INTRODUCTIOG 

Drivers’ visual behavior is highly associated with 
driving safety (He, 2020). The visual channel is estimated 
to take over 90% of the information in driving tasks (Si-
vak, 1996). To quantitatively analyze the impact of visual 
cues on driving safety, the eye tracker has been widely 
adopted. By analyzing eye-tracking data, researchers are 
able to reveal drivers’ attention allocation strategies dur-
ing driving (Werneke, 2012), based on which, adaptive 
driver assistance systems, such as adaptive human-ma-
chine interfaces (HMI), can be developed. Thus, a number 
of research has been conducted to model and predict driv-
ers’ visual attention allocation strategies (Baee, 2021; Fu, 
2023).  

Gaze points are commonly utilized in eye-tracking re-
search to estimate drivers’ visual attention. Still, they rep-
resent only a fraction of overall visual perception (Ahl-
ström, 2021), and can be noisy due to the fast eye move-
ments in order to scan the environment, and the less-than-
ideal tracking accuracies. Such characteristics can nega-
tively impact the performance of data-driven visual atten-
tion predictive models (Gómez-Poveda, 2016). Specifi-
cally, most of the data-driven visual behavior predictions 
were based on discrete focal gaze points, which may suf-
fer from a decrease in algorithm robustness and prediction 
accuracy.  

As such, this paper proposes a driver visual model 
called the Differential 2D Gaussian Ellipse (D2DGE) to 
describe drivers’ visual attention allocation with the dis-
tribution of multiple focal gaze points considered. 
D2DGE balances gaze noise across all directions without 
altering the spatial distribution of the original gaze data. 

Consequently, it outperforms raw gaze data in data-driven 
visual attention prediction algorithms. Statistical analysis 
was performed to compare the gazes from the eye-tracker 
(i.e., raw gaze) and D2DGE data to evaluate the invari-
ance of D2DGE relative to raw gaze data in their two-di-
mensional spatial distribution. Further, given the vital role 
of visual attention prediction in human-machine interface 
(HMI) design and autonomous driving, we further gener-
ated visual attention based on the raw gaze data and 
D2DGE data using Generative Adversarial Imitation 
Learning (GAIL) (Ho, J., & Ermon, S., 2016) to check if 
D2DGE performs better in data-driven visual attention 
analysis than gaze data. 

APPROACH 

D2DGE data 

As shown in Figure 1, inspired by the research on fo-
cal and peripheral vision (Larson, 2009), the D2DGE eye-
tracking data representation was proposed as the k times 
of the sigma (k-sigma) range of the 2D Gaussian distribu-
tion that the gaze points follow within a sliding window, 
where the distance between the participant and the pre-
sented visual stimulus determines the magnitude of k. 
This enables a new eye-tracking data representation based 
on eye-tracker-recorded gaze points while eliminating 
noise in the recorded data. For an eye-tracking sequence 
with a window size of n and a sliding step size of m, a 2D 
Gaussian distribution is calculated for all gaze points 
within the window. The k-sigma range of the Gaussian 
distribution is then extracted to obtain an ellipse, repre-
senting the visual attention area of the driver during that 



time window. This ellipse is described by five parameters: 
!µ!, µ", s, r#$%&', θ', where µ! and µ" represent the mean 
coordinates of the Gaussian distribution, s is the area of 
the ellipse calculated from the k-sigma range, r#$%&'  is 
the length of the ellipse’s major axis, and θ represents the 

rotation angle of the ellipse. After the calculation for one 
window, the window is shifted by the step size of m, and 
then the next ellipse is calculated, thereby obtaining a 
continuous sequence of D2DGE eye-tracking data from 
the original gaze points data.   

 

