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 A Comparison of Patterns and Contributing Factors of ADAS and 

ADS involved Crashes 

Crashes involving Advanced Driver Assistance Systems (ADAS) and Automated 

Driving Systems (ADS) have been increasing in recent years. Understanding the 

characteristics of these crashes can guide the optimization of driving automation 

systems and the policies improving the safety of mixed traffic. However, due to 

the limited available data, the crashes of ADS- and ADAS-controlled vehicles are 

still under-investigated. Thus, utilizing the latest National Highway Traffic Safety 

Administration crash reports, our study explores the patterns and contributing 

factors of ADAS- and ADS-involved crashes. The sequences of events leading to 

crashes were extracted from the reports and then categorized into five clusters. 

Next, for incomplete records, a non-parametric imputation method was applied 

based on Random Forest. Finally, logistic regression models were built to explore 

the factors associated with the crashes. The results show that the automation level, 

speed limit, and vehicle speed are predictors of crash patterns. At the same time, 

the crash pattern, combined with incident time, roadway type, roadway surface, 

and vehicle model year are associated with crash outcomes (i.e., contact area and 

injury severity). The results indicate that further improvement of the ADS/ADAS 

control algorithms and driver education, may be needed to improve the safety of 

mixed traffic. 
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1. Introduction 

With the advancement of automated driving technologies, the past few years have 

witnessed a rapid implementation of Advanced Driver Assistance Systems (ADAS) and 

Automated Driving Systems (ADS) on the road. In 2020, 50% of new car models in the 

market are provided with Society of Automotive Engineers (SAE) Level 2 systems (e.g., 

adaptive control, lane keeping systems, etc.) (SAE International, 2021) as standard or 

optional features (Consumer Reports, 2021), and this ratio is expected to surpass 90% in 

the 2040s (Highway Loss Data Institute, 2022). It is believed that ADAS and ADS can 

improve traffic safety by reducing the number of accidents caused by human errors 



(Litman, 2022). However, crashes involving these systems still happen. Thus, it is 

essential to understand the patterns of the ADS- and ADAS-involved crashes and the 

factors leading to the crashes so that further countermeasures can be adopted to reduce 

the crash rates of ADS- and ADAS-controlled vehicles (e.g., designing testing scenarios 

for ADS- and ADAS-controlled vehicles and training human drivers to better share the 

road with driving automation). 

Extensive studies have been conducted on crash characterization, aiming at 

identifying contributing factors of ADS- and ADAS-involved crashes and proposing and 

validating crash mitigation countermeasures. The majority of these studies characterized 

crashes in the conventional approach which only considered the static pre-crash 

information that can be directly extracted from the crash reports (e.g., weather condition, 

lighting condition, roadway type, and vehicle motion) and classified the crashes into 

general post-crash types, such as head-on, sideswipe, rear-end, etc (Chen et al., 2020; 

Dadvar & Ahmed, 2021; Esenturk et al., 2021; Kutela et al., 2022). A few other studies 

adopted a more nuanced approach which delved into the chronological progression of the 

crashes. They explored the patterns of crashes by extracting and analyzing the sequence 

of events derived from text narratives (Song et al., 2021, 2022; Wu et al., 2016). However, 

few studies have taken both the static pre-crash variables and the crash progression 

information into consideration in crash characterization and thus we have little knowledge 

of how static factors (e.g., environmental condition) and traffic dynamics (i.e., 

progression information) jointly influence the ADS- and ADAS-involved crashes.  

Additionally, crash characterization heavily relies on the data sources. The CA 

DMV crash dataset (California DMV, 2022) has been mostly adopted in previous 

research, but it only covers ADS-involved crashes, while the crashes involving ADAS 

remain conspicuously underexplored due to the absence of readily accessible ADAS-



specific crash datasets. Consequently, our understanding of the distinctive crash patterns 

and contributing factors associated with ADAS-involved incidents remains limited. 

Previous research has pointed out that, on public roads, drivers may adopt different 

strategies when interacting with vehicles with different levels of driving automation 

(Huang, Wen, He, et al., 2022; Wen et al., 2023). Considering the inherent difference 

between ADAS and ADS (i.e., whether human intervention is required), it is necessary 

to distinguish between ADAS and ADS to better understand the safety implications of 

driving automation technologies and develop appropriate crash mitigation measures. 

Thus, through a comprehensive analysis of the latest dataset that involves both 

ADAS and ADS crashes, our study seeks to identify and compare the patterns and 

contributing factors of ADAS and ADS-involved crashes in order to improve ADAS and 

ADS safety. The contributions of this study are as follows: First, the study identifies the 

crash patterns based on crash sequences extracted from narratives and proposes a 

framework for modeling crash outcomes, in which the crash pattern is considered an 

intermediate factor. Second, our study shows that in combination with other contributing 

factors, the crash pattern can influence crash outcomes (i.e., contact area and injury 

severity). Finally, the results of our study highlight the importance of distinguishing 

ADAS and ADS in crashes when analyzing the factors contributing to crashes. 

2. Literature Review 

2.1 Crash datasets 

To facilitate traffic safety research and reduce traffic incidents, authoritative 

organizations around the world have been working on collecting and publishing vehicle 

crash datasets in the past few decades. The National Automotive Sampling System 

General Estimates System (NASS-GES) database and the Fatality Analysis Reporting 

System (FARS) published by the National Highway Traffic Safety Administration 



(NHTSA) are the most commonly adopted datasets in traffic safety research (NHTSA, 

2023). The NASS-GES database, starting in 1988, is a comprehensive database 

comprising police-reported incidents encompassing various road users, serving various 

purposes such as assessing overall crash trends, pinpointing safety issues on roads, and 

evaluating crash mitigation strategies. The FARS system, on the other hand, primarily 

focuses on fatal traffic crashes that result in the death of the traffic participants. The major 

limitation of these datasets is that they only included crashes involving human-driven 

vehicles, which cannot fully reveal the characteristics of ADAS and ADS crashes, and 

thus are not suitable for ADAS or ADS-related research.  

