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Abstract—Previous studies on car-following controllers for 

autonomous vehicles (AVs) in mixed traffic have a narrow focus 

on maximizing the AV's utility, neglecting the utility of the 

entire traffic flow. This leads to self-centered AVs that may not 

be beneficial to surrounding vehicles. Thus, this study aims to 

develop a leading cruise controller for AVs that considers not 

only the AV's behaviors, but also the behaviors of both the lead 

human-driven vehicle (LHDV) and the following human-driven 

vehicle (FHDV). To achieve this, the study uses real-world data 

from the Waymo Open Dataset to approximate the behaviors of 

human-driven vehicles (HDVs) through an inverse 

reinforcement learning (IRL) approach. The study then 

proposes a preference-based soft actor-critic (PbSAC) 

algorithm to optimize the speed of AVs in a three-vehicle car- 

following scenario, while also considering safety, efficiency, and 

string stability for both AV and FHDV in the reward function. 

To further improve the control algorithm, the study develops a 

preference-adjusting module that adaptively updates the 

weights of the reward function based on expert evaluation. 

Experimental results show that the proposed algorithm can 

significantly improve safety, efficiency, and string stability for 

both AV and FHDV. 
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safety, efficiency, car-following 

I. INTRODUCTION 

AV technologies are advancing quickly, but experts in 
transportation, road engineering, and AV manufacturing 
recognize that there will be a gradual transition period as AVs 
are introduced [1]. During the transition period, there will be 
a mixed traffic environment where both AVs and human- 
driven vehicles (HDVs) will be present [2]. Given this context, 
the research question that arises is: how should the control 
logic of AVs be designed to enhance safety, efficiency, and 
string stability in mixed traffic [3]. 

The focus of this study is on the car-following model, 
which illustrates how vehicles interact longitudinally with one 
another in the same lane. Considerable efforts have been 
devoted to developing car-following models for AVs in mixed 
traffic. These approaches can generally be categorized into 
three types: (1) linear or non-linear AV controllers; (2) AV 
controllers based on model predictive control (MPC); and (3) 
AV controllers based on deep reinforcement learning (DRL) 
[4]. There are two primary advantages of DRL-based methods 
over the first two categories. Firstly, DRL is a learning-based 
and model-free approach that does not rely on predefined rules 
or stochastic system modeling. Secondly, the computational 

cost of DRL is considerably lower than MPC, as a trained 
DRL model can be implemented in real-time. 

Previous studies have generally found that DRL-based 
longitudinal controllers for AVs can improve traffic flow 
performance. However, current DRL-based models suffer 
from two significant drawbacks. Firstly, many of these studies 
have focused solely on optimizing AVs and ignored 
interactions between AVs and surrounding HDVs, 
particularly HDVs following AVs. For instance, some 
literature has only considered a two-vehicle car-following 
scenario where the following vehicle is an AV controlled by a 
DRL algorithm. As a result, the impacts of developed AV 
controllers on the following HDV are not explored. Although 
other studies have concentrated on mixed platoons with three 
or more vehicles, the reward functions of developed DRL 
algorithms only consider the benefits of AVs. Consequently, 
the learned AV controllers may exhibit egocentric and 
aggressive driving behaviors, leading to serious traffic 
situations, e.g., congestion and crashes. Besides, many studies 
have assumed that AVs can communicate with surrounding 
vehicles in mixed traffic environments. However, this may not 
be realistic at the current stage since AVs deployed on public 
roads, such as Waymo, cannot communicate with surrounding 
vehicles. 