Figure 1 The proposed D2DGE representation 

Driving Simulation Data for Validation 

To validate the effectiveness of the D2DGE represen-
tation, a driving simulator experiment was conducted to 
record the visual behaviors of experienced and novice 
drivers during specific driving scenarios in a SAE L3 ve-
hicle (Society of Automotive Engineers). A fixed-base 
simulator with three 1920x1080 screens was used and the 
eye-tracking data was captured at 60Hz using a Smart Eye 
desktop tracker. In total, original image sequences from 
87 scenes were extracted based on the Deepaccident da-
taset (Wang, 2024). Then, the image sequences were en-
hanced (Wang, 2021), converted to video clips, and inter-
polated (Wu, 2024), resulting in 5760x1080 resolution 
videos at 20 FPS. Out of the 87 scenes, 42 involved acci-
dents, while 45 did not. Twelve participants (6 males, 6 
females) were recruited, with 3 experienced drivers (years 
of licensure ≥ 5 and mileage in the last year over 20,000 
km) and 3 novice drivers (years of licensure < 2 and mile-
age in the last year less than 5,000 km) in each group. Par-
ticipants were informed of L3 driving automation and in-
structed to take over the vehicle when hazards were per-
ceived. The experiment lasted 18 minutes for each partic-
ipant. Based on this experimental design, the parameters 
for D2DGE were set as follows, i.e., windows size n = 10 
frames, sliding window m = 5 frames, and times of sigma 
range k = 2. 

Analyses 

To determine whether D2DGE data confer an ad-
vantage in data‐driven visual attention prediction, a Gen-
erative Adversarial Imitation Learning (GAIL) model was 
trained independently on both D2DGE and raw gaze da-
tasets, and the divergence between the generated outputs 
and the original gaze distributions was quantified using 
the Kullback–Leibler (KL) divergence.  

GAIL is an imitation learning algorithm in which gen-
erative adversarial networks are combined with reinforce-
ment learning, enabling decision-making policies that ap-
proximate expert-level performance to be learned without 
manual specification of reward functions. The KL diver-
gence (Hershey, 2007) is an asymmetric measure of infor-
mation that quantifies the information loss or discrepancy 
of one probability distribution relative to a reference dis-
tribution.  

𝐾𝐿(𝑃 ∥ 𝑄) =0𝑃(𝑖)log	(
𝑃(𝑖)
𝑄(𝑖)

)
(

 (1) 

Typically, distributions P and Q are compared via 
their KL divergence, with smaller values indicating 
greater similarity, whereas larger values indicating greater 
divergence. 

Specifically, in our work, the two sets of data (i.e., 
raw gaze and D2DGE data) were used as inputs to train a 
GAIL algorithm, with Proximal Policy Optimization 



(PPO) (Schulman, 2017) as the policy generator. The gen-
erated data were then compared with their corresponding 
original data based on the KL divergence metric. It should 
be noted that, to make a fair comparison, the central point 
!µ!, µ"' of the generated samples based on D2DGE data 
was determined by calculating the mean coordinates of all 
gaze points within a specific window, which ensures that 
the spatial distribution characteristics of the D2DGE cen-
tral points remain consistent with those of the raw gaze 
points. Consequently, the transformation from raw gaze 
points to D2DGE representation preserves the fundamen-
tal spatial distribution properties of the raw gaze data. 

Further, to explore if the new eye-tracking data repre-
sentation contains more information compared to the raw 
data, one-way ANOVA tests were conducted, with the 
mean of the five parameters of D2DGE, and the mean co-
ordinates of the raw gazes from each trial as dependent 

variables and driver experience (novice vs. experienced) 
as the independent variable. 

The model was built using the Proc Mixed in SAS on 
demand, which included a random intercept for partici-
pant and a compound symmetry (CS) residual structure, 
estimated using REML (Corbeil, 1976). 

RESULTS 

First, as shown in Table 1, the KL divergence between 
the generated data and the original data showed that, for 
both novice and experienced drivers, the D2DGE-gener-
ated data exhibited smaller differences between the origi-
nal and generated data as compared to the raw-gaze-gen-
erated data for both novice and experienced drivers.

 
Table 1. KL divergence between the original data and the generated data.

 

 

 

 
 

 

 

 

 

 

Table 2. The influence of driving experience on gaze locations. 

Outcome Estimate SE DoF t-value p-value 

x 46.9217 48.9552 859 0.96 .3381 

y 95.0166 72.2254 859 1.32 .1887 

Note: In this table and the following tables, “*” denotes p < .05; DoF is the degrees of freedom, which is the approximate 
value adjusted by the Kenward–Roger method; SE is the standard deviation. 

Table 3. The influence of driving experience on D2DGE Parameters. 