With the SAE Level-2 vehicles gradually becoming available in the market and 

SAE Level-3 or higher-level vehicles being tested on public roads, the number of ADS-

involved and ADAS-involved crashes has been increasing in recent years. Since 2014, 

the CA DMV has required automotive companies to report the crash and disengagement 

cases of ADS tested on California roads (California DMV, 2022). This dataset contains 

information regarding ADS-involved crashes, including the environmental conditions, 

vehicle information, and crash outcomes. The CA DMV dataset was the only publicly 

available driving-automation-related crash dataset since it was published. However, the 

CA DMV does not contain ADAS-involved crashes. In 2022, NHTAS released a new 

dataset that contains both ADAS and ADS crash reports (NHTSA, 2022), which enables 

in-depth analysis of the difference between ADS crash patterns and ADAS patterns. 

2.2 Research on ADS-involved crashes 

Using the CA DMV dataset, a variety of methods have been applied to explore the 

contributing factors of crashes, such as logistic regression (Esenturk et al., 2021), 

classification tree (Dadvar & Ahmed, 2021), XGBoost (Chen et al., 2020), and Bayesian 



networks (Kutela et al., 2022). They found that the vehicle movement (e.g., proceeding 

straight or making a turn), lighting condition, road surface condition, road type, incident 

time, crash location, and the speed limit at the site were correlated with the rate and 

outcomes of ADS-involved crashes (Das et al., 2020; Kutela et al., 2022; Ren et al., 2022; 

Torres et al., 2021; Xu et al., 2019). Further, through in-depth comparative analysis, Liu 

et al. (2021) explored the difference between ADS-involved crashes and conventional 

vehicle crashes in terms of leading factors and crash characteristics. 

However, Wu et al. (2016) argued that the conventional practices, which modeled 

the crashes based on static pre-crash and post-crash factors, have ignored the 

chronological progression of crashes. In other words, although various methods have 

been proposed and proven effective in identifying crash patterns and contributing factors 

of ADS-involved crashes in existing studies, the information contained in the crash 

reports was not fully exploited to characterize the crashes. Thus, the authors suggested 

that the sequence of events extracted from report narratives should be used for crash 

characterization, based on which several types of crash sequences associated with severe 

crashes can be identified through clustering analysis. This method has been adopted by 

Song et al. (2021) for the analysis of crashes in the CA DMV dataset, and they identified 

seven crash patterns of ADS-controlled vehicles. Later on, Song et al. (2022) further 

investigated the correlations among crash sequence, crash outcomes, environmental 

conditions, and human-related factors of crash partners (i.e., the characteristics of the 

human-driven vehicles involved in crashes, for example, speeding, careless driving, and 

improper operations) using Bayesian network modeling. However, it remains to be 

explored how the pre-crash factors affect the progression of crashes and finally lead to 

different crash outcomes of ADS-controlled vehicles. 



2.3 Research on ADAS-involved crashes 

Though some studies have investigated the causes and characteristics of HDV crashes 

and discussed the potential benefits and challenges of ADAS in preventing these crashes 

(Galloway et al., 2023; Scanlon et al., 2015, 2016; Seacrist et al., 2021), the amount of 

research on ADAS-involved crashes is limited due to the lack of publicly available dataset. 

For example, based on the SHRP 2 naturalistic driving dataset, Seacrist et al. (2021) 

analyzed critical driver errors (e.g., distractions, decision errors, performance errors, etc.) 

that contribute to crashes among different age groups, and they pointed out that the ADAS 

functions (e.g., forward collision warning, high-speed warning, automatic emergency 

braking, etc.) has the potential to reduce driver-related errors. Similarly, based on the 

National Motor Vehicle Crash Causation Survey (NMVCCS) database, Scanlon et al. 

(2016) investigated the pre-crash kinematics of crashes happening at intersections and 

discussed the possibility of using ADAS to prevent crashes. 

However, it is important to emphasize that the current understanding of ADAS-

involved crashes is insufficient, as mentioned, mainly due to the lack of available datasets. 

The release of the NHTSA crash dataset in 2022 has made analysis of ADAS-involved 

crashes possible (Ding et al., 2023). Some studies have compared the NHTSA dataset to 

existing traffic incident datasets (Goodall, 2023) and even strived to build a unified 

dataset encompassing all types of vehicle crashes (Zheng et al., 2023). A few studies have 

already analyzed the characteristics of specific types of ADAS-involved crashes using 

the NHTSA dataset (e.g., Huang, Wen, & He, 2022). More efforts, however, are still 

needed to understand the factors leading to ADAS-involved crashes in order to design 

countermeasures to improve the safety of ADAS-equipped vehicles. 



3 Data Preparation 

NHTSA has required automobile manufacturers to report crash cases involving ADAS 

and ADS systems since Jul. 2021. Till Nov. 2022, a total of 1374 ADAS crash reports, 

and 475 ADS crash reports were recorded (NHTSA, 2022). In the NHTSA crash reports, 

ADS refers to the automated driving systems with SAE Level 3 or higher-level 

automation, which can “perform the entire dynamic driving task on a sustained basis 

within a defined operational design domain without driver involvement”; ADAS refers to 

the SAE Level 2 systems which “provide both speed and steering input when the driver 

assistance system is engaged but require the human driver to remain fully engaged in the 

driving task at all times”. The data screening process is shown in Error! Reference 

source not found. 

In the original dataset, there might be multiple versions of reports for one crash, 

which can be identified with ‘Report ID’ and ‘Report Version’ in the reports. Therefore, 

in the first step, the duplicates were removed using a Python script (based on Python 3.7 

and Pandas 1.3.4 library), and the latest report of a crash was kept. In Step 2, for 555 out 

of 697 ADS-involved crash reports and 80 out of 357 ADAS-involved crash reports, the 

narrative is protected from disclosure due to business concerns, which can be recognized 

as ‘Narrative_CBI’. These reports were also removed using the Python script. Then, in 

Step 3, the dataset went through a manual screening to eliminate duplicates that cannot 

be identified with ‘Report ID’ and ‘Report Version’, and the reports that do not contain a 

sufficient description of the accident progression in their narratives. Finally, we obtained 

92 valid ADAS crash reports and 100 valid ADS crash reports, and the subsequent 

analysis was conducted based on these reports. It is worth noting that, as the reports were 

recorded manually and relied on self-reporting from vehicle owners or operating entities, 

a large number of reports were abandoned due to duplicates and incomplete or 



confidential information in the reports. Specifically, a larger portion of ADAS crash data 

(93.3%) was filtered out in the screening process compared to that of the ADS crash data 

(75.8%). This is because ADAS-equipped vehicles are primarily owned by consumers, 

making the complete collection of the data more difficult. In contrast, ADS-equipped 

vehicles are owned by manufacturers, allowing for more complete, timely, and standard 

crash reports. 