Second, previous studies treated car-following control as 
a multi-objective reinforcement learning (MORL) problem by 
incorporating multiple terms in the reward function. They 
converted the multi-objective reward vector into a scalar 
weighted-sum reward and then determined the optimal weight 
combination through extensive experiment trials [5]. 
However, manually selecting weights for each objective may 
result in two significant drawbacks: (1) determining the 
appropriate scalarization is complex and time-consuming 
because objectives are often defined in different units and 
scales and there may be trade-offs among objectives; and (2) 
optimizing the DRL model based on a fixed weight 
combination can only generate an optimal policy for specific 
preferences. Consequently, the learned optimal policy may 
have limited adaptability to different user preferences and 
driving scenarios. To address these issues, this paper proposes 
an innovative algorithm - preference-based soft actor-critic 
(PbSAC) for AV longitudinal control. PbSAC can adjust the 
weight combination adaptively based on any user-specified 
preference and produce the optimal policy. 

Given AVs' advanced onboard sensors that can gather 
real-time and precise information about their surroundings, 



this study is one of the few to develop a DRL-based leading 
cruise control algorithm for AVs in a three-vehicle car- 
following scenario. This algorithm allows AVs to "look 
behind" mixed traffic, enabling them to make car-following 
decisions that adapt to both the lead human-driven vehicle 
(LHDV) and the FHDV. This improves the safety, efficiency, 
and string stability of mixed traffic. To handle the multi- 
objective optimization problem, PbSAC is developed as the 
AV car-following control model, and a preference generator 
is proposed to dynamically determine the relative importance 
in the reward function based on expert evaluation. FHDV car- 
following behaviors are acquired through inverse 
reinforcement learning (IRL) using the Waymo Open Dataset. 

The main contributions of this study are: 

1. The study proposes a DRL-based AV controller that can 
"look behind" the mixed traffic flow. This controller can 
enhance the mixed traffic flow performance by 
considering the safety, efficiency, and string stability of 
both AV and FHDV in the reward function. 

2. To address the multi-objective optimization problem, the 
study adopts PbSAC as the AV controller and proposes a 
preference learning module to determine the optimal 
policy by adjusting the weights in the reward function 
based on human preferences. 

The paper will be structured as follows. Section II outlines 
the methodologies and scenarios of the proposed AV 
controller. Section III presents the experimental settings, 
assesses the model's performance, and analyzes the results. 
Finally, Section IV concludes the paper and proposes 
directions for future research. 

II. METHODOLOGY 

A. Problem Formulation 

Fig. 1 illustrates that this study focuses on the three- 
vehicle car-following scenario, representing a common 
segment of mixed traffic. The leading vehicle is an LHDV that 
serves as an external input to achieve the speed profile 
extracted from the Waymo Open Dataset. The second vehicle 
is an AV controlled by PbSAC, which can gather real-time 
information on the states of both the LHDV and FHDV. 
Additionally, the HDV-following-AV model is utilized to 
replicate FHDV car-following behaviors. 

During a car-following scenario, the following vehicle 
modifies its acceleration to follow the leading vehicle. 
Therefore, the car-following problem is converted to a 
Markov Decision Process (MDP) defined by a tuple: 
(𝑆, 𝐴, 𝑅, 𝑃, 𝛾), where 𝑆 is the state space, 𝐴 is the action space, 
𝑅(𝑠𝑡 , 𝑎𝑡)  is the reward function representing the reward 
resulting from the interaction with the environment, the 
transition function 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)  determines the next state 
given the current state and action, and 𝛾 is the discount factor. 
At each time step 𝑡, the vehicle adopts an action 𝑎𝑡 according 
to the policy 𝜋(𝑎𝑡|𝑠𝑡). Afterwards, the state 𝑠𝑡 is updated to 
𝑠𝑡+1  based on the transition function, and a scalar reward 
𝑅(𝑠𝑡 , 𝑎𝑡) is returned. The objective in an MDP is to find the 
optimal policy to maximize the expected return: 𝜋∗ =
𝑎𝑟𝑔max

𝜋
∑ 𝐸(𝑠𝑡,𝑎𝑡)~𝜌𝜋

[𝑅(𝑠𝑡 , 𝑎𝑡)]∞
𝑡=1 . 

