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Abstract 23 

With the deployment of autonomous vehicles, a transition period where autonomous vehicles 24 

share the roads with human-driven vehicles is inevitable where the discretionary lane-changing 25 

behaviors of autonomous vehicles can be safety-critical. This study aims to quantify the impact 26 

of discretionary lane-changing behaviors on following vehicles in the target lane using a real-27 

world dataset. This study uses the Waymo Open Dataset to identify the differences between the 28 

discretionary lane-changing maneuvers of autonomous vehicles and human-driven vehicles and 29 

compare their impacts on the driving volatility metrics. Then, the block maxima model is applied 30 

to estimate the crash risks. Finally, the multivariate adaptive regression splines model is adopted 31 

to model gap acceptance behaviors of autonomous vehicles and human-driven vehicles. Results 32 

show that compared to human-driven vehicle discretionary lane-changing, autonomous vehicle 33 

discretionary lane-changing leads to lower speeds and yaw rate volatility and smaller 34 

acceleration rates of the following vehicles. Further, the block maxima model reveals that the 35 

crash risk in the autonomous vehicle discretionary lane-changing events is half of that in the 36 

human-driven vehicle discretionary lane-changing events. In addition, autonomous vehicles and 37 

human-driven vehicles show different lead gap acceptance behaviors, according to the results of 38 

multivariate adaptive regression splines. The findings highlight the benefits of mixing 39 

autonomous vehicles in traffic flow and guide the improvement of autonomous vehicle 40 

controllers. 41 
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1. Introduction 46 

With the gradual deployment of autonomous vehicles, human-driven vehicles are expected to 47 

share the roads with autonomous vehicles shortly, leading to a transition period with mixed 48 

traffic, in which human drivers may exhibit different behaviors as compared to when the traffic 49 

is composed of only human-driven vehicles (Mahdinia et al., 2021; Wen et al., 2022b; Zhao et 50 

al., 2020). Hence, understanding human-driven vehicles’ behavioral changes in mixed traffic is 51 

the foundation of the analysis of autonomous vehicle impacts on traffic safety, traffic efficiency, 52 

energy consumption and exhaust emissions (Hu et al., 2022). Further, modeling the interactions 53 

between autonomous vehicles and human-driven vehicles can provide insights into the 54 

improvements of autonomous vehicle control algorithms and guide appropriate public policies 55 

toward the acceptance of autonomous vehicles (Di and Shi, 2021). 56 

As limited by the low market penetration rates of autonomous vehicles at the current 57 

stage, empirical data on autonomous vehicles and surrounding traffic is scarce. When 58 

investigating the impacts of autonomous vehicles on the surrounding traffic, previous studies 59 

mostly adopted two approaches, i.e., traffic/numerical simulations (e.g., Dixit et al., 2019) and 60 

field experiments (e.g., Mahdinia et al., 2021). However, traffic/numerical simulations may 61 

simplify and even omit important features of mixed traffic flow, resulting in questionable effects 62 

of autonomous vehicles. Field experiments are usually conducted with limited sample sizes (i.e., 63 

the number of driving events) and cannot replicate the driving scenarios with large speed 64 

fluctuations and complex interactions between road agents. The limitations of these two 65 

approaches may induce biased results. With the development of autonomous vehicle 66 

technologies, more and more autonomous vehicles are being tested or implemented on public 67 

roads in recent years and some tech firms (e.g., Waymo) have released large-scale real-world 68 



datasets collected by their autonomous vehicle fleets (Wen et al., 2023). These datasets contain 69 

fine-grained field observations of autonomous vehicle movements and behaviors of road agents 70 

surrounding the autonomous vehicles on public roads and thus can provide the transportation 71 

research community with new opportunities to analyze the impacts of autonomous vehicles on 72 

mixed traffic flow, as well as human-driven vehicles’ behavioral adaptations when interacting 73 

with autonomous vehicles in the real world. 74 

Previous literature on autonomous vehicle-human-driven vehicle interactions mainly 75 

focused on the car-following scenario, in which human-driven vehicles drive behind autonomous 76 

vehicles in the same lane (Mahdinia et al., 2021; Rahmati et al., 2019; Wen et al., 2022b; Zhao et 77 

al., 2020). In contrast, the lane-changing scenario, which is often related to rear-end and 78 

sideswipe crashes (Ali et al., 2022a), is rarely studied. The lane-changing scenario is correlated 79 

with both longitudinal and lateral movements of involving road agents. In the lane-changing 80 

scenario, the lead vehicle changes the current lane into an adjacent lane, which may cause the 81 

following vehicle in the target lane to decelerate or stop, leading to the formation of stop-and-go 82 

oscillations and bottlenecks in traffic flow (Jiang et al., 2021; Jiang et al., 2022). Based on the 83 

intention of drivers, Yang and Koutsopoulos (1996) categorized lane-changing scenarios into 84 

two types, i.e., mandatory lane-changing and discretionary lane-changing. The former is a 85 

required task and must be conducted to reach a specific destination while the latter is voluntary 86 

and usually carried out to improve the current driving conditions. Therefore, the latter is more 87 

difficult to predict and more complex and dangerous than the former (Ali et al., 2022b; Toledo et 88 

al., 2005). Hence, our study focuses on the fundamental mechanisms of autonomous vehicle-89 

human-driven vehicle interactions in the discretionary lane-changing scenario, i.e., how the 90 



discretionary lane-changing behaviors of autonomous vehicles affect the behaviors of 91 

surrounding human-driven vehicles, especially the following vehicles in the target lane. 92 

In the current study, we take the first attempt to study the impacts of autonomous 93 

vehicles’ discretionary lane-changing maneuvers on mixed traffic in terms of driving volatility, 94 

crash risks and gap acceptance and compare them to those of human-driven vehicles’ 95 

discretionary lane-changing maneuvers. Trajectories of autonomous vehicles’ and surrounding 96 

human-driven vehicles’ are extracted and processed from the real-world autonomous driving 97 

dataset -- Waymo Open Dataset (Ettinger et al., 2021). We summarize our contribution as 98 

follows. First, rather than traffic microsimulation and field experiments, it uses the real-world 99 

dataset which provides more insights into complicated driving conditions in reality. Second, an 100 

in-depth analysis is conducted to explore the traffic and safety effects of autonomous vehicle 101 

discretionary lane-changing and human-driven vehicle discretionary lane-changing by 102 

quantifying driving volatility and crash risks. Third, gap acceptance behaviors of autonomous 103 

vehicles and human-driven vehicles are modeled and compared to understand the discretionary 104 

lane-changing decision-making process. 105 

The paper is organized in the following manner. The next section reviews relevant studies 106 

on the analysis of human-driven vehicle lane-changing maneuvers and autonomous vehicle-107 

human-driven vehicle interactions. Sections 3 and 4 present the data sources used in this study 108 

and methodologies for discretionary lane-changing behavior measurements and comparisons, 109 

respectively. Section 5 discusses the comparison results of discretionary lane-changing 110 

characteristics including driving volatility, crash risks and gap acceptance, with Section 6 111 

providing conclusions and research recommendations. 112 



2. Literature review 113 

This section mainly reviews studies related to two research topics: (1) analysis of human-driven 114 

vehicles’ lane-changing behaviors based on naturalistic driving datasets; and (2) interactions 115 

between autonomous vehicles and human-driven vehicles. 116 

2.1 Analysis of human-driven vehicle lane-changing behaviors 117 

There are three characteristics related to the lane-changing behaviors of human-driven vehicles, 118 

including lane-changing duration, impacts on the following vehicle in the target lane and gap 119 

acceptance. This part covers representative studies corresponding to these characteristics. 120 

lane-changing duration defines the time span of the lane-changing execution, which starts 121 

when the lane-changing vehicle in the current lane initiates its movement toward the target lane, 122 

and ends when the lane-changing vehicle stabilizes in the target lane (Wang et al., 2019; Yang et 123 

al., 2019). Naturalistic driving studies show that the duration of lane-changing can be best fitted 124 

through the lognormal distribution (Das et al. 2020 and Yang et al. 2019). For example, Wang et 125 

al. (2019) analyzed the real-world driving data collected from the Shanghai Naturalistic Driving 126 