Table 1. Data screening process. 

Screening Process 
Num. of valid reports 

ADAS ADS 

Raw data 
(Latest update: Nov. 15, 2022) 1374 475 

Step 1: Remove duplicates 
(Auto filtering based on ‘Report ID’ and ‘Report Version’) 697 357 

Step 2: Remove Confidential Business Information (CBI) 
(Auto filtering based on ‘Narrative_CBI’) 142 277 

Step 3: Manual selection 
(Manual selection based on ‘Narrative’) 92 110 

4 Methodology 

Error! Reference source not found. provides an overview of the methodology adopted 

in this study. The NHTSA crash reports consist of two types of data, i.e., the narratives 

and the structured crash data (i.e., static information regarding the scenario where the 

crash happened, such as incident time, weather, and speed of the involved road agents). 

The narratives in the crash reports contain information regarding the chronological 

development of crashes that cannot be revealed in the structural data of the reports. To 

extract useful information from the narratives, we followed the sequence analysis method 

proposed by Wu et al. (2016), which has been commonly used to extract crash sequences 

and identify crash patterns from narratives. Specifically, we encoded the narratives into 

crash sequences (step 1) and then calculated the distance between each pair of sequences 



(step 2), based on which we performed clustering analysis and found several crash 

patterns (step 3). To eliminate the disturbance of unbalanced data and missing values, we 

performed data aggregation and imputation (step 4). Finally, using the crash patterns and 

structured crash data, we built logistic regression models and identified factors that 

influence crash patterns and crash outcomes (i.e., contact area and injury severity). In the 

following sections, we will explain the above steps in more detail. 

 

Figure 1. Methodology flow chart 

4.1 Sequence encoding 

To make full use of the crash data, the crash details in the narratives were manually 

extracted and encoded into event sequences according to the encoding scheme shown in 

Table 2. The encoding scheme was mainly adopted from the method proposed by Song 

et al. (Song et al., 2021), and some modifications were made to adapt the narratives of 

the NHTSA dataset, i.e., the codes corresponding to nonexisting events in the narratives 

were removed, and new events (including E1, E2, DT, and F) were newly added. In the 

study of Song et al. (2021), “merge left” and “merge right” were assigned with different 



codes. However, in our study, the two maneuvers were encoded into a single code (M1 

or M2) since the direction of merging maneuvers is not mentioned in most narratives. To 

facilitate subsequent analysis, we categorized the events into pre-crash and crash (Table 

2) so that we can distinguish between inter-group mismatch and intra-group mismatch 

when comparing two events, which allows a more refined way of measuring the 

dissimilarity between sequences. 

Table 2. Sequence encoding scheme. 

Code Description Code Description 

Pre-crash events 

A1 
A2 
B2 
D1 
E1 
E2 
L1 
L2 
M1 

v1 accelerate/proceed 
v2 accelerate/proceed 
v2 back up 
v1 decelerate 
v1 entering traffic 
v2 entering traffic 
v1 turn left 
v2 turn right 
v1 merge left/right 

M2 
R1 
S1 
S2 
TO 
DT 
F 
V1 
V2 

v2 merge left/right 
v1 turn right 
v1 stop 
v2 stop 
v1 driver takes over the driving task 
v1 driver distraction / wrong operation 
v1 disengage / misfunction 
v1 violate the rule 
v2 violate the rule 

Crash events  

X10 
X12 

v1 hit object 
v1 contact v2 

X13 
X23 

v1 contact v3 
v2 contact v3 

Note: in the table, v1 is the subject vehicle (SV) equipped with ADAS or ADS; v2 refers to a second-
party crash partner (CP) involved in the crash; and v3 indicates a third-party CP involved in the crash. 
For readability, we used the codes in the left columns to represent the events described in the right 
columns. The codes of events are later linked to form the crash sequence. 
 

The following is an example of encoding a narrative into a crash sequence. The 

original narrative in NHTSA crash reports is “The customer was driving straight on a 

highway at approximately 66 miles per hour when the wheels allegedly locked up, causing 

the customer to lose control and hit the concrete barrier.” (NHTSA, 2022). Based on the 

method mentioned above, we encoded the narrative into a crash sequence as “A1-F-X10”. 



4.2 Sequence distance calculation 

To quantitatively describe the difference between crashes, we calculated the distance 

between each pair of sequences. The Needleman-Wunsch (NW) algorithm (Needleman 

& Wunsch, 1970) and the Dynamic Time Warping (DTW) algorithm (Arribas-Gil & 

Müller, 2014) are the most commonly used methods for global optimal alignment. When 

aligning two sequences, the DTW algorithm stretches the sequences and fills in the 

missing part with an adjacent event; in contrast, the NW algorithm fills the missing part 

with gaps (Huang et al., 2019). The pairing results obtained through the DTW algorithm 

may either match or mismatch, while the NW algorithm can produce matches, 

mismatches, or gaps. Each type of pairing result can be assigned a distinct score. Thus, 

the NW allows more complicated algorithm design. Given that the NW algorithm has 

also been proven to be effective in crash sequence analysis in previous studies (Song et 

al., 2021, 2022; Wu et al., 2016) and compared to DTW, the proximity matrix from the 

NW led to categories with more distinct characteristics in the following cluster analysis 

in our study, the NW algorithm was adopted. 

Figure 2 is an example of aligning two crash sequences using the NW algorithm, 

where the elements from two sequences are compared in pairs. As mentioned, the pairing 

result between two elements can be a match, mismatch, or gap. 

 



Figure 2. An example of crash sequence alignment 

Different scores are assigned to different pairing results based on the scoring 

system given in Table 3. In the equations, e1 indicates an element of sequence 1, e2 refers 

to an element of sequence 2, and the underscore symbol represents inserting a gap in the 

sequence. It is worth noting that we have divided the elements into the pre-crash events 

and the crash events in the encoding scheme. Therefore, in the scorning system, we need 

to consider two types of mismatches: if two different elements are the same type of event, 

the pairing result is an intragroup mismatch, while if the two elements are different types 

of events, the pairing result is an intergroup mismatch. The pairing score measures the 

distance between two elements; the higher the score, the larger the distance. Finally, the 

overall distance of two aligned sequences is given by the sum of the pairing scores. 

