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Abstract—Most studies developing car-following controllers 

for AVs in mixed traffic primarily focus on maximizing the utility 
of the AVs. However, the utility of the entire mixed traffic flow is 
largely ignored, which may lead to self-centered AVs. This study 
aims to develop a leading cruise controller for AVs that can “look 
behind” the mixed traffic flow. It enables the AV to adapt its car-
following behaviors according to the states of both the leading 
human-driven vehicle (LHDV) and the following human-driven 
vehicle (FHDV). Car-following trajectories are extracted, 
processed, and analyzed based on the real-world autonomous 
driving dataset -- the Waymo Open Dataset. Then car-following 
behaviors of HDVs are approximated through an inverse 
reinforcement learning (IRL) approach. After that, this study 
proposes a preference-based soft actor-critic (PbSAC) algorithm 
to optimize the speed of AVs in the three-vehicle car-following 
scenario. In addition to safety, efficiency, and string stability for 
AV, these metrics for FHDV are also included in the reward 
function. An adaptive preference-adjusting module is developed 
to update the weights in the reward function based on expert 
knowledge. Experimental results indicate that the proposed 
algorithm can improve safety, efficiency, and string stability for 
both AV and FHDV. Moreover, if behavioral changes of human 
drivers when they are following AVs are not accurately captured, 
the learned AV controller may result in suboptimal performance. 
 
Index Terms—Car-following, inverse reinforcement learning, 
mixed traffic, reinforcement learning, traffic safety 

I. INTRODUCTION 
NTONOMOUS vehicles (AVs) are becoming a 
reality with the advancements of deep learning and 
sensors [1][2]. Although AV technologies are being 
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developed at full speed, transportation researchers, road 
engineers, and AV manufacturers have realized that a 
transition period is expected due to the gradual AV 
deployment [3][4]. The reasons for this are manifold: the need 
to update the current infrastructure system, the public 
acceptance and trust towards AVs, and the necessity to enact 
suitable regulations and legislation [5][6]. During the 
transition period, there will be a combination of AVs and 
human-driven vehicles (HDVs) sharing road networks, 
resulting in a mixed-traffic environment [7]. Hence, the 
research question that arises is how the control logic of AVs 
should be designed to improve the safety, efficiency, and 
string stability of mixed traffic [8]. 

This study focuses on the car-following model, which 
depicts the longitudinal interactions between consecutive 
vehicles. In general, there are three main approaches to 
designing car-following models for AVs: (1) linear or non-
linear AV controllers; (2) model predictive control (MPC) 
based AV controllers; and (3) deep reinforcement learning 
(DRL) based AV controllers [9]. The first category is 
computationally efficient but may fail to handle multiple 
objectives [10]. Although MPC is adaptable, it is also a time-
intensive algorithm, as it requires addressing a constrained 
finite-horizon optimal control problem at every time step [11]. 
Therefore, researchers have turned to developing car-
following models for AVs using DRL methods. There are two 
main advantages of DRL-based methods over the 
aforementioned categories. First, DRL is a learning-based and 
model-free approach that does not depend on predefined rules 
or stochastic system modeling [12]. Second, the computational 
cost of DRL is significantly lower than MPC since a trained 
DRL model can be implemented in rea time [13]. 

Although previous studies have concluded that the DRL-
based longitudinal controllers for AVs could enhance the 
traffic flow performance, existing DRL-based models have 
three major drawbacks. First, these studies often focused on 
the optimization of only AVs but ignored the interactions 
between AVs and surrounding HDVs, especially the HDVs 
that are following AVs. For example, some literature simply 
considered a two-vehicle car-following scenario where the 
following vehicle is an AV controlled by a DRL algorithm, 
which means that the impacts of developed AV controllers on 
the following HDV (FHDV) are not explored. Although other 
studies concentrated on the mixed platoon with three or more 
vehicles, the reward functions of developed DRL algorithms 
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only included the benefits of