Study (SH-NDS) and concluded that the lognormal distribution was the best fit for the lane-127 

changing duration data. Further, the duration of lane-changing may be affected by the 128 

acceleration behavior of the lane-changing vehicle and the response of surrounding vehicles 129 

(Toledo and Zohar, 2007). Toledo and Zohar (2007) revealed that the inappropriate settings of 130 

lane-changing duration in microscopic simulations might negatively affect the realism of the 131 

microsimulation. In another study, Li et al. (2023) analyzed discretionary lane-changing duration 132 

using accelerated failure time (AFT) models based on vehicle types and discretionary lane-133 

changing direction which also consider the heterogeneity of human drivers. 134 



The lane-changing maneuvers of human-driven vehicles can affect the driving behaviors 135 

of following vehicles in the target lane. For instance, Sultan et al. (2002) found that a sudden 136 

lane-changing could lead to the abrupt acceleration of the following vehicle, which might lead to 137 

excessive exhaust emissions and fuel consumption, as well as stop-and-go oscillations, impairing 138 

traffic efficiency and safety (Jiang et al., 2021; Jiang et al., 2022). Wang et al. (2019) revealed 139 

that most braking behaviors of following vehicles occurred when lane-changing events were at 140 

the initial phase, i.e., before the lane-changing vehicle entered the target lane. Researchers 141 

further found that the effects of lane-changing events on the following vehicles’ behaviors 142 

depend on the road attributes. For example, Yang et al. (2019) concluded that the effects of lane-143 

changing events on the following vehicle speed depend on the road type. Mauch and Cassidy 144 

(2002) found that traffic oscillations were more likely to form near the facilities with more lane-145 

changing events. 146 

Another critical element of the lane-changing decision-making process is gap acceptance. 147 

Before performing lane-changing behaviors, drivers will evaluate whether the longitudinal gaps 148 

between them and the vehicles in the target lane are acceptable. The gaps are of two types 149 

including the lead gap representing the longitudinal distance between the lead vehicle in the 150 

target lane and the lane-changing vehicle, and the lag gap representing the longitudinal distance 151 

between the following vehicle in the target lane and the lane-changing vehicle (Toledo et al., 152 

2003). In this paper, gaps are calculated in terms of time rather than distance suggesting that gaps 153 

are a function of the longitudinal distance and vehicle speed. This is because the available gaps 154 

of lane-changing vehicles are correlated with the current speed which may vary, which makes 155 

time gaps more generalizable (Bham, 2009). In previous research, commonly-used methods to 156 

model lane-changing vehicle gap acceptance include rule-based models (Jin et al., 2019), game-157 



theoretic models (Ji and Levinson, 2020), linear regression models (Wang et al., 2019; Yang et 158 

al., 2019) and multivariate adaptive regression splines model (Das et al., 2020) and the gap 159 

acceptance in lane-changing events is significantly affected by several variables, such as relative 160 

position and relative speed (Bham, 2009; Toledo et al., 2003). 161 

2.2 Autonomous vehicle-human-driven vehicle interactions 162 

Current studies investigating autonomous vehicle-human-driven vehicle interactions are mainly 163 

based on two different views: (1) some studies adopted the conventional models to depict 164 

human-driven vehicles’ behaviors assuming that they will drive the same way even if they can 165 

distinguish autonomous vehicles, e.g., traffic/numerical simulations; and (2) the others assumed 166 

that people’s behaviors will change significantly in response to the existence of autonomous 167 

vehicles, e. g., field experiments (Di and Shi, 2021). 168 

For example, Papadoulis et al. (2019), Sinha et al. (2020) and Zheng et al. (2020) 169 

considered the scenario where human-driven vehicles were following autonomous vehicles by 170 

developing traffic/numerical simulation platforms. They found that autonomous vehicles had 171 

significant efficiency and safety advantages compared to the scenario where human-driven 172 

vehicles were following human-driven vehicles, e.g., in human-driven vehicle-following-173 

autonomous vehicle, the speed standard deviation (𝑆𝑡𝑑) of human-driven vehicles would be 174 

decreased with the increment of autonomous vehicle market penetration rates. In their studies, 175 

human-driven vehicles’ car-following behaviors were depicted by traditional models, such as 176 

Wiedemann 74 and Wiedemann 99 models. Based on field experiments, Rahmati et al. (2019), 177 

Zhao et al. (2020) and Mahdinia et al. (2021) found that human-driven vehicles may exhibit 178 

different behaviors when following autonomous vehicles as compared to when following human-179 

driven vehicles. In their studies, several human drivers were recruited to drive behind 180 



autonomous vehicles which were fulfilling either the human-driven vehicle’s or autonomous 181 

vehicle’s speed files. Similarly, traffic, safety and environmental benefits for human-driven 182 

vehicle-following-autonomous vehicle were identified and quantified. For example, Mahdinia et 183 

al. (2021) observed 20.9% larger values for minimum time-to-collision that indicate much safer 184 

car-following behaviors and lower rear-end crash risks in human-driven vehicle-following-185 

autonomous vehicle. Besides car-following behaviors, the lane-changing behaviors of 186 

autonomous vehicles have also been found to impact the driving behaviors of following vehicles. 187 

For example, using a series of field experiments, Wang et al. (2021b) revealed that the lane-188 

changing of autonomous vehicles induced more comfortable and safer responses of the following 189 

human-driven vehicles in the target lane as compared to the lane-changing of human-driven 190 

vehicles, leading to smaller acceleration, speed Std, and yaw rates of the following human-driven 191 

vehicles. According to Dong et al. (2021), as the penetration rates of cooperative adaptive cruise 192 

control (CACC) vehicles increased, there would be considerable benefits for road capacity and 193 

traffic safety at an off-ramp bottleneck. 194 

However, for traffic/numerical simulations, complex traffic flow and heterogeneous 195 

driving behaviors are simplified, leading to a biased estimation of the effects of autonomous 196 

vehicles. Field experiments are usually conducted in a dedicated testbed hiring a limited number 197 

of drivers that cannot mimic the complicated mixed traffic environment. To this end, analyses of 198 

human-driven vehicles’ behavioral adaptations using the realistic dataset are essential to quantify 199 

the impacts of autonomous vehicles on the safety and efficiency of mixed traffic. 200 



3. Data description 201 

3.1 Waymo motion dataset 202 

Discretionary lane-changing events analyzed in this study are extracted from the Waymo Open 203 

Dataset. Waymo is a leading autonomous vehicle tech firm and has been conducting road tests 204 

using SAE Level 4 autonomous vehicles for more than 32 million km (kilometers) in the U.S. 205 

Waymo cars collect high-resolution data on autonomous vehicles’ movements and environments 206 

surrounding autonomous vehicles at 10-Hz frequency. As shown in Figure 1, Waymo cars have 207 

distinguished exteriors (i.e., protruding cameras and frames) and Waymo stickers as well as the 208 

LiDAR sensors on the roof, all of which make their appearance distinguishable from normal 209 

human-driven vehicles and thus allow surrounding human-driven vehicles to recognize them. 210 

The Waymo Open Dataset is constituted of two datasets: the perception and motion datasets. 211 