In the following, basic DRL concepts in the scenarios that 
are under investigation are provided. Note that “AV” and 
“agent” will be used interchangeably. 

1) State: This study assumes that AVs collect real-time and 
accurate movement information on LHDV and FHDV, e.g., 
speed and position, via onboard sensors. Let 𝑠𝑡  denote the 
state of AV at time step 𝑡. The state vector 𝑠𝑡 involves two 
aspects of information: (1) the speed of AV 𝑉1(𝑡), the gap 
between AV and FHDV 𝑆1,2(𝑡), the gap between LHDV and 

AV 𝑆0,1(𝑡) , the relative speed between AV and FHDV 

∆𝑉1,2(𝑡)  and the relative speed between LHDV and AV 

∆𝑉0,1(𝑡) ; and (2) the weight parameters in the reward 

function. 

2) Action: The action that an AV needs to take at time step 
𝑡  is the longitudinal acceleration 𝑎1(𝑡)  which is bounded 
between −3 and 3𝑚/𝑠2. 

3) Transition function: After the AV takes an action at time 
step 𝑡, the three-vehicle platoon state will be updated using the 
kinematic point-mass function: 

 𝑉2(𝑡 + 1) = 𝑉2(𝑡) + ∆𝑇 ∗ 𝑎2(𝑡) (1) 

 𝑉1(𝑡 + 1) = 𝑉1(𝑡) + ∆𝑇 ∗ 𝑎1(𝑡) (2) 

 ∆𝑉1,2(𝑡 + 1) = 𝑉2(𝑡 + 1) − 𝑉1(𝑡 + 1) (3) 

 ∆𝑉0,1(𝑡 + 1) = 𝑉1(𝑡 + 1) − 𝑉0(𝑡 + 1) (4) 

 𝑆1,2(𝑡 + 1) = 𝑆1,2(𝑡) − ∆𝑇 ∗
∆𝑉1,2(𝑡)+∆𝑉1,2(𝑡+1)

2
 (5) 

 𝑆0,1(𝑡 + 1) = 𝑆0,1(𝑡) − ∆𝑇 ∗
∆𝑉0,1(𝑡)+∆𝑉0,1(𝑡+1)

2
 (6) 

where ∆𝑇  is the simulation time interval (which is 0.1𝑠  in 
this study); 𝑉0(𝑡)  and 𝑉2(𝑡)  are the speed of LHDV and 
FHDV at time step 𝑡; 𝑎2(𝑡) is the acceleration of FHDV at 
time step 𝑡. 

 
Fig. 1. The proposed “look behind” control system has two 

HDVs and one AV in the platoon. The black vehicles are 

HDVs and the red ones are AVs. The blue arrows show the 

information collected by the AV. 

B. Reward Function 

Inspired by [6], the reward function will account for both 
control efficiency and string stability. The control efficiency 
reward 𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is expressed as a quadratic function that 
regulates the vehicle to maintain the predefined state: 

 𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = −(𝒙(𝑡))𝑇𝑸𝒙(𝑡) (7) 

 𝒙(𝑡) = [∆𝑆̃(𝑡), ∆𝑉̃(𝑡)] (8) 

 ∆𝑆̃(𝑡) = 𝑆𝑛−1,𝑛(𝑡) − 𝑡∗ ∗ 𝑉𝑛(𝑡) (9) 

 ∆𝑉̃(𝑡) = 𝑉𝑛(𝑡) − 𝑉𝑛−1(𝑡) (10) 

 𝑸 = [
𝛼1 0
0 𝛼2

] , 𝛼1, 𝛼2 > 0 (11) 



where 𝒙(𝑡) refers to the difference from the predetermined 

state. ∆𝑆̃(𝑡) indicates the discrepancy between the actual gap 
and the target gap, and 𝑆𝑛−1,𝑛(𝑡)  denotes the actual gap 

between consecutive vehicles. The target gap is defined as 
𝑡∗ ∗ 𝑉𝑛(𝑡) where 𝑡∗ is the target time gap. In this study, 𝑡∗ is 

set to be 1.5𝑠, according to [7]. ∆𝑉̃(𝑡) represents the relative 
speed between consecutive vehicles while 𝑉𝑛(𝑡) and 𝑉𝑛−1(𝑡) 
are the speed of the vehicle and its leader. 𝛼1 and 𝛼2 are fixed 
at 0.04 and 0.08 based on massive experiments. 