Table 3. Scoring system. 

Pairing result Score 
Gap 𝑠(__	, 𝑒2) = 𝑠(𝑒1, __) = 1 

Match 𝑠(𝑒1, 𝑒2) = 0 

Mismatch 𝑠(𝑒1, 𝑒2) = ,2, 	𝑖𝑛𝑡𝑟𝑎𝑔𝑟𝑜𝑢𝑝3, 	𝑖𝑛𝑡𝑒𝑟𝑔𝑟𝑜𝑢𝑝 

 

In order to find the optimal alignment that yields the smallest distance, the NW 

algorithm constructs an n*m matrix ( 𝑛 = 1 + 𝑠𝑖𝑧𝑒	𝑜𝑓	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒1 , 𝑚 = 1 +

𝑠𝑖𝑧𝑒	𝑜𝑓	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒2) as shown in Figure 3. 



 

Figure 3. An example of the alignment matrix 

The alignment starts at the top left corner and ends at the bottom right corner. The 

value of each cell is given by equation (1): 

𝑓(𝑖, 𝑗) =

⎩
⎪
⎨

⎪
⎧
𝑖,																																																																															𝑗 = 0
𝑗,																																																																															𝑖 = 0

𝑚𝑖𝑛 :
𝑓(𝑖 − 1, 𝑗 − 1) + 𝑠(𝑠𝑒𝑞1[𝑖], 𝑠𝑒𝑞2[𝑗])

𝑓(𝑖 − 1, 𝑗) + 𝑠(𝑠𝑒𝑞1[𝑖], __)
𝑓(𝑖, 𝑗 − 1) + 𝑠(__, 𝑠𝑒𝑞2[𝑗])

, 𝑖, 𝑗 ≠ 0
              (1) 

where 𝑠𝑒𝑞1[𝑖]  indicates the ith element in sequence 1, and 𝑠𝑒𝑞2[𝑗]  indicates the jth 

element of sequence 2. The function 𝑠() is used to calculate the pairing scores according 

to the scoring system in Table 3. The value of the bottom right cell is the smallest overall 

distance between the two sequences. The optimal alignments can be found by tracing 

back from the bottom right corner to the top left corner. As shown in Figure 3, the smallest 

sequence distance of this example is 4, and there are four optimal alignments (see Table 

4). 

Table 4. Optimal alignments of the example. 

 Optimal alignment 1 Optimal alignment 2 Optimal alignment 3 Optimal alignment 4 

Sequence 1 A1-__-V2-__-R1-X13 A1-__-V2-R1-__-X13 A1-__-V2-R1-X13 A1-__-V2-R1-X13-__ 



Sequence 2 A1-TO-V2-X12-__-__ A1-TO-V2-__-X12-__ A1-TO-V2-__-X12 A1-TO-V2-__-__-X12 

 

4.3 Clustering analysis 

We calculated the distance between each pair of crash sequences to generate the distance 

matrix, which is used as the input for clustering analysis. The total number of crash 

sequences is 202 (including 92 ADAS crashes and 110 ADS crashes), and the size of the 

distance matrix is 202 by 202. We compared the performance of several unsupervised 

machine learning methods, including k-means (MacQueen, 1967), agglomerative 

hierarchical clustering (Müllner, 2011), and density-based clustering algorithm (Ester et 

al., 1996). It turns out that the agglomerative hierarchical clustering algorithm with a 

bottom-up manner and a complete linkage yielded the best clustering performance and 

thus it was adopted to group the crash sequences into clusters.  

The silhouette width was used to evaluate the clustering performance and 

determine the most appropriate number of clusters, which measures how well a sample 

(i.e., crash sequence) matches its own cluster in comparison with other clusters 

(Rousseeuw, 1987). The silhouette width of a sample is given by: 

𝑠[𝑖] = 	 ![#]%&[#]
'()(&[#],![#])

	                                                  (2) 

where 𝑠[𝑖] is the silhouette width of the sample 𝑖, 𝑏[𝑖] is the average distance of sample 

𝑖 to the samples in its own cluster, and 𝑎[𝑖] is the average distance of sample 𝑖 to the 

samples in its nearest cluster. The average silhouette width (ASW) of all the samples is 

given by: 

𝐴𝑆𝑊 =	 -
.
∑ 𝑠[𝑖].
#/- 	                                                  (3) 

where N is the total number of samples. 



4.4 Data aggregation and imputation 

The 202 valid crash reports used in this study consisted of 92 ADAS cases and 

110 ADS cases. However, of these reports, only 4 ADAS cases and 44 ADS cases were 

completely recorded (i.e., without missing values). Considering the limited number of 

usable crash reports, and even smaller number of completely recorded cases, it is 

necessary to impute the missing values to overcome the issue of small sample size and 

enable follow-up regression analysis. Further, given that many of the categorical variables 

are over-divided and the dataset is relatively imbalanced with too few samples in some 

minor classes (e.g., only one ADS-involved crash resulted in severe injury), we 

aggregated some categorical variables to avoid quasi-complete or complete separation of 

data points in the maximum likelihood estimates process of logistic regression analysis. 

Table 5 shows how the data was aggregated. Specifically, we have merged the model year 

into ‘Prio 2020’ and ‘2020 or later’ and the incident time into ‘Day’ and ‘Night’ to ensure 

a balanced distribution of samples. Following Kaber et al. (2012), the roadway type has 

been categorized into ‘Simple’ and ‘Complex’ based on the complexity of the roadway 

layout. Compared to simple roadways, complex roadways involve more conflict points 

(location at which traffic movements intersect such as crossing, merging, and diverging) 

that are associated with high crash risks (Lu et al., 2013). The SV contact area has been 

categorized as 'longitudinal' and 'non-longitudinal' (i.e., lateral or vertical) as this is often 

how vehicle motion is decoupled in the design of motion control and collision avoidance 

functions (Cheng et al., 2020; Zhang et al., 2022). 

Table 5. Data aggregation. 