Note that only the motion dataset is used in this study since the perception dataset includes very 212 

few lane-changing events (Hu et al., 2022). 213 

 214 

Figure 1. Exterior appearance of Waymo cars 215 

 216 

28,358 clips of 20-second scenes representing approximately 157.5 hours of driving data 217 

are retrieved from the motion dataset. Each scene in the motion dataset contains high-quality 3D 218 



ground truth bounding boxes and the speed vectors for each road user (e.g., vehicles, pedestrians, 219 

and cyclists). A high-resolution map for each scene is attached as a set of polylines and polygons 220 

sampled at 0.5 meters (Ettinger et al., 2021). The motion dataset contains high-quality and 221 

continuous records of road agents’ type, size (e.g., length, width and height), position and 222 

movements (e.g., speed profile and yaw angle). 223 

3.2 Lane-changing event extraction 224 

Yang and Koutsopoulos (1996) indicated that lane-changing motivations were categorized into 225 

either mandatory or discretionary. Mandatory lane-changing (Mlane-changing) has three primary 226 

motivations: the vehicle has to change the lane to make a turn when approaching an intersection, 227 

the vehicle is entering or exiting the traffic facility with limited access, and the vehicle is 228 

avoiding obstacles. The major motivation for discretionary lane-changing (discretionary lane-229 

changing) is to improve the driving condition, e.g., changing to the fast lane and avoiding the 230 

slow lead vehicle. 231 

All the 20-second clips are manually reviewed by the research team to detect 232 

discretionary lane-changing events. Note that since the sample size of discretionary lane-233 

changing events on highways is limited (40 events for autonomous vehicle discretionary lane-234 

changing), only discretionary lane-changing events that occur on surface roads are used in this 235 

study. Taking into consideration the sample size and sensor detection range, following the 236 

previous studies (Das et al., 2020; Toledo and Zohar, 2007; Wang et al., 2019; Yang et al., 237 

2019), the criteria for extracting discretionary lane-changing events are defined as follows: (1) 238 

the lane-changing vehicle should move from the current lane to the neighboring lane. lane-239 

changing vehicles that cross more than one lane are considered as multiple lane-changing events; 240 

(2) the longitudinal distance from the lane-changing vehicle to the following vehicle should be 241 



less than 75𝑚 to guarantee that the lane-changing maneuver has direct effects on the following 242 

vehicle; and (3) the speed of both the following vehicle and the lane-changing vehicle should 243 

always be more than 1𝑚/𝑠. This rule ensures that the two vehicles are moving. 244 

For each detected discretionary lane-changing event, lane-changing vehicle and following 245 

vehicle trajectories are derived and confirmed whether they comply with the above criteria. After 246 

screening, 180 autonomous vehicle discretionary lane-changing and 178 human-driven vehicle 247 

discretionary lane-changing events have been extracted from the dataset. For each discretionary 248 

lane-changing event, we employ the second-order Savitzky–Golay filter to filter the speed and 249 

acceleration data to remove measurement noises. 250 

Following the guidelines in Ali et al. (2022a), we use the lane lateral shift profile of the 251 

lane-changing vehicle to determine the start and end moments of a discretionary lane-changing. 252 

The lane lateral shift profile describes the lateral position offset corresponding to the closest lane 253 

center. Figure 2 shows a sample of the discretionary lane-changing maneuver (from left to right) 254 

extracted from the autonomous vehicle discretionary lane-changing dataset, which illustrates 255 

three key points, including the start point, cross-lane point and end point. The start moment of 256 

the monotonical decrease of the lane lateral shift marks the start point of a discretionary lane-257 

changing maneuver (red line in Figure 2). When the center of the lane-changing vehicle crosses 258 

the lane boundary (blue line in Figure 2), the sign of the lane lateral shift value will change since 259 

the lane-changing vehicle becomes closer to the center of the target lane. The end of a 260 

discretionary lane-changing maneuver is defined as the first peak after the cross-lane point 261 

(green line in Figure 2). The time difference between the start and the end points is defined as the 262 

duration of discretionary lane-changing which is approximately 6.6𝑠. 263 



 264 

Figure 2. Sample of discretionary lane-changing duration using lane lateral shift profile 265 

 266 

4. Methodology 267 

This section will describe the procedures for the extraction of variables and methodologies for 268 

the discretionary lane-changing characteristic analysis. The methodology framework consists of 269 

four components. First, discretionary lane-changing duration, which measures the period of the 270 

discretionary lane-changing execution phase, is modeled. The second and third components are 271 

used to measure the effects of discretionary lane-changing behaviors on the following vehicle. 272 

Specifically, the driving volatility is introduced to capture variations in instantaneous driving 273 

decisions of the following vehicle in the target lane during the lane-changing maneuver. Then, 274 

the extreme value theory is used to estimate the crash risks in discretionary lane-changing events 275 

based on observed traffic conflicts between lane-changing vehicles and following vehicles. 276 

Finally, a non-parametric machine learning model -- multivariate adaptive regression splines is 277 

adopted to model the gap acceptance behaviors. 278 

4.1 discretionary lane-changing duration 279 

discretionary lane-changing duration, as one of the most important parameters in discretionary 280 

lane-changing maneuvers, has significant effects on the surrounding vehicles in congested traffic 281 

flow (Wang et al., 2021b). In this paper, discretionary lane-changing duration data is estimated at 282 



first because subsequent analysis will be conducted using the data collected within the 283 

discretionary lane-changing duration. Various candidate distributions have been used to model 284 

autonomous vehicle discretionary lane-changing and human-driven vehicle discretionary lane-285 

changing duration data, such as exponential, gamma, normal, lognormal and logistic. Akaike 286 

Information Criterion (AIC) is chosen to measure the goodness-of-fit for each type of 287 

distribution where the distribution with the lowest AIC value will be selected. 288 

4.2 discretionary lane-changing effects measurements 289 

4.2.1 Driving volatility 290 

The driving volatility measures are adopted to quantify the deviation of driving behaviors 291 

through the extraction of useful information from longitudinal and lateral vehicle control. In 292 

previous studies, several volatility functions have been developed to assess the variation in 293 

vehicle speed, acceleration and yaw rate (e.g., Arvin et al., 2019). It has been identified that 294 

higher driving volatility is correlated with higher driver instability, which is associated with 295 

higher crash risks, more energy consumption, and increased exhaust emissions (Wen et al., 296 

2022b). Three groups of volatility measures are defined and calculated for the selected 297 

discretionary lane-changing events: speed-based volatility, acceleration-based volatility, and 298 

yaw-rate-based volatility. The mathematical equations of driving volatility functions are shown 299 

in Eqs. (1) and (2). 300 

Standard deviation (𝑺𝒕𝒅): 𝑆𝑡𝑑 is one of the most commonly-used variation measures, 301 

which can be calculated as follows: 302 

𝑆𝑡𝑑 = 1∑ (#!$#̅)"#
!$%
'$(

     (1) 303 

Mean Absolute Deviation (𝑫𝒎𝒆𝒂𝒏): 𝐷-./'	represents the average distance between the 304 

observations and the mean value and can be computed as follows: 305 



𝐷-./' =
∑ |#!$#̅|
#
!$%

'
     (2) 306 

where 𝑥1 is the 𝑖th observation, �̅� is the mean value of observations and 𝑛 is the sample size. 307 

Both 𝑆𝑡𝑑 and 𝐷-./' can be applied to speed, acceleration and yaw rate. 308 

Note that the driving volatility measure is computed for each following vehicle involved 309 

with the selected discretionary lane-changing events. Specifically, only observations that are 310 

collected within the discretionary lane-changing duration are used for the calculation. The 311 

outcomes of Eqs. (1) and (2) are aggregated values that represent each following vehicle’s 312 

driving volatility during the discretionary lane-changing maneuvers. 313 

4.2.2 Extreme value theory 314 

Instead of using the crash data, we analyze traffic conflicts based on extreme value theory for 315 

three reasons: (1) the crash data related to autonomous vehicles and human-driven vehicles is 316 

quite limited so far; (2) the use of crash data is a reactive approach meaning that the crash has to 317 

occur first leading to the ethical dilemma of observing crashes to prevent crashes; and (3) the 318 

crash data is in an aggregated manner which makes the model incapable of providing insights 319 

into detailed driving behaviors (Farah and Azevedo, 2017; Wang et al., 2018; Zheng et al., 320 

2014). To develop a crash–conflict relationship using the extreme value theory, it is a 321 

prerequisite to ensure that extreme events are sufficiently smooth to enable the extrapolation 322 

from observable events to unseen events. Thus, the approach to sampling extreme events is of 323 

great importance. Typically, there are two types of sampling approaches: (1) block maxima 324 

approach using the generalized extreme value (GEV) distribution; and (2) peak over threshold 325 