As the control efficiency reward 𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙  is optimized to 

be maximum, ∆𝑆̃(𝑡) and ∆𝑉̃(𝑡) will both converge to zero. 
This indicates that the actual gap is approaching the target gap. 
Besides, note that the commonly-used safety indicator – TTC 
is calculated in Eq. (12): 

 𝑇𝑇𝐶(𝑡) =
𝑆𝑛−1,𝑛(𝑡)

𝑉𝑛(𝑡)−𝑉𝑛−1(𝑡)
 (12) 

When ∆𝑉̃(𝑡) = 𝑉𝑛(𝑡) − 𝑉𝑛−1(𝑡) → 0 , 𝑇𝑇𝐶(𝑡) → ∞ . Since 
the proposed AV controller considers the benefits of AV and 
FHDV, both 𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝐴𝑉  and 𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝐹𝐻𝐷𝑉  are incorporated 

into the reward function. 

The capacity of a vehicle to dampen the speed oscillations 
of its leader, known as string stability, is a crucial attribute. If 
the magnitude of the leader's perturbation is greater than the 
magnitude of the vehicle's perturbation, the vehicle is deemed 
string stable. By referring to [8], it is found that string stability 
is negatively correlated with acceleration behaviors, meaning 
that sharp and frequent acceleration behaviors result in the 
string instability issue. Hence, this study uses the negative 
square of the acceleration as the string stability reward 

𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦  and another term −
(𝑎𝑛(𝑡)−𝑎𝑛(𝑡−1))2

(𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛)2  is added to 

ensure driving comfort: 

 𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = −𝑎𝑛(𝑡)2 −
(𝑎𝑛(𝑡)−𝑎𝑛(𝑡−1))2

(𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛)2  (13) 

where 𝑎𝑚𝑎𝑥  and 𝑎𝑚𝑖𝑛  are the maximum and minimum 
acceleration (which are 3𝑚/𝑠2 and −3𝑚/𝑠2 in this study), 
respectively. Similarly, both 𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐴𝑉 and 𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐹𝐻𝐷𝑉 

are considered in the reward function. 

Finally, Eq. (14) shows the completed reward function: 

𝑅1 = 𝜔1𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐴𝑉
+ 𝜔2𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝐻𝐷𝑉

+
𝜔3𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐴𝑉 + 𝜔4𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐹𝐻𝐷𝑉  (14) 

𝑠. 𝑡.    ∀𝑖: 𝜔𝑖 > 0 

           ∑ 𝜔𝑖

4

𝑖=1

= 1 

where 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are the weight parameters that need 
to be tuned. 

C. Preference-based Soft Actor-Critic (PbSAC) 

The reward function in Eq. (14) has four terms, and setting 
the weight parameters manually can be difficult and time- 
consuming. But this study suggests a new preference 
generator that can optimize the weights for each reward term 
automatically using expert knowledge. For instance, AV 
algorithm developers can evaluate the average time gap in AV 
car-following trajectories to assess them. Based on their 
preferences, the weights will be adjusted. Then, by 

considering the updated weights in the reward function, the 
control policy can be enhanced. 

Algorithm 1 Preference-based Soft Actor-Critic (PbSAC) 
Initialize memory buffer M. 

Initialize system buffer S. 

Initialize trajectory buffer T. 

Initialize weight parameters w. 

Initialize critic 𝑄𝜃 and actor 𝜋𝜙 networks. 

for 𝑒𝑝 in {1,2,3, … 𝑁} do 

    for t in {1,2,3,…T} do 

    Sample action 𝑎𝑡 based on actor network, given current 

state 𝑠𝑡 . 