Variable Original data Aggregated data 

Incident time Numerical (HH:mm) � Day (6:00~16:59) 
� Night (17:00~5:59) 



Model year Numerical (2015~2023) � Prior 2020 
� 2020 or later 

Weather � Clear 
� Snow, Cloudy, Fog/Smoke, Rain, Severe 

Wind 

� Clear 
� Bad 

Roadway 
surface 

� Dry 
� Wet, Snow/Slush/Ice 

� Dry 
� Wet 

Roadway type � Street, Highway/Freeway, Rural Road 
� Intersection/ Parking Lot/ Traffic Circle 

� Simple 
� Complex 

SV contact area � Involves front, rear, or both 
� Does not involve front or rear 

� Longitudinal 
� Non-Longitudinal  

Highest injury 
severity 

� No injuries reported 
� Minor, Moderate, and Severe 

� No injury 
� With injury 

Note: In the dataset, following the definition of NHTSA, 10 contact areas are defined, including front, 
front left, front right, rear, rear left, rear right, left, right, top, and bottom. The subject vehicle can be 
contacted at a single area or multiple areas during the crashes. 

Figure 4 provides a visualization of the data completeness of each variable. The 

height of each bar indicates the number of observed samples of the corresponding 

variable. Among the 12 variables used in this study, three variables are completely 

observed, namely automation level (ADS vs. ADAS), model year, and crash pattern (from 

cluster analysis). The remaining variables with missing values were imputed using the 

MissForest algorithm, a non-parametric imputation method based on Random Forest. 

MissForest has been widely used in biology, medicine, and machine learning due to its 

low imputation error and ability to handle mixed-type data (i.e., data with both categorical 

and continuous variables) (Stekhoven & Buhlmann, 2012). 

To validate the imputation accuracy, we calculated the Jensen-Shannon (JS) 

Divergence (Lin, 1991) between the originally observed data and the imputed data. The 

JS Divergence is a measure of the distributional dissimilarity between two samples, which 

is given by equation (4) (for discrete variables) and equation (5) (for continuous 

variables): 

𝐽𝑆0#123454(𝑝||𝑞) =
-
6
∑ 𝑝(𝑥#) log M

67(8!)
7(8!)9:(8!)

N;
#/- + -

6
∑ 𝑞(𝑥#) log M

6:(8!)
7(8!)9:(8!)

N;
#/-   (4) 

𝐽𝑆2<;5#;=<=1(𝑝||𝑞) =
-
6∫ 𝑝(𝑥) log M

67(8)
7(8)9:(8)

N 𝑑𝑥 + -
6∫𝑝(𝑥) log M

6:(8)
7(8)9:(8)

N 𝑑𝑥   (5) 



where 𝑝  is the distribution of the observed samples, and 𝑞  is the distribution of all 

samples, including the imputed ones. 

 

Figure 4. Data completeness of each variable (total sample: 202). 

4.5 Logistic Regression 

Finally, a logistic regression analysis was performed to determine how the crash pattern 

works in conjunction with other factors to influence crash outcomes. Compared to the 

contributing factor models commonly used in previous studies, we introduced several 

new influential factors (i.e., automation level and crash pattern) into the model. Here we 

have classified the variable into static factors, crash progression, and crash outcomes (see 

Figure 5). We hypothesize that some factors have a direct effect on the crash outcome, 

while others influence the outcome by acting on the crash progression. Therefore, three 

logistic regression models were fitted using the SAS LOGISTIC process based on the 

hypothesized contributing factor model shown in Figure 5. 

In model 1, the crash pattern was used as the dependent variable, and the static 

factors were used as the independent variables in order to investigate how the static 

factors contribute to the crash progression. In model 2 and model 3, SV contact area and 

highest injury severity were considered as dependent variables, respectively.  As for the 

independent variables, the dependent variable of model 1 (i.e., the crash pattern) was used 



as a potential independent variable, but the factors that were found to be significant 

predictors of the crash pattern in model 1 were removed to avoid the collinearity problem. 

For each model, the stepwise forward selection was performed based on the Akaike 

information criterion (AIC) (Akaike, 1973). 

 

Figure 5. Hypothesized contributing factor model. 

5 Results 

5.1 Clustering results 

The dendrogram and silhouette analysis results were used to identify the optimal number 

of clusters. The dendrogram in Figure 6 is a visual illustration of the clustering process. 

Figure 7 (a) illustrates how ASW changes with the number of clusters. The range of 

silhouette width is between -1 and 1, and higher silhouette width indicates better 

clustering performance. The number of clusters should preferably be small to ensure the 

interpretability of the result and avoid the overfitting problem. At the same time, we need 

to avoid ties in proximity (i.e., one cluster is equidistant from two or more clusters, which 

can be recognized in Figure 6) since it will lead to arbitrary clustering results. Based on 

the above considerations, the optimal number of clusters was identified as 5, with an ASW 

of 0.437 and most samples having a silhouette width larger than 0 (see Figure 7 (b)). 



 

Figure 6. Dendrogram 

 

Figure 7. Silhouette analysis 

 

 

 

 

 



Table 6. Crash patterns and the counts 

Group 1 

SV maneuvers (except for stopping) 

Group 2 

CP rule violation 

Group 3 

CP maneuvers 

Sequence 

D1-A2-X12 

M1-A2-X12 

L1-A2-X12 

L1-V2-X12 

L1-X12 

D1-A2-X12-X13 

D1-S1-X12 

D1-TO-A2-X12 

D1-X12 

DT-S2-X12 

DT-X12 

E1-X12 

F-X12 

L1-D1-A2-X12 

L1-L2-X12 

L1-S2-X12 

M1-M2-X12 

M1-S1-A2-X12 

R1-D1-A2-X12 

V1-DT-X12 

Total 

Count 

9 

4 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

34 (16.8%) 

Sequence 

A1-V2-X12 

A1-V2-TO-X12 

R1-V2-X12 

A1-TO-V2-X12 

A1-V2-R1-X13 

A1-V2-X13 

V2-X12 

V2-X23-X13 

Total 

Count 

8 

3 

3 

1 

1 

1 

1 

1 

19 (9.4%) 

Sequence 

A1-A2-X12 

A1-M2-X12 

A1-S2-X12 

A1-L2-X12 

A1-F-X12 

A1-A2-F-X12 

A1-B2-D1-X12 

A1-B2-X12 

A1-F-A2-X12 

A1-E2-X12 

A1-F-S1-X12 

A1-M2-R2-TO-

X12 

A1-M2-TO-X12 

A1-S2-F-X12 

Total 

Count 

15 

10 

8 

4 

3 

2 

2 

2 

2 

1 

1 

1 

1 

1 

53 (26.2%) 