(POT) approach using the generalized Pareto distribution (GPD). Previous studies have shown 326 

that for POT, choosing the threshold for extreme events is subjective and the serial-dependency 327 

issue cannot be well handled (Li et al., 2018; Zheng et al., 2014; Zheng et al., 2018). On the 328 



contrary, when using the block maxima, the serial-dependency across the observations can be 329 

accounted for during the parameter estimation procedure automatically (more details can be 330 

found in Coles (2001)). As such, this study opts for the block maxima in favor of the POT. 331 

In the block maxima approach, observations are aggregated into fixed intervals over time, 332 

and the maxima in each interval are treated as extremes. Suppose that there is a set of 333 

independently and identically distributed random observations {𝑋(, 𝑋2, … , 𝑋'} which follow an 334 

unknown distribution function 𝐹(𝑥) = 𝑃𝑟(𝑋1 ≤ 𝑥), and let maximum 𝑀' =335 

𝑚𝑎𝑥(𝑋(, 𝑋2, … , 𝑋'). When 𝑛 is approaching to the infinity (𝑛 → ∞), 𝑀' will converge to a GEV 336 

distribution as shown in Eq. (3): 337 

𝐺(𝑥) = exp	{−[1 + 𝜖(#$3
4
)]

&%
' }    (3) 338 

where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜖 is the shape parameter, and 339 

−∞ < 𝜇 < ∞, 𝜎 > 0 and −∞ < 𝜖 < ∞. 340 

The tail behavior of an extreme value distribution should be focused on since the extreme 341 

value theory enables the extrapolation of observable traffic conflicts to traffic crashes that are 342 

unobservable in a short time span. To measure crash risks in discretionary lane-changing 343 

maneuvers, the gap time is adopted to measure the risk of a discretionary lane-changing event 344 

(Gettman and Head, 2003). Gap time is defined as “the time between the entries into the conflict 345 

spot of two vehicles” (Wang et al., 2021a). Gap time is negatively proportional to crash risks 346 

where smaller gap time values indicate higher crash risks. For each discretionary lane-changing 347 

event, only the minimum gap time is retained, reflecting the degree of danger of a discretionary 348 

lane-changing event. When a 𝐺𝑇 ≤ 0, there will be trajectory overlaps between the lane-349 

changing vehicle and the following vehicle, indicating the occurrence of traffic crashes. As 350 

suggested by previous studies (e.g., Zheng et al., 2014), the negated values of gap times are used 351 



to fit the GEV distribution, and a crash can be identified if negated 𝐺𝑇 ≥ 0. The crash risk is 352 

calculated based on the tail region of the GEV distribution as follows: 353 

𝑅 = Pr(𝑍 ≥ 0) = 1 − 𝐺(0)     (4) 354 

where 𝑅 is the crash risk and also the probability of negated 𝐺𝑇 ≥ 0, 𝑍 represents the maximum 355 

negated gap time, and 𝐺(∙) represents the fitted GEV distribution. 356 

When employing an extreme value theory approach, three key considerations must be 357 

properly handled, i.e., sample size, serial dependency, and non-stationarity. For the sample size 358 

issue, the minimum sample size suggested in previous literature is 30 (Zheng et al., 2014). In our 359 

study, both autonomous vehicle discretionary lane-changing (𝑁 = 180) and human-driven 360 

vehicle discretionary lane-changing (𝑁 = 178) datasets comply with this requirement. The serial 361 

dependency issue occurs when the key assumption of extreme value theory that the extreme 362 

events are independently and identically distributed is violated (e.g., a lane-changing maneuver 363 

may be dependent on a previous lane-changing maneuver). As mentioned before, the serial 364 

dependency issue can be automatically addressed using the block maxima approach. As for non-365 

stationarity, since certain time-varying factors may affect discretionary lane-changing maneuvers 366 

and cause the heterogeneity issue, covariates are included in the extreme value theory model to 367 

mitigate non-stationarity to retrieve a set of identically distributed observations. The literature 368 

implies that those covariates should be included in the location parameter of the GEV 369 

distribution using the identity link function (Songchitruksa and Tarko, 2006). Mathematically, 370 

the location parameter is written as: 371 

𝜇1 = 𝜇5 + 𝜇(𝛾(     (5) 372 

where 𝜇1 is the location parameter for the 𝑖th block, 𝜇5 is the intercept term, 𝜇( and 𝛾( means the 373 

vectors of estimated coefficients and covariates. 374 



4.3 Multivariate adaptive regression splines 375 

Multivariate adaptive regression splines is a multivariate piecewise regression model (Friedman, 376 

1991), that has been implemented to analyze lane-changing gap acceptance behaviors (e.g., Das 377 

et al., 2020; Ghasemzadeh and Ahmed, 2018). The multivariate adaptive regression splines 378 

model has some key advantages over linear regression: (1) it takes into consideration both the 379 

nonlinear impacts of individual variables and the interaction impacts among variables; (2) the 380 

results of multivariate adaptive regression splines are presented as a set of basis functions (BFs) 381 

which can mitigate the black-box issue of traditional machine learning methods; and (3) 382 

multivariate adaptive regression splines is capable of handling multicollinearity between 383 

variables (Wen et al., 2022a). Therefore, providing higher predictive accuracy and more 384 

interpretability for the naturalistic driving data using multivariate adaptive regression splines is 385 

beneficial for understanding how different variables affect lane-changing gap acceptance. 386 

The multivariate adaptive regression splines model classifies the space of variables into 387 

multiple regions separated by knots, and then fits a spline function between these knots 388 

smoothly. The spline function consists of a series of BFs, each of which is either a main function 389 

or an interaction term between variables. The general form of the multivariate adaptive 390 

regression splines model is given in Eq. (6). 391 

𝑦b = 𝛼5 + ∑ 𝛼-𝛽-6
-7(      (6) 392 

where 𝑦b defines the predicted response variable (which is the lead or lag gap in our study), 𝛼5 393 

means the constant BF coefficient, 𝑀 represents the total number of BFs, 𝛼- is the coefficient of 394 

the 𝑚th BF, and 𝛽- corresponds to the 𝑚th BF. 395 

In this study, the multivariate adaptive regression splines model is developed to identify 396 

the relationship between independent variables and accepted gaps when the discretionary lane-397 



changing maneuver begins. The dependent variable is the logarithm of the accepted gap at the 398 

start point of discretionary lane-changing since the logarithmic transformation ensures that the 399 

predicted gaps are always non-negative. The potential independent variables that may affect the 400 

gap acceptance behavior are identified through a thorough literature review (Balal et al., 2014; 401 

Das et al., 2020; Wang et al., 2019; Yang et al., 2019). Then the independent variables are 402 

selected based on the literature review results and data availability. The detailed variable 403 

selection results will be presented in the following. 404 

5. Results 405 

First, the duration of autonomous vehicle discretionary lane-changing and human-driven vehicle 406 

discretionary lane-changing events is quantified. Second, the impacts of discretionary lane-407 

changing on the following vehicles, e.g., driving volatility and crash risks, are computed and 408 

compared between autonomous vehicle discretionary lane-changing and human-driven vehicle 409 

discretionary lane-changing. Third, gap acceptance in autonomous vehicle discretionary lane-410 

changing and human-driven vehicle discretionary lane-changing are analyzed and modeled. Note 411 

that a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 0.05 is adopted as the threshold to judge the statistical significance. 412 

5.1 Duration 413 

As Table 1 shows, the mean values of autonomous vehicle discretionary lane-changing and 414 

human-driven vehicle discretionary lane-changing duration are nearly the same, indicating that 415 

these two discretionary lane-changing modes have similar time efficiency. This conclusion is 416 

confirmed by the results of the Mann-Whitney U test (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .5), suggesting that the 417 

differences in duration are not statistically significant. This might be because autonomous 418 

vehicles are programmed by autonomous vehicle algorithm developers to be socially compliant, 419 

understood and accepted by surrounding human drivers. Then the lognormal distribution is found 420 



to fit the duration data the best, which is in line with previous literature (e.g., Toledo and Zohar, 421 

2007; Venthuruthiyil and Chunchu, 2022; Wang et al., 2019). The lognormal distribution 422 

parameters of autonomous vehicle discretionary lane-changing are: 𝑚𝑒𝑎𝑛 = 1.847 and 423 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.416. For human-driven vehicle discretionary lane-changing, these parameters are: 424 