    Implement 𝑎𝑡 and transfer to the next state 𝑠𝑡+1. 

    Obtain reward vector 

[𝑅𝑠𝑎𝑓𝑒𝑡𝑦𝐴𝑉
, 𝑅𝑠𝑎𝑓𝑒𝑡𝑦𝐹𝐻𝐷𝑉

, 𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐴𝑉
, 𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝐻𝐷𝑉

, 

𝑅𝑐𝑜𝑚𝑓𝑜𝑟𝑡_𝐴𝑉 , 𝑅𝑐𝑜𝑚𝑓𝑜𝑟𝑡_𝐹𝐻𝐷𝑉]. 

    Save the reward vector into trajectory buffer T. 

    Calculate reward 𝑟𝑡  based on Eq. (14) and current 

weights w. 

    Save transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) into M. 

    for k in {1,2,3,…K} do 

        Sample random batch of B transitions from M 

        Update 𝜃 and 𝜙 

    end for 

end for 

Save T into system buffer S. 

if 𝑒𝑝 mod L ≡ 0 then 

    Sample L trajectory pairs from S and evaluate them 

upon expert knowledge. 

    Calculate likelihood of w using Eq. (16). 

    Update weight parameters w through MCMC using Eq. 

(18). 

    Clear trajectory buffer T. 

end if 

end for 

 

According to [9], the weight parameters are updated upon 
human preferences using a Bayesian learning framework. Let 
𝜏𝑖  denote the 𝑖𝑡ℎ car-following trajectory of an AV. The total 
rewards obtained from the trajectory 𝜏𝑖  is: 

 𝒓(𝜏𝑖) = (𝑟1
𝑖 , 𝑟2

𝑖 , … , 𝑟𝑇
𝑖 ) (15) 

where 𝑇 is the length of the car-following trajectory. 

Then any trajectory pair (i.e., 𝜏𝑖  and 𝜏𝑗) can be compared 

according to expert evaluation, e.g., a pair of car-following 
trajectories can be compared based on safety and efficiency 
indicators. Following [9], a probabilistic model over expert 
preferences is employed to compare two trajectories: 

 𝑝(𝜏𝑖 > 𝜏𝑗|𝑤) =
exp (𝑤𝑇𝑟(𝜏𝑖))

exp(𝑤𝑇𝑟(𝜏𝑖))+exp (𝑤𝑇𝑟(𝜏𝑗))
 (16) 

where 𝜏𝑖 > 𝜏𝑗  means the preference of 𝜏𝑖  over 𝜏𝑗  based on 

expert evaluation. As a result, trajectories that achieve a higher 
linearly scalarized reward will be given a higher ranking. 

After each policy improvement, a pair of trajectories 
(𝜏𝑖 , 𝜏𝑗) will be randomly sampled and evaluated based on the 

removal of posterior volume (as shown in Eq. (17)). (𝜏𝑖 , 𝜏𝑗) 



that removes the most volume among the previous pairs since 
the last posterior update will be saved into the volume buffer 
and prepared for the next comparison. 

max
(τi,τj)

min(𝐸𝑤[1 − 𝑝(𝜏𝑖 > 𝜏𝑗|𝑤), 𝐸𝑤[1 − 𝑝(𝜏𝑗 > 𝜏𝑖|𝑤)]) 

(17) 

Let 𝑞𝑚 represent the comparison between two trajectory 
samples: 𝑞𝑚 = (𝜏𝑖 > 𝜏𝑗)𝑚 . After multiple pairwise 

comparisons {𝑞1, 𝑞2, … , 𝑞𝑛}, the posterior of the weights can 
be updated in a Bayesian fashion: 

 𝑝(𝑤|𝑞1, 𝑞2, … , 𝑞𝑛) ∝ 𝑝(𝑤) ∏ 𝑝(𝑞𝑚|𝑤)𝑛
𝑚=1  (18) 

where 𝑝(𝒘)  is the prior which is set to be normally 
distributed. This Bayesian model can prioritize the reward 
components in each iteration. Then an expert can regularize 
the agent’s behaviors by providing pairwise preferences. 
Finally, the weight parameters can be updated using Markov 
Chain Monte Carlo (MCMC), and the Softmax function is 
implemented to normalize weight parameters. 