Group 4 

hit object 

Group 5 

SV stopping 
  

Sequence 

A1-DT-X10 

A1-X10 

A1-F-X10 

R1-X10 

L1-X10 

L1-F-X10 

A1-D1-F-X10 

A1-V2-X10 

R1-F-X10 

Total 

Count 

7 

6 

5 

4 

3 

2 

1 

1 

1 

30 (14.9%) 

Sequence 

S1-A2-X12 

S1-B2-X12 

S1-A1-A2-X12 

A1-S1-TO-A2-X12 

S1-V2-X12 

A1-S1-A2-X12 

R1-S1-A2-X12 

S1-A1-X12 

S1-A2-X12-X13 

S1-A2-X23-X12 

S1-X12 

S1-X12-X13 

Total 

Count 

42 

10 

3 

2 

2 

1 

1 

1 

1 

1 

1 

1 

66 (32.7%) 

  

 



The sequences of each cluster and their counts are shown in Table 6. The pattern 

of each group can be identified through the common features of the sequences in the 

groups: 

(1) Group 1: “SV maneuvres (except stop)”, in which the SV made a maneuver 

(D1, M1, L1, E1, R1, etc.) while the CP was proceeding straight (A2). 

(2) Group 2: “CP rule violation”, in which the CP has violated the rule (V2), 

resulting in a crash. 

(3) Group 3: “CP maneuver”, in which the CP made a maneuver (A2, M2, S2, 

L2, B2, E2, etc.) while the SV was going straight (A2). 

(4) Group 4: “hit object”, in which the SV collided with a fixed object (X10). 

(5) Group 5: “SV stopping”, in which the SV stopped (S1) and was then hit by 

the CP. 

5.2 Frequencies of pre-crash events 

To identify the difference between ADAS- and ADS-involved crashes, we conducted a 

comparison of pre-crash event frequencies.   



Table 7 counts the frequencies of pre-crash events of ADAS and ADS across the five 

crash patterns.  

  



Table 7. Frequencies of pre-crash events. 

Code 
ADAS ADS 

Code 
ADAS ADS 

Count Percentage Count Percentage Count Percentage Count Percentage 
Group1: SV maneuvers (except for stopping) Group4: hit object 

L1 
A2 
D1 
DT 
M1 
S2 
E1 
F 

L2 
S1 
V1 
V2 
M2 
R1 
TO 

6 
5 
3 
3 
3 
2 
1 
1 
1 
1 
1 
1 
- 
- 
- 

21.4% 
17.9% 
10.7% 
10.7% 
10.7% 
7.1% 
3.6% 
3.6% 
3.6% 
3.6% 
3.6% 
3.6% 

- 
- 
- 

3 
15 
12 
- 
3 
- 
- 
- 
- 
1 
- 
1 
1 
1 
1 

7.9% 
39.5% 
31.6% 

- 
7.9% 

- 
- 
- 
- 

2.6% 
- 

2.6% 
2.6% 
2.6% 
2.6% 

A1 
F 

DT 
L1 
D1 
R1 
V2 

17 
9 
7 
2 
1 
1 
1 

44.7% 
23.7% 
18.4% 
5.3% 
2.6% 
2.6% 
2.6% 

3 
- 
- 
3 
- 
4 
- 

30.0% 
- 
- 

30.0% 
- 

40.0% 
- 

Group2: CP rule violation Group5: SV stopping 
V2 
A1 
R1 
TO 

12 
8 
3 
- 

52.2% 
34.8% 
13.0% 

- 

7 
6 
1 
4 

38.9% 
33.3% 
5.6% 
22.2% 

S1 
A2 
A1 
V2 
B2 
TO 
R1 

9 
5 
1 
1 
- 
- 
- 

56.3% 
31.3% 
6.3% 
6.3% 

- 
- 
- 

57 
46 
6 
1 
10 
2 
1 

46.3% 
37.4% 
4.9% 
0.8% 
8.1% 
1.6% 
0.8% 

Group3: CP maneuvers 
 

A1 
A2 
F 
S2 
M2 
B2 
E2 
L2 
S1 
D1 
TO 
R2 

34 
17 
7 
7 
3 
1 
1 
1 
1 
- 
- 
- 

47.2% 
23.6% 
9.7% 
9.7% 
4.2% 
1.4% 
1.4% 
1.4% 
1.4% 

- 
- 
- 

19 
2 
2 
2 
9 
3 
- 
3 
- 
2 
2 
1 

42.2% 
4.4% 
4.4% 
4.4% 
20.0% 
6.7% 

- 
6.7% 

- 
4.4% 
4.4% 
2.2% 

     

5.3 Data imputation and logistic regression models 

The JS divergence of all imputed variables is given in Table 8. The range of JS divergence 

is between 0 and 1, with a smaller value indicating higher distributional similarity 

between the two samples. The result indicated that the imputed data maintained a 

distribution similar to that of the original data, with relatively small JS divergence values. 

Using the imputed data, three logistic regression models were fitted in SAS. 

 



Table 8. Imputation performance of each variable. 

Variable JS Divergence 

Incident year <.001 

Incident time 0.003 

Weather 0.023 

Speed limit 0.108 

SV speed 0.071 

Roadway surface 0.036 

Roadway type 0.001 

SV contact area <.001 

Highest injury severity 0.005 

 

Error! Reference source not found. presents the type 3 Wald statistics for model 

1. The automation level, speed limits, SV speed, and the interaction effect between SV 

speed and automation level were found to have significant effects on the crash pattern. A 

likelihood ratio test was conducted, and the final model was significant (𝜒6(1) = 238.61, 

p < .0001), with the AIC of 416.290. 

Table 9. Type 3 Wald statistics analysis for model 1 (dependent variable: crash pattern) 

Variable DF Wald Chi-Square p-value 

Automation 4 16.7724 .002 

Speed Limit 4 16.6400  .002 

SV Speed 4 25.2580 <.0001 

SV Speed*Automation 4 10.9260 .03 

 

Furthermore, based on the odds ratio (OR) estimates and 95% confidential 

interval (CI) shown in Figure 8, we found that with a higher speed limit, the pattern of a 

crash was less likely to be CP rule violation (OR=0.839, CI: [0.744, 0.946], p=.004) 

compared to the baseline pattern (i.e., hit object). 