𝑚𝑒𝑎𝑛 = 1.864 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.486. 425 

Table 1. Summary statistics of discretionary lane-changing duration 426 

discretionary lane-
changing direction 

discretionary lane-changing mode 
autonomous vehicle discretionary lane-

changing 
human-driven vehicle discretionary lane-

changing 

Size Max 
(s) 

Min 
(s) 

Mean 
(s) 

Std 
(s) Size Max 

(s) 
Min 
(s) 

Mean 
(s) 

Std 
(s) 

To the left 95 10.5 3.8 6.482 1.110 97 11.4 3.4 6.546 1.545 
To the right 85 9.7 4.1 6.380 1.110 81 12.5 4 6.739 1.669 

Total 180 10.5 3.8 6.434 1.108 178 12.5 3.4 6.634 1.600 
Note: Std: standard deviation 427 

 428 

Table 2. Comparison of driving volatility of following vehicles between autonomous vehicle discretionary lane-429 

changing and human-driven vehicle discretionary lane-changing 430 

Metrics 

lane-changing mode 

Difference (%) autonomous vehicle discretionary 
lane-changing (𝑛 = 180) 

human-driven vehicle 
discretionary lane-changing 

(𝑛 = 178) 
Max Min Mean Std Max Min Mean Std 

Speed volatility 

Std(𝑚/𝑠) 2.115 0.057 0.854 0.488 4.792 0.067 1.049 0.733 -18.59% 
𝐷()*+(𝑚/𝑠) 1.865 0.043 0.739 0.439 4.396 0.056 0.913 0.656 -19.06% 

Acceleration volatility 

Std(𝑚/𝑠,) 0.807 0.015 0.376 0.185 1.305 0.045 0.389 0.250 -3.34% 
𝐷()*+(𝑚/𝑠,) 0.709 0.013 0.327 0.164 1.218 0.032 0.338 0.226 -3.25% 

Yaw rate volatility 

Std(𝑑𝑒𝑔𝑟𝑒𝑒/𝑠) 3.549 0.455 1.001 0.519 6.035 0.366 1.159 0.800 -13.63% 
𝐷()*+(degree/𝑠) 2.477 0.348 0.758 0.373 4.665 0.299 0.894 0.607 -15.21% 

Note: Std: standard deviation; 𝐷()*+: mean absolute deviation. 431 
 432 



5.2 Impacts on the following vehicle 433 

5.2.1 Driving volatility analysis 434 

Table 2 shows the summary statistics of driving volatility of following vehicles in different 435 

discretionary lane-changing modes. It is noteworthy to mention that only the trajectory data 436 

collected within the discretionary lane-changing period is used in the computation process. The 437 

presented values are the aggregation and average of driving volatility of following vehicles. The 438 

column named “Difference (%)” represents the mean value changes in driving volatility of 439 

autonomous vehicle discretionary lane-changing concerning human-driven vehicle discretionary 440 

lane-changing. The positive (negative) values of “Difference (%)” represent the increase 441 

(decrease) in driving volatility of autonomous vehicle discretionary lane-changing relative to 442 

human-driven vehicle discretionary lane-changing. 443 

The results shown in Table 2 indicate that the following vehicles are inclined to show 444 

lower speed volatility in autonomous vehicle discretionary lane-changing compared to human-445 

driven vehicle discretionary lane-changing. The percentage changes of standard deviation (𝑆𝑡𝑑) 446 

and mean absolute deviation (𝐷-./') of speed for autonomous vehicle discretionary lane-447 

changing are −18.59% and −19.06%, respectively. Both driving volatility measures are found 448 

to be significantly different between the two discretionary lane-changing modes (𝑆𝑡𝑑: 𝑝 −449 

𝑣𝑎𝑙𝑢𝑒 = .046; 𝐷-./': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .04) by the Mann-Whitney U test. It may be explained by 450 

the precise motion control module of autonomous vehicles which enables them to handle 451 

complex driving scenarios. The higher speed volatility for human-driven vehicle discretionary 452 

lane-changing is expected due to the stochastic behaviors of human-driven vehicles. The 453 

comparisons of speed volatility suggest that the penetration of autonomous vehicles in mixed 454 

traffic can potentially improve the driving smoothness of following vehicles. 455 



As shown in Table 2, 3.34% and 3.25% reductions are found in the 𝑆𝑡𝑑 and 𝐷-./' of 456 

acceleration. The mean values of acceleration of following vehicles are displayed in Figure 3(a). 457 

Although the Mann-Whitney U test shows no significant differences in acceleration volatility 458 

(𝑆𝑡𝑑: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .5; 𝐷-./': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .5), one can observe in Figure 3(a) that following 459 

vehicles in human-driven vehicle discretionary lane-changing are more likely to perform harsh 460 

acceleration and deceleration., indicating that autonomous vehicle discretionary lane-changing 461 

induces lower acceleration rates of following vehicles, and leads to better driving comfort. 462 

The yaw rate describes the angular speed of the forward direction of the vehicle, which 463 

plays a crucial role in vehicle lateral dynamics (Aripin et al., 2014). It can be used to detect 464 

evasive actions of following vehicles where high yaw rates are significantly correlated with 465 

swerving maneuvers of following vehicles during the discretionary lane-changing event (Guo et 466 

al., 2018). From Table 2, one can observe that following vehicles in autonomous vehicle 467 

discretionary lane-changing events have smaller 𝑆𝑡𝑑 and 𝐷-./' of yaw rates than those in 468 

human-driven vehicle discretionary lane-changing events. The differences are statistically 469 

significant based on the Mann-Whitney U test (𝑆𝑡𝑑: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .04; 𝐷-./': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .02). 470 

The empirical cumulative distributions of the mean values of the yaw rate are depicted in Figure 471 

3(b). To summarize, following vehicles in autonomous vehicle discretionary lane-changing have 472 

smaller and more stable yaw rates and therefore more lateral stability compared to following 473 

vehicles in human-driven vehicle discretionary lane-changing. 474 



 475 

    (a)     (b) 476 

Figure 3. Empirical cumulative distributions of (a) acceleration mean and (b) yaw rate mean 477 

5.2.2 Crash risk analysis 478 

Note that since the research scope of this study is to understand the effects of discretionary lane-479 

changing behaviors of autonomous vehicles on following vehicles, only traffic conflicts between 480 

lane-changing vehicles and following vehicles are analyzed. As suggested by Farah and Azevedo 481 

(2017), each block represents a discretionary lane-changing event where the duration of the 482 

block is the same as the duration of the corresponding discretionary lane-changing event. For 483 

each block, the minimum value of gap time is chosen and used to develop the block maxima 484 

model. Former works have concluded that only the gap time value lower than 3𝑠 should be 485 

treated as an extreme event (Saul et al., 2021). Therefore, the gap time values above 3𝑠 are 486 

filtered, resulting in 177 maxima for autonomous vehicle discretionary lane-changing and 173 487 

maxima for human-driven vehicle discretionary lane-changing. 488 

Table 3 presents the stationary and selected non-stationary block maxima models which 489 

are built using the maximum likelihood estimation (MLE) method. Two covariates are included 490 

in each non-stationary model: 𝑙𝑎𝑔_𝑠𝑝𝑎𝑐𝑖𝑛𝑔 representing the distance (in meters) between the 491 

lane-changing vehicle and the following vehicle at the start point of discretionary lane-changing 492 



and 𝑟𝑒𝑙𝑠𝑝𝑑_𝑚𝑒𝑎𝑛_𝑙𝑐𝑣_𝑓𝑣 representing the average relative speed between the lane-changing 493 

vehicle and the following vehicle during the discretionary lane-changing period. It can be 494 

observed that incorporating the covariates into the location parameter can greatly reduce the 495 

negative log-likelihood and thus improve the model fit. Figure 4 shows the simulated quantile-496 

quantile (Q-Q) plot and the probability density function of the empirical and modeled 497 

standardized maximum negated gap time derived from the non-stationary block maxima models. 498 