This weight-adjusting module can be combined with most 
off-the-shelf DRL methods. Soft actor-critic (SAC) [10] is 
selected as the backbone DRL algorithm for multi-objective 
car-following control. The implementation specifics of 
PbSAC are outlined in Algorithm 1. 

D. Study Scenarios 

This paper suggests using a PbSAC-based leading cruise 
control model for AVs in a three-vehicle car-following 
situation. To confirm the effectiveness of this approach, four 
different scenarios are compared: 

1. Scenario 1: The AV control algorithm based on PbSAC 
utilizes data from the three vehicles and takes into 
account the benefits of AV and FHDV. As a result, the 
agent’s state is defined as 
[𝑉1(𝑡), 𝑆1,2(𝑡), 𝑆0,1(𝑡), ∆𝑉1,2(𝑡), ∆𝑉0,1(𝑡), 𝜔1, 𝜔2, 𝜔3, 𝜔4] 
and the reward function is specified in Eq. (14). 
According to [7], there is a trade-off among safety, 
efficiency and stability where pursuing less efficiency 
(e.g., larger time gaps) can lead to improvements in safety 
and stability. Thus, expert preferences are applied in the 
following way: given two car-following trajectories 
(𝜏𝑖 , 𝜏𝑗), if the discrepancy between the average time gap 

and 1.5𝑠  in 𝜏𝑖  is smaller than that in 𝜏𝑗 , (𝜏𝑖 > 𝜏𝑗)  is 

returned. 

2. Scenario 2: The AV control algorithm based on PbSAC 
uses data from both LHDV and AV and only takes into 
account the benefits of AV. Consequently, the state of the 
agent is [𝑉1(𝑡), 𝑆0,1(𝑡), ∆𝑉0,1(𝑡), 𝜔5, 𝜔6]and the reward 

function is defined in Eq. (19). Expert preferences are 
provided in a manner similar to scenario 1. 

 𝑅2 = 𝜔5𝑅𝑐𝑜𝑛𝑡𝑟𝑜l_AV + 𝜔6𝑅𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝐴𝑉 (19) 

3. Scenario 3: The sole difference between scenario 2 and 
scenario 3 is that the agent is controlled by SAC, resulting 
in the manual determination of weight parameters 
through extensive experiments: [0.5,0.5]. 

4. Scenario 4: The agent is an AV with an MPC based 
adaptive cruise control (ACC) module. It also does not 
use FHDV’s information and ignores the benefits of 

FHDV. The constrained linear-quadratic MPC model 
developed in [11] will be adopted. 

III. EXPERIMENTAL RESULTS 

A. Data Processing 

1) Data extraction: This study uses real-world 
autonomous driving data from the Waymo Open Dataset [12], 
including trajectories collected by 5 LiDARs and 5 cameras 
installed in Waymo AVs. The data was collected at a 
frequency of 10 Hz on public roads in the U.S. The rules 
defined in [1][3] are followed to extract qualified car- 
following events, resulting in 253 HDV-following-AV and 
1,301 HDV-following-HDV events. 

2) Data denoising: To improve the quality of car- 
following trajectories, a two-step data denoising approach is 
implemented. Firstly, an optimization-based outlier removal 
approach is developed to identify trajectory points with 
anomalous acceleration and replace them with smooth 
trajectories using a linear optimization model. The 
smoothness is determined by the variation between the 
maximum and minimum acceleration within the optimization 
horizon. Secondly, a Savitky-Golay filter is applied to remove 
unusual fluctuations in the position and speed data and further 
denoise the car-following trajectories. 