Outcome Estimate SE DoF t-value p-value 

µ! 15.4 44.0 280 0.35 .7264 

µ" 65.6 63.8 280 1.03 .3050 

s -21933 9392.9 280 -2.34 .0202* 

r#$%&' -106.76 108.56 280 -0.98 .3262 

θ -4.5919 12.7964 280 -0.36 .7200 

 

 

 Data Type Driver Type KL Divergence 
Original data 

VS 

Generated data 

Gaze point Experienced 0.588 
D2DGE 0.351 

Gaze point Novice 0.709 
D2DGE 0.389 



Then, a linear mixed‐effects model was used to exam-
ine the influence of driving experience on raw gaze‐point 
coordinates and the five D2DGE parameters for each par-
ticipant. As shown in Table 2, no significant differences 
were observed between experienced and novice drivers in 
either lateral or longitudinal gaze positions (p > .05), a re-
sult that held for both the raw gaze points and the gaze 
based on D2DGE representation. 

Likewise, we did not observe a significant difference 
between novice and experienced drivers regarding 
D2DGE major‐axis length rmajor  and orientation angle θ 
(p > .05). However, the D2DGE ellipse area s differed 
significantly between experienced and novice drivers (p 
= .02), indicating that novice drivers scanned a broader 
region of the traffic scene than experienced drivers within 
any specific time window. 

DISCUSSIONS 

In this study, we proposed a new eye-tracking data 
format, the D2DGE, to describe the characteristics of 
drivers’ visual scanning behaviors during driving. A driv-
ing simulator experiment was conducted to validate the 
effectiveness of the proposed model based on the distri-
bution of the gaze positions and the data generated by 
GAIL. 

First, as indicated by the KL divergence, the D2DGE 
can better recover the original distribution of the gaze po-
sitions than directly using the raw gaze position data. First, 
it is possible that due to the technical difficulties, the raw 
gaze locations are noisy. For example, the commonly used 
eye-tracking systems, such as SmartEye, Tobii or Dikablis, 
can only achieve an accuracy of 0.5, 0.6 and 0.5 degrees 
(Smart Eye, 2025; Tobii, 2025; EST, 2025). Second, some 
of the fast eye movements might be random and may not 
be associated with conscious attention allocation. Thus, 
the models based on the raw data may be overfitted and 
not be able to learn meaningful visual attention allocation 
strategies. 

Second, a comparison between the novice and expe-
rienced drivers regarding the key metrics of D2DGE indi-
cates that richer information can be extracted from the 
D2DGE data representation. Specifically, though lateral 
or longitudinal gaze positions, length and orientation an-
gle were not found to be different between novice and ex-
perienced drivers, the ellipse area differed between novice 
and experienced drivers. It should be noted that, the lack 
of difference in terms of the lateral or longitudinal gaze 
positions might be due to the design of the experiment – 
it does not require drivers to drive the vehicle, but just to 
observe the environment. Thus, the superior performance 
of experienced drivers in distributing their visual attention 

to a broader area (Underwood, 2007) was not observed in 
our study. Instead, the driving scenarios started from a 
moment when predictable hazards are about to appear. 
Thus, experienced drivers might be quicker to notice the 
potential hazardous areas and pay more sustained atten-
tion to them compared to novice drivers. As a result, they 
exhibited an even narrower observational field compared 
to novice drivers. This result indicates that, compared to 
raw gaze-point data, D2DGE representation, owing to its 
greater number of parameters, may capture richer visual 
attention information and thus offers advantages in statis-
tical analyses and gaze data generation based on artificial 
intelligence. 

However, several limitations remain in this study. 
First, the parameters used to compute D2DGE, namely, 
the sliding window size, step length, and the k-sigma 
range, directly affect the resulting data and its character-
istics, and the optimal k-sigma is dependent on the dis-
tance between participants and the presented stimulus, 
which should be carefully calibrated in future research. 
Second, we used relatively homogeneous driving scenar-
ios. Future research should further validate our results in 
more diverse scenarios, preferably based on the data from 
on-road studies. Further, we only considered one algo-
rithm to generate the eye-tracking data. Future research 
should consider more advanced and robust models to gen-
erate eye-tracking data based on both the raw gaze data 
and the D2DGE data, and explore how additional contex-
tual information can be incorporated so that each gener-
ated trajectory can more accurately reflect real-world 
driver gaze behavior. 

In summary, our results showed that the new eye-
tracking data representation based on the original gaze 
data preserved the spatial distribution characteristics of 
the visual attention allocation in the 2D plane and contains 
more information describing drivers' eye-tracking behav-
iors than the raw gaze data. Additionally, the D2DGE rep-
resentation enabled superior performance for data-driven 
eye-tracking analysis. Future research is needed to ex-
plore how D2DGE parameters are associated with driving 
performance. 
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