For both discretionary lane-changing modes, a visual inspection shows a good fit as both the 499 

empirical and the modeled GEV curves are inclined to overlap each other. Further, a 500 

Kolmogorov–Smirnov (K-S) test is implemented, of which the null hypothesis is that the sample 501 

is drawn from the fitted GEV distribution. In both conditions, 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are significantly 502 

greater than 0.05 (𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦	𝑙𝑎𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .9; 503 

ℎ𝑢𝑚𝑎𝑛 − 𝑑𝑟𝑖𝑣𝑒𝑛	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦	𝑙𝑎𝑛𝑒 − 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .99), meaning that 504 

the null hypothesis cannot be rejected. 505 

The interpretation of the estimation results of non-stationary block maxima models in 506 

Table 3 is straightforward. First, the negative sign of 𝜇8/9_;</=1'9 indicates that as the 507 

longitudinal spacing between the lane-changing vehicle and the following vehicle increases, the 508 

negated gap time will decrease, and the value of gap time will increase, which agrees with 509 

previous literature such as Ali et al. (2022a). This is reasonable because if the following vehicle 510 

is far away from the lane-changing vehicle, the lane-changing vehicle can have abundant space 511 

to perform the discretionary lane-changing behavior. Second, when the average relative speed 512 

between the lane-changing vehicle and the following vehicle (𝜇>.8;<?_-./'_8=@_A@) is larger, the 513 

negated gap time decreases, and the gap time increases. The explanation is also intuitive: when 514 

the lane-changing vehicle is significantly faster than the following vehicle, the lane-changing 515 



vehicle takes less time to change to the target lane, getting further away from the following 516 

vehicle, which results in higher gap time values. 517 

The crash risk representing the probability of a collision during an autonomous vehicle 518 

discretionary lane-changing or human-driven vehicle discretionary lane-changing is calculated 519 

using Eq. (4). According to Zheng et al. (2014), the confidence intervals of crash risks are 520 

generated based on simulation where estimated parameters are assumed to follow the normal 521 

distribution. After 10B simulation runs, the empirical distributions of estimation are attained and 522 

the lower and upper confidence interval bounds are calculated from the quantiles of the 523 

distributions. Based on the non-stationary block maxima model, the crash risk is computed as 524 

0.010 with a 95% confidence interval (0.001,0.039) for autonomous vehicle discretionary lane-525 

changing and 0.020 with a 95% confidence interval (0.003,0.078) for human-driven vehicle 526 

discretionary lane-changing. In summary, the discretionary lane-changing maneuvers of 527 

autonomous vehicles have been found to improve traffic safety significantly compared to those 528 

of human-driven vehicles, with a 2 times reduction in crash risk. This finding indicates the 529 

efficacy and potential of autonomous vehicles in eliminating discretionary lane-changing crash 530 

risks. 531 

 532 
(a) autonomous vehicle discretionary lane-changing 533 



 534 
(b) human-driven vehicle discretionary lane-changing 535 

Figure 4. QQ-plot (left) and probability density function (right) for the non-stationary block maxima model 536 

 537 



 

Table 3. Block maxima model estimation results 538 

discretionary 
lane-

changing 
mode 

Model type nllh 

Location(𝜇)(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑒𝑟𝑟𝑜𝑟, 𝑆𝐸) 

Scale(𝜎)(𝑆𝐸) Shape(𝜖)(𝑆𝐸) AIC BIC 𝜇- 𝜇.*/_12*34+/ 𝜇5).126_()*+_.37_87 

autonomous 
vehicle 

discretionary 
lane-changing 

Stationary 203.655 -1.391(NA) -- -- 1.612(NA) -1.185(NA) 413.310 422.839 

Non-stationary 79.033 -0.242(0.069) -0.043(0.003) -0.338(0.027) 0.395(0.022) -0.334(0.037) 168.065 183.946 

human-driven 
vehicle 

discretionary 
lane-changing 

Stationary 143.023 -0.981(0.058) -- -- 0.690(0.052) -0.679(0.075) 292.047 301.507 

Non-stationary 125.490 -0.739(0.052) -0.009(0) -0.126(0.009) 0.637(0.045) -0.707(0.053) 260.979 276.746 

Note: nllh: negative log-likelihood; NA: indicates that the standard error of the corresponding parameter does not exist. 539 



 

5.3 Gap acceptance 540 

Through the analysis of driving volatility and crash risks, it can be found that autonomous 541 

vehicle discretionary lane-changing has significantly different effects on the following vehicle in 542 

comparison to human-driven vehicle discretionary lane-changing. Thus, by analyzing gap 543 

acceptance behaviors using the multivariate adaptive regression splines model, this part is aimed 544 

at exploring whether the discretionary lane-changing decision-making mechanisms of 545 

autonomous vehicles and human-driven vehicles are different. 546 

 547 

Table 4. Summary statistics of gaps in discretionary lane-changing 548 

Type 

discretionary lane-changing mode 
autonomous vehicle discretionary lane-

changing 
human-driven vehicle discretionary 

lane-changing 
Size Max Min Mean Std Size Max Min Mean Std 

𝐿𝑒𝑎𝑑	𝑔𝑎𝑝(𝑠) 153 5.975 0.236 1.703 0.981 154 6.175 0.227 1.506 1.202 
𝐿𝑎𝑔	𝑔𝑎𝑝(𝑠) 180 4.663 0.372 1.576 0.854 178 6.101 0.212 1.559 1.070 

 549 

5.3.1 Gap acceptance characteristics 550 

Before performing discretionary lane-changing, a driver usually estimates the gaps between the 551 

lane-changing vehicle and both the lead vehicle and the following vehicle, i.e., the lead gap and 552 

lag gap. As mentioned previously, the lead gap and lag gap are defined based on time, which 553 

refers to the time taken to traverse the longitudinal distance between the lane-changing vehicle 554 

and lead vehicle (for the lead gap) and between the lane-changing vehicle and the following 555 

vehicle (for the lag gap) when a discretionary lane-changing event starts. Table 4 shows the 556 

descriptive statistics of the lead and lag gap for different discretionary lane-changing modes. The 557 

Mann-Whitney U test is implemented to detect if there are any statistically significant 558 

differences in the lead or lag gap between autonomous vehicle discretionary lane-changing and 559 

human-driven vehicle discretionary lane-changing. The results reveal that the lead gap for 560 



 

autonomous vehicle discretionary lane-changing is significantly larger than that for human-561 

driven vehicle discretionary lane-changing at the 95% confidence level (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .001), 562 

while the lag gap comparison is not statistically significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .3). It is suggested that 563 

compared to human-driven vehicles, autonomous vehicles need significantly larger lead gaps to 564 

initiate the discretionary lane-changing maneuvers, meaning that autonomous vehicles adopt a 565 

more conservative driving style. 566 

 567 

Table 5. Summary statistics of independent variables in multivariate adaptive regression splines 568 

Variables Description 

autonomous vehicle 
discretionary lane-

changing 

human-driven vehicle 
discretionary lane-

changing 
Mean Std Mean Std 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣(𝑚
/𝑠) 

The instantaneous speed of lead 
vehicle when the discretionary lane-

changing starts 
14.558 4.572 12.731 4.148 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣(𝑚
/𝑠) 

The instantaneous speed of lane-
changing vehicle when the 

discretionary lane-changing starts 
13.338 4.585 11.778 4.905 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣(𝑚
/𝑠) 

The instantaneous speed of following 
vehicle when the discretionary lane-

changing starts 
13.319 4.957 11.699 4.563 

𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣(𝑚
/𝑠,) 

The instantaneous acceleration of lead 
vehicle when the discretionary lane-

changing starts 
0.235 0.498 0.308 0.755 

𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣(𝑚
/𝑠,) 

The instantaneous acceleration of lane-
changing vehicle when the 

discretionary lane-changing starts 
0.210 0.645 0.266 0.806 

𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣(𝑚
/𝑠,) 

The instantaneous acceleration of 
following vehicle when the 

discretionary lane-changing starts 
0.413 0.603 0.406 0.685 

𝑟𝑒𝑙𝑠𝑝𝑑_𝑙𝑐𝑣_𝑙𝑣(𝑚
/𝑠) 