3) Car-following model fitting: This study adopts Inverse 
soft-Q Learning [13], an IRL method, to recover the reward 
functions of human drivers in HDV-following-AV scenarios. 
By approximating the Q-function, which represents both the 
reward and policy, this method simplifies the complex min- 
max game in traditional IRL methods into a simple 
minimization problem. The recovered reward functions are 
then used to train an SAC model to mimic human driving 
policies when following AVs, following similar procedures as 
in our previous studies [2][3]. Finally, the obtained HDV- 
following-AV model is adopted to control FHDV in this 
study. 

B. Simulation Setup and PbSAC Training 

As mentioned earlier, 1,301 HDV-following-HDV events 
have been identified in the Waymo Open Dataset. Out of these 
car-following events, 459 three-HDV platoons are extracted. 
These three-HDV platoons are randomly divided into training 
and testing sets, where 80%  (367)  of them are used for 
training while the rest of them (92) are used for testing. 

In scenario 1, the PbSAC based AV controller framework 
is illustrated in Fig. 2. The LHDV is regarded as an external 
input while the AV takes its own state and that of the FHDV 
as inputs. It outputs the longitudinal acceleration and 
considers the benefits of both itself and the FHDV. On the 
other hand, the AV control models in scenarios 2, 3, and 4 
only focus on AVs and do not take into account FHDVs. In all 
scenarios, the HDV-following-AV model acquired through 
IRL is used to control the FHDVs. 

In this study, a three-vehicle car-following event is 
considered an episode during the training process. At the start 
of each episode, a three-HDV platoon is randomly selected 
from the training set and the speed profile of the platoon leader 
is assigned to LHDV in Fig. 2. The initial states of the AV and 
FHDV in Fig. 2 are set to match the two followers in the 
platoon. The AV and FHDV then take actions based on their 
respective controllers and their states are updated according to 
Eqs. (1)-(6). If a traffic crash occurs during the episode, the 



training is terminated and a reward of −10 is given. Otherwise, 
the AV control algorithm ends the current episode at the 
maximum time step of the LHDV speed profile. Another car-
following event is randomly selected from the training set and 
the states are re-initialized with the new empirical data. 

To determine the model convergence, the study uses the 
rolling mean episode reward as the evaluation metric. The 
PbSAC model with the highest rolling mean episode reward 
is chosen as the AV controller in scenario 1. The same training 
and selection strategy is applied to scenarios 2 and 3. 

 

Fig. 2. PbSAC based AV control framework in scenario 1. 

C. Evaluation of the Proposed Approach 

To demonstrate the superior capabilities of the proposed 
leading cruise controller in safely, efficiently, and stably 
following LHDVs, the study compares the trajectories of 
three-vehicle platoons generated in the four scenarios. All 
results are obtained using the testing set, which is similar to 
the training set but uses the speed profile of LHDV as an 
external input. The testing process involves sequentially 
extracting car-following events from the testing set and 
selecting actions for the agent using the learned model. The 
state of the three-vehicle platoon is then updated using Eqs. 
(1)-(6) until the maximum time step of the LHDV speed 
profile is reached. 

1). Car-following safety: To evaluate car-following safety, 
the study analyzes critical TTC values in the testing set. Fig. 
3 shows the empirical cumulative distributions of TTCs in the 
four scenarios. Upon visual inspection, it is evident that none 
of the scenarios (1, 2, 3, and 4) have critical TTCs for AV- 
LHDV. Additionally, it is clear that scenario 1 is the safest for 
FHDV-AV out of all the scenarios, as the blue line 
consistently remains below the other lines. 