 

Figure 8. Odds ratio estimates for speed limit in model 1. 

From Figure 9, we found that in an ADAS-involved crash, faster SV speed was 

associated with a lower likelihood of being SV maneuvers crash (OR=0.592, CI: [0.443, 

0.792], p=.0004) and SV stopping crash (OR=0.193, CI: [0.075, 0.497], p=.0006). 

Similarly, in an ADS-involved crash, as SV speed increased, the crash pattern was less 

likely to be SV maneuvers (OR=0.869, CI: [0.775, 0.973], p=.02) or SV stopping 

(OR=0.676, CI: [0.566, 0.808], p<.0001), but with different odds ratio. In general, it can 

be observed that the association between SV speed and the crash pattern was weaker for 

ADS-controlled vehicles compared to that of ADAS-controlled vehicles. 



 

Figure 9. Odds ratio estimates for the increase of every one mph increase in 

SV speed given the automation level in model 1. 

Error! Reference source not found. shows the type 3 Wald statistics for model 

2. The results indicate that the influences of crash pattern, roadway type, model year, and 

incident time on SV contact were significant. A likelihood ratio test was conducted, and 

the final model was significant (𝜒6(1) = 42.71, p < .0001), with the AIC of 253.240.  

Table 10. Type 3 Wald statistics analysis for model 2 (dependent variable: SV contact 

area) 

Variable DF Wald Chi-Square p-value 

Crash Pattern 4 26.1927 <.0001 

Roadway Type 1 4.9516  .03 

Model Year 1 4.7347 .03 

Incident Time 1 6.5731 .01 

 

According to the odds ratio estimates in Figure 10, compared to the baseline 

pattern (i.e., hit object), the crash patterns of SV maneuvers (OR=12.226, CI: [3.587, 

41.670], p<.0001) and SV stopping (OR=9.576, CI: [3.114, 29.448], p<.0001) were more 



likely to be associated with the contact in the longitudinal direction rather than in other 

areas. Crashes occurring at night were more likely (OR=2.129, CI: [1.078, 4.204], p=.03) 

to involve longitudinal contact than those occurring in the daytime, and the likelihood 

(OR=0.384, CI: [0.185, 0.798], p=.01) of longitudinal contact was lower in complex 

roadways. Additionally, vehicles produced in 2020 or later were less likely (OR=0.447, 

CI: [0.220, 0.908], p=.03) to collide in the longitudinal direction than those produced 

before 2020. 

 

Figure 10. Odds ratio estimates for model 2 (contact area) 

As for model 3, crash pattern, incident time, and roadway surface were observed 

to have significant effects on the highest injury severity (see Table 11). A likelihood ratio 

test was conducted, and the final model was significant (𝜒6(1) = 49.10, p < .0001), with 

the AIC of 209.068. Figure 11 demonstrates the specific impact of each variable. In terms 

of the impact of crash pattern, SV maneuvers (OR=7.935, CI: [2.104, 29.921], p=.002), 

CP rule violation (OR=7.917, CI: [1.971, 31.805], p=.004), and hit object (OR=4.494, 

CI: [1.432, 14.100], p=.01) were more likely to be associated with injuries compared to 

CP maneuvers. Crashes occurring at night were less likely (OR=0.338, CI: [0.142, 0.809], 



p=.01) to be associated with injuries. Additionally, a wet road surface also significantly 

increased the probability (OR=12.575, CI: [4.329, 36.528], p<.0001) of having an injury. 

Table 11. Wald statistics of type 3 analysis for model 3 (dependent variable: highest 

injury severity) 

Variable DF Wald Chi-Square p-value 

Crash Pattern 4 17.7192 .001 

Incident Time 1 5.9362 .01 

Roadway Surface 1 21.6523 <.0001 

 

 

Figure 11. Odds ratio estimates for model 3 (highest injury severity) 

6 Discussion 

Based on the newly released NHTSA dataset, our study investigated the crash patterns of 

ADS- and ADAS-controlled vehicles. The sequential analysis of the events leading to a 

crash was conducted, and the crash patterns were categorized into five groups. Then, the 

factors associated with different crash patterns and the factors associated with the 



outcome (i.e., contact area and the injury severity) of the crashes were analyzed. 

6.1 Crash patterns and potential causes 

From the clustering result of the crash sequences, this study identified five groups of crash 

patterns, namely SV maneuvers (except for stopping), CP rule violation, CP maneuvers, 

hit object, and SV stopping. The analysis of the frequency of pre-crash events in each 

group then allowed us to further investigate the potential causes of the crashes. 

Firstly, some factors were found to be associated with both ADS- and ADAS-

related crashes. For example, for SV-maneuvers-related-crashes (i.e., Group 1), SV 

decelerates (D1) was common for both ADAS and ADS, which may explain the high 

likelihood of ADS/ADAS-controlled vehicle being rear-ended (Huang, Wen, & He, 

2022).  

However, our research also highlights the necessity to differentiate the ADS and 

ADAS crashes. For example, the lateral maneuvers of the SV, including left turning (L1) 

and merging (M1), were found to be frequent in ADAS-involved crashes but not in ADS-

involved crashes. Usually, ADAS had weaker perception and motion planning capability 

compared to ADS. Given that the drivers usually have a weak mental model of driving 

automation that handles lateral motion control (e.g., lane keeping assist) (Naujoks et al., 

2017; Huang et al., 2023), drivers may not be able to correctly identify the situations that 

they should be responsible for. These two factors may have explained the high frequency 

of lateral maneuver (i.e., L1 and M1) among ADAS-controlled vehicles in group 1. 

At the same time, what is alerting is that we found that driver distraction (D1) was 

common in ADAS crashes, especially in crashes related to SV maneuvers and in hit-

object crashes. This finding indicates that the engagement of distraction tasks may be 

prevalent in ADAS-controlled vehicles, at least when a crash happens. This finding 

echoes the results in previous simulator studies, which found an increased likelihood of 



distraction engagement with ADAS compared to that in non-automated vehicles (He & 

Donmez, 2019), but our study provides additional information on the potential outcome 

of distracted driving in ADAS-controlled vehicles. Thus, interventions to prevent 

distracted driving are important for improving the safety performance of ADAS. 