The instantaneous relative speed 
between lane-changing vehicle and 
lead vehicle when the discretionary 

lane-changing starts 

-1.219 2.030 -0.952 2.643 

𝑟𝑒𝑙𝑠𝑝𝑑_𝑙𝑐𝑣_𝑓𝑣(𝑚
/𝑠) 

The instantaneous relative speed 
between lane-changing vehicle and 

following vehicle when the 
discretionary lane-changing starts 

0.019 2.003 0.079 2.554 

 569 

 570 



 

Table 6. Results of the multivariate adaptive regression splines model for lead gap in autonomous vehicle 571 

discretionary lane-changing 572 

BF Basis function Coefficient 
Intercept Intercept -1.241 

BF1 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 − 8.927,0) 0.167 
BF2 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣 − 21.483,0) ∗ 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 -0.030 
BF3 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 − 17.602,0) ∗ 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 0.018 
BF4 𝑀𝑎𝑥(0.650 − 𝑟𝑒𝑙𝑠𝑝𝑑_𝑙𝑐𝑣_𝑙𝑣, 0) 0.133 
BF5 𝑀𝑎𝑥(10.879 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) 2.389 
BF6 𝑀𝑎𝑥(10.330 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) -1.749 
BF7 𝑀𝑎𝑥(11.855 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) -2.064 
BF8 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 − 12.397,0) -0.152 
BF9 𝑀𝑎𝑥(12.397 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) 1.521 
BF10 𝑀𝑎𝑥(20.468 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣, 0) ∗ 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 − 10.879,0) 0.038 
BF11 𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 ∗ 𝐵𝐹8 0.100 
MAE 0.302 

RMSE 0.386 
 573 

5.3.2 Gap acceptance modeling results 574 

Note that only the lead gap acceptance behaviors for autonomous vehicle discretionary lane-575 

changing and human-driven vehicle discretionary lane-changing are found to be significantly 576 

different. Given that the objective of this study is to compare autonomous vehicle discretionary 577 

lane-changing and human-driven vehicle discretionary lane-changing maneuvers, only the lead 578 

gap acceptance models are built. Table 5 presents the summary statistics of independent 579 

variables included in multivariate adaptive regression splines to model lead gap acceptance in 580 

autonomous vehicle discretionary lane-changing and human-driven vehicle discretionary lane-581 

changing scenarios. Table 6 and Table 7 present the results of the multivariate adaptive 582 

regression splines models for lead gap acceptance in autonomous vehicle discretionary lane-583 

changing and human-driven vehicle discretionary lane-changing, respectively. As indicated by 584 



 

the MAE (mean absolute error) and RMSE (root mean square error), both multivariate adaptive 585 

regression splines models fit the lead gap data well. 586 

 587 

Table 7. Results of the multivariate adaptive regression splines model for lead gap in human-driven vehicle 588 

discretionary lane-changing 589 

BF Basis function Coefficient 
Intercept Intercept -1.049 

BF1 𝑀𝑎𝑥(𝑟𝑒𝑙𝑠𝑝𝑑_𝑙𝑐𝑣_𝑓𝑣 + 2.565,0) 0.188 
BF2 𝑀𝑎𝑥(10.689 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣, 0) 0.148 
BF3 𝑀𝑎𝑥(𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 − 0.898,0) 2.188 
BF4 𝑀𝑎𝑥(0.898 − 𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) 0.621 
BF5 𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣 -0.245 
BF6 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣 ∗ 𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 0.030 
BF7 𝑎𝑐𝑐_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 ∗ 𝐵𝐹4 0.289 
BF8 𝑀𝑎𝑥(10.156 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣, 0) ∗ 𝐵𝐹3 0.371 
BF9 𝑀𝑎𝑥(18.323 − 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣, 0) ∗ 𝐵𝐹3 -0.336 

MAE 0.344 
RMSE 0.448 

 590 

To extract the total effect of a variable on lead gap acceptance, one should consider all 591 

main effects and interaction terms involving this variable of interest. For the variable 592 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣, its total effect in autonomous vehicle discretionary lane-changing is written in 593 

Eq. (7) (see BF1 and BF3 in Table 6), which is referred to as “Impact Impression”. 594 

0.167 ∗ 𝐵𝐹1 + 0.018 ∗ 𝐵𝐹3 595 

= 0.167 ∗ 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 − 8.927,0) + 0.018 ∗ 𝑀𝑎𝑥(𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 − 17.602,0) ∗596 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣      (7) 597 

“Rate of Impression Expression” is defined as the first derivative of Impact Impression. 598 

In the case of 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣, Rate of Impression Expression can be determined in three different 599 

intervals. When 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 is less than 8.927𝑚/𝑠, 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 has no impact on lead gap 600 



 

acceptance. If 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 is between 8.927𝑚/𝑠 and 17.602𝑚/𝑠, Rate of Impression 601 

Expression will be 0.167 suggesting that the accepted lead gap for autonomous vehicles is 602 

linearly correlated with 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣. As 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 becomes greater than 17.602𝑚/𝑠, 603 

Rate of Impression Expression will be 0.167 + 0.018 ∗ 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 which indicates that 604 

𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 has a positive effect on lead gap acceptance for autonomous vehicles driving at 605 

high speed. These findings demonstrate the nonlinear and complex impacts of 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 on 606 

lead gap acceptance for autonomous vehicle discretionary lane-changing. When it comes to the 607 

human-driven vehicle discretionary lane-changing scenario, the effects of 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 are 608 

relatively simple (see BF2 in Table 7). If 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 is less than 10.689, Rate of Impression 609 

Expression is −0.148, indicating that the higher the speed of the human-driven vehicle is, the 610 

less the lead gap the human-driven vehicle needs. 611 

Figure 5 shows the variable importance of multivariate adaptive regression splines for 612 

autonomous vehicle discretionary lane-changing and human-driven vehicle discretionary lane-613 

changing, respectively. One can observe that 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑓𝑣 and 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑣 contribute the 614 

most to the multivariate adaptive regression splines model outcomes for autonomous vehicle 615 

discretionary lane-changing while these two are among the least important variables for human-616 

driven vehicle discretionary lane-changing. Interestingly, 𝑟𝑒𝑙𝑠𝑝𝑑_𝑙𝑐𝑣_𝑓𝑣 turns out to have the 617 

most significant impact on human-driven vehicle lead gap acceptance but it has an importance 618 

value of zero for autonomous vehicle discretionary lane-changing. The differences in variable 619 

importance between autonomous vehicle discretionary lane-changing and human-driven vehicle 620 

discretionary lane-changing might be attributed to the fact that autonomous vehicles’ 621 

discretionary lane-changing decision-making process has been programmed by autonomous 622 

vehicle manufacturers. For example, the autonomous vehicle might be programmed to conduct a 623 



 

discretionary lane-changing maneuver based on the time-based lag gap and the threshold for the 624 

time-based lag gap may vary with the speed of the following vehicle for autonomous vehicle 625 

discretionary lane-changing, which may explain why spd_start_fv is the most important for 626 

autonomous vehicle discretionary lane-changing. However, this needs to be further validated. 627 

While human-driven vehicles may not be good at judging the time-based lag gap and thus prefer 628 

to make discretionary lane-changing decisions mainly based on relsped_lcv_fv. Overall, different 629 

variable importance sequences indicate that autonomous vehicles and human-driven vehicles 630 

adopt different decision-making logics when conducting discretionary lane-changing maneuvers. 631 

 632 

 633 

  (a) autonomous vehicle discretionary lane-changing     634 

 (b) human-driven vehicle discretionary lane-changing 635 

Figure 5. Variable importance in multivariate adaptive regression splines models 636 

 637 
6. Discussions and conclusions 638 

We take the first attempt to investigate the characteristics of autonomous vehicle discretionary 639 

lane-changing and its effects on following vehicles in the target lane using the real-world 640 

autonomous driving dataset. 180 autonomous vehicle discretionary lane-changing and 178 641 

human-driven vehicle discretionary lane-changing events are extracted from the Waymo Open 642 