To strengthen the statistical validity of the findings, the 
Kolmogorov-Smirnov test is conducted to compare the AV-
LHDV and FHDV-AV TTC distributions in scenario 1 with 
those in the other scenarios. The results indicate that, except 
for AV-LHDV TTCs between scenarios 1 and 2 and scenarios 
1 and 3, other comparison results are all statistically 
significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠  lower than 0.05 . This means 
that the proposed AV controller, which takes into account the 
benefits of AV and FHDV, can reduce the risks of rear-end 
crashes for both AV and FHDV, compared to AV controllers 
that do not consider FHDV. 

2). Traffic efficiency: To evaluate traffic efficiency, this 
study analyzes the average speeds of AV and FHDV. Table I 
presents the average speeds for both vehicles. The results 
suggest that scenarios 1-4 have similar average speeds, which 
is supported by the Mann-Whitney U test. This is because 

scenarios 1-4 use either DRL or MPC controllers to regulate 
the AV, which enables it to follow LHDV closely. 

3). String stability: Table I presents the average standard 
deviation of speed for AV and FHDV. It is observed that the 
proposed control strategy has a lower average standard 
deviation of speed for both AV and FHDV compared to the 
three baseline methods. This indicates that the proposed AV 
control model serves as a virtual regulator that improves 
FHDV driving decisions, ultimately reducing traffic 
oscillations for the entire mixed traffic stream. Additionally, 
scenario 2 is able to lower the average standard deviation of 
speed for AV by 3% compared to scenario 3, suggesting that 
the preference adjusting module can enhance the DRL-based 
AV controller. By adjusting the weights towards the human- 
preferred time gap, the time gap distribution becomes more 
centralized, resulting in the dampening of speed perturbations. 
This demonstrates the capability of incorporating human 
prior-knowledge to handle multiple objectives in car- 
following control. 

To sum up, the main findings are as follows: (1) The AV 
control model proposed in scenario 1 improves safety and 
string stability while maintaining comparable efficiency to 
other scenarios; (2) Scenario 2, which uses PbSAC with a 
preference adjusting module, is more efficient than scenario 3 
(SAC) and scenario 4 (MPC) in improving the string stability 
of the AV; and (3) SAC shows superior string stability 
compared to MPC. 

 
(a) AV-LHDV TTC 

 
(b) FHDV-AV TTC 

Fig. 3. TTC empirical cumulative distributions. 

 

TABLE I 

TRAFFIC FLOW PERFORMANCE ON THE WAYMO OPEN 

DATASET 

 

Scenarios 
Average Speed (𝑚/𝑠) Average 𝑆𝑡𝑑 of speed (𝑚/𝑠) 

AV AV AV FHDV 

1 9.80 9.78 1.26 1.16 

2 9.83 9.81 1.30 1.17 

3 9.82 9.79 1.34 1.20 

4 9.80 9.77 1.38 1.23 



D. Weight Learning Curves 

Fig. 4 shows the convergence of weight parameters during 
the model training. It is revealed that the proposed preference 
generator can efficiently determine the stable weight 
combination, even if there are four terms in the reward 
function in scenario 1. In addition, experimental results show 
that weighting rewards with preference weights does not 
significantly induce instability for policy improvement. 

 
(a) Scenario 1 

 
(b) Scenario 2 

Fig. 4. Convergence of the weights in the reward function. 

IV. CONCLUSIONS 

This study proposes a leading cruise controller for a mixed 
platoon of three vehicles using PbSAC. Unlike previous 
studies that only focused on optimizing the AV, this approach 
also considers the benefits of FHDV. Real-world car- 
following trajectories from the Waymo Open Dataset are 
extracted, processed, and analyzed. The study uses an IRL 
approach to model car-following behaviors of HDVs when 
following AVs. To address the multi-objective car-following 
control problem, the study introduces a PbSAC-based AV 
control model that integrates SAC with a preference generator. 
This generator can dynamically optimize multiple car- 
following objectives based on expert evaluation. Simulation 
results demonstrate that this approach can improve the safety, 
efficiency, and string stability of the mixed traffic stream 
compared to other AV controllers that do not take FHDV into 
account or without such a preference generator. 
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