To further reveal the factors leading to different types of crashes, a logistic 

regression model was built to identify the association between potential contributing 

factors and crash patterns. The contributing factor model of the crash pattern (model 1) 

suggested that the automation level, speed limit, and SV speed are associated with the 

crash patterns. The result also showed that for both ADS- and ADAS-controlled vehicles, 

the crashes related to SV maneuvers or SV stopping tended to occur at lower SV speeds, 

whereas crashes involving hitting objects tended to occur at higher SV speeds. Such a 

trend was more obvious among ADAS-controlled vehicles. One potential explanation is 

that, for ADS-controlled vehicles, as has been found by Huang et al. (2022), drivers 

tended to keep a smaller headway distance when following ADS-controlled vehicles than 

that when following human-driven vehicles at low speeds. At the same time, as also been 

found by Huang et al. (2022), the ADS may still not be capable of anticipating the hazards 

and thus may take maneuvers unexpectedly (as suggested by smaller time-to-collision 

when drivers were following ADS-controlled vehicles), which increases the chance of 

ADS involving in a crash. The ADAS-controlled vehicle, however, may even be less 

capable of being proactive or responsive than ADS-controlled vehicles, especially at 

lower speeds when the traffic situation is complex, and thus, their behavior is even less 

predictable than that of ADS-controlled vehicles. Although the speed-crash relationship 

has been investigated in many existing studies, a common perspective focuses on the 

effect of speed on crash severity (Imprialou et al., 2016). The results of our study have 



therefore provided a new perspective on this relationship by identifying a correlation 

between SV speed and crash pattern. 

6.2 Contributing factors of crash outcomes 

Based on two additional logistic regression models, we have identified how the crash 

pattern, in combination with other crash contributing factors, is associated with the crash 

outcome (i.e., contact area and injury severity). In general, we found that out of all crashes 

with longitudinal contact, 70% of them involved ADS- or ADAS-controlled vehicles 

being rear-ended by a following vehicle (i.e., with the contact area of the rear on SV). 

Previous research has pointed out that the ADS- or ADAS-controlled vehicles were 

highly likely to be rear-ended by the following vehicles (Huang, Wen, & He, 2022; Liu 

et al., 2021) and pointed out that the motion-related factors (e.g., vehicle speed) were 

highly related with the odds of being rear-ended compared to that of environment-related 

factors (e.g., weather) (Huang, Wen, & He, 2022). Using a logistic model based on crash 

sequence analysis (model 2), our study further revealed the temporal process before 

potential rear-ending crashes. Specifically, the crash patterns of SV maneuvers and SV 

stopping were more likely to be associated with a crash contact in the longitudinal 

direction. 

In addition, we found that a number of environmental factors may moderate the 

likelihood of rear-end crashes. For example, crashes occurring at night were more likely 

to involve longitudinal contact than those occurring in the daytime, potentially because 

the dark environment can impair the perception capability of the SVs, leading to more 

unexpected sudden maneuvers of the SVs and thus increased the chance of being rear-

ended by other vehicles. Further, vehicles were more likely to be involved in crashes with 

longitudinal contact on simple roadways compared to that on complex roadways, likely 

because of the lower need for lateral motions on simple roadways. The optimization of 



the ADS/ADAS control algorithms or the training of the human drivers (e.g., to keep a 

larger distance with ADS- or ADAS-controlled vehicles) in mixed traffic may help reduce 

the crashes with ADS- and ADAS-controlled vehicles. For example, we found that the 

car models produced in 2020 or later are less likely to be involved in a longitudinal 

collision, which is possibly due to the improvement in longitudinal collision intervention 

features (e.g., front collision warning, automatic emergency braking) in recent years 

(Highway Loss Data Institute, 2022). 

At the same time, the crash pattern, incident time, and roadway surface were found 

to be associated with the highest injury severity (model 3). It was found that certain 

patterns of crashes (i.e., SV maneuvers, CP rule violation, and hit object) were more likely 

to result in injuries. Specifically, the CP rule violation was most likely to cause an injury. 

This is potential because the SV may not be able to respond well to CP that did not obey 

the right-of-way on the road, and this may have led to collisions at relatively high speeds. 

Furthermore, the results indicate that crashes occurring at night were less likely to result 

in injuries compared to the ones that happened in the daytime, which contradicts the 

conclusions from previous studies based on the CA DMV dataset, in which autonomous 

vehicle crashes were found to be more fatal at night (Kutela et al., 2022). This difference 

might be attributed to the development of vehicle perception technologies in recent years, 

but further investigation is needed. Another finding is that a wet road surface significantly 

increased the probability of injury. This is as expected and consistent with previous 

research that has shown that wet road conditions can contribute to crashes and injuries 

(Kutela et al., 2022). 

6.3 Limitations 

Due to the limited number of available crash reports, the sample size of this study was 

unbalanced and relatively small. To make full use of the data, the missing values in the 



reports were imputed using the MissForest algorithm. Although the reliability of this 

imputation algorithm has been verified by existing studies, and the imputed data was 

found to follow similar distributions as the original data, it should be noted that the 

imputed data may not completely reflect the actual characteristics of the crashes. Given 

that the functionality of automated driving is evolving dramatically, when more ADS- 

and ADAS-involved crash data becomes available, updated analyses should be conducted 

based on datasets with better quality to keep track of the latest trends in ADS- and ADAS-

involved crashes. 

7 Conclusions 

In conclusion, this study has identified five distinct crash patterns and analyzed their 

potential causes. By utilizing logistic regression models, the study determined that 

automation level, speed limit, and SV speed are associated with crash patterns. 

Additionally, the study found that crash patterns, together with other contributing factors 

such as roadway type, model year, incident time, and roadway surface, may lead to 

different crash outcomes (i.e., SV contact areas and the highest injury severity). In 

general, our finding suggests that the ADS and ADAS systems are still less able to handle 

some on-road incidents well (e.g., the rule violation of other road agents) compared to 

human drivers. Further, the development of driving automation technology has led to 

changes in crash characteristics (as different conclusions were drawn from CA DMV and 

NHTSA datasets). Lastly, the event sequence analysis can provide more information 

regarding the causes of crashes compared to a pure comparison of static information (e.g., 

weather and speed limit). Driver training and the optimization of the algorithms are still 

needed to improve the safety of mixed traffic with ADS-controlled, ADAS-controlled, 

and human-driven vehicles. 
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