 

Dataset. Driving volatility is computed and compared to understand the traffic effects of 643 

autonomous vehicle discretionary lane-changing and human-driven vehicle discretionary lane-644 

changing events. To quantify the safety impacts of autonomous vehicle discretionary lane-645 

changing and compare them to human-driven vehicle discretionary lane-changing, using the gap 646 

time as the safety indicator, the block maxima approach is employed to calculate the crash risks 647 

from the observed traffic conflicts. Additionally, the gap acceptance behaviors of autonomous 648 

vehicles and human-driven vehicles are modeled and compared using multivariate adaptive 649 

regression splines. 650 

The findings reveal that autonomous vehicles and human-driven vehicles take similar 651 

time to conduct the discretionary lane-changing maneuvers, indicating similar time efficiency of 652 

autonomous vehicles and human-driven vehicles. When it comes to driving volatility, if an 653 

autonomous vehicle changes to the target lane, the following vehicle in the target lane shows 654 

significantly lower speed and yaw rate volatility, indicating more longitudinal and lateral 655 

stability. Although the acceleration volatility reductions in autonomous vehicle discretionary 656 

lane-changing are not statistically significant, autonomous vehicle discretionary lane-changing 657 

leads to smaller acceleration rates of following vehicles, potentially improving the comfort level 658 

of the drivers and passengers in following vehicles. In summary, the insertion of autonomous 659 

vehicles into the traffic stream will have benefits in various aspects. The reasons may be that 660 

autonomous vehicles with better speed management and route planning tend to have fewer speed 661 

and yaw angle fluctuations, and are more conservative in discretionary lane-changing strategy, 662 

and thus impose less interference on the following vehicles. It is reasonable to foresee that these 663 

benefits will become even more significant as the market penetration rate of autonomous 664 

vehicles promotes in the future. 665 



 

Using the developed block maxima models, we identify that when autonomous vehicles 666 

are performing discretionary lane-changing behaviors, crash risks are significantly lower 667 

compared to that of human-driven vehicle discretionary lane-changing. This may be attributed to 668 

autonomous vehicles’ better ability to sense their surrounding environments and thus plan their 669 

routes, which can minimize the uncertainty during the discretionary lane-changing decision-670 

making process. For human-driven vehicle discretionary lane-changing, higher crash risk is 671 

observed since most of the crashes happen due to the human driver’s risky behaviors caused by 672 

uncertainty (Ali et al., 2022b). This finding is consistent with field experiment-based studies by 673 

Wang et al. (2021b), in which the discretionary lane-changing behaviors of autonomous vehicles 674 

were found to improve traffic safety. 675 

We then model and compare the gap acceptance behaviors of autonomous vehicles and 676 

human-driven vehicles to understand the discretionary lane-changing decision-making process. 677 

The results show that autonomous vehicles adopt significantly larger lead gaps while there are no 678 

significant differences in accepted lag gaps. This can be explained as that autonomous vehicles 679 

are programmed to drive conservatively to avoid potential collisions with lead vehicles in the 680 

target lane. The multivariate adaptive regression splines models have been developed to explore 681 

the relationship between lead gap acceptance and a variety of variables in autonomous vehicle 682 

discretionary lane-changing and human-driven vehicle discretionary lane-changing scenarios. 683 

The modeling results indicate the nonlinear impacts of 𝑠𝑝𝑑_𝑠𝑡𝑎𝑟𝑡_𝑙𝑐𝑣 on the accepted lead gaps 684 

for autonomous vehicle discretionary lane-changing. The variable importance of multivariate 685 

adaptive regression splines models is also significantly different between autonomous vehicle 686 

discretionary lane-changing and human-driven vehicle discretionary lane-changing suggesting 687 

different decision-making processes. For example, autonomous vehicles allocate more weights to 688 



 

the speed of the following vehicle when deciding the start of discretionary lane-changing, while 689 

the weights of different measures are more evenly distributed for human-driven vehicles. 690 

Namely, autonomous vehicles pay more attention to whether their discretionary lane-changing 691 

maneuvers affect the speed of the following vehicles. These different decision-making processes 692 

may explain the differences in speed, acceleration and yaw rate volatility of following vehicles in 693 

autonomous vehicle discretionary lane-changing and human-driven vehicle discretionary lane-694 

changing events. However, further research is still needed to reveal the underlying relationship 695 

between the weights of measures and the impacts on the behaviors of following vehicles. 696 

According to the volatility-related indices and block maxima results, autonomous 697 

vehicles exhibit better performance than human-driven vehicles in terms of discretionary lane-698 

changing behaviors on public roads. These results, along with the multivariate adaptive 699 

regression splines modeling outcomes, have practical implications for companies developing 700 

autonomous vehicle technology. Specifically, this study shows how discretionary lane-changing 701 

maneuvers of autonomous vehicles affect surrounding human drivers. This information can be 702 

used to evaluate and enhance autonomous vehicle controllers by considering the responses of 703 

human drivers in real-world scenarios. This is particularly useful as autonomous vehicles are 704 

currently being tested on public roads. One example is that there is no significant difference in 705 

the acceleration volatility of the following vehicle between autonomous vehicle discretionary 706 

lane-changing and human-driven vehicle discretionary lane-changing. Additionally, it is found 707 

that in 42.78% of autonomous vehicle discretionary lane-changing events, absolute values of the 708 

speed percentage change of following vehicles within the discretionary lane-changing period are 709 

greater than 20%, indicating that following vehicles are negatively impacted. Therefore, 710 



 

developers of the autonomous vehicle algorithms could improve control modules to ensure that 711 

following vehicles take lower acceleration rates and smoother speeds. 712 

One question is: given that Waymo might be selective when producing this dataset, how 713 

representative are those 20-second segments used in this study? Based on our previous studies 714 

(e.g., Wen et al., 2022b) and other papers (e.g., Hu et al., 2023) using real-world autonomous 715 

driving datasets, one can find that at the early adoption stage, autonomous vehicles behave in a 716 

conservative way to ensure their safety. For example, Hu et al. (2023) found that the autonomous 717 

vehicle-following-human-driven vehicle has the largest jam spacing and critical spacing, 718 

indicating that the Waymo autonomous vehicle is more conservative than the human-driven 719 

vehicle. This conclusion is consistent with the findings in this paper, e.g., the accepted lead gap 720 

for autonomous vehicle discretionary lane-changing is significantly larger than that for human-721 

driven vehicle discretionary lane-changing. Since the findings of this paper are supported by 722 

other studies, it is reasonable to believe that these short clips in the Waymo Open Dataset are 723 

somewhat representative. However, this conclusion needs to be verified using other autonomous 724 

driving datasets, such as Lyft and nuScenes. 725 

On the one hand, the sample size used in our study is relatively small, which may affect 726 

the analysis results adversely. On the other hand, autonomous vehicle is relatively new to most 727 

surrounding human drivers. It is questionable whether the benefits of autonomous vehicles will 728 

continue to exist when most human drivers become familiar with autonomous vehicles. Thus, 729 

future research is needed to collect more real-world autonomous vehicle discretionary lane-730 

changing and human-driven vehicle discretionary lane-changing data and confirm whether the 731 

analysis results remain the same or vary. Second, it should be noted that there is only one 732 

autonomous vehicle in each short clip. With the increasing prevalence of autonomous vehicles, 733 



 

the interactions between autonomous vehicles would also be an interesting topic, especially 734 

before the autonomous vehicles are fully connected. Future research can explore this topic using 735 

traffic simulation or by analyzing future mixed traffic data. Lastly, this study only focuses on 736 

accepted discretionary lane-changing behaviors due to data scarcity. Earlier studies have shown 737 

that failed lane-changing attempts and mandatory lane-changing maneuvers are fundamentally 738 

different from accepted discretionary lane-changing behaviors (Ali et al., 2020; Ali et al., 2022a). 739 

It would be interesting to examine the failed lane-changing attempts and mandatory lane-740 

changing behaviors of autonomous vehicles and human-driven vehicles in various traffic 741 

settings. 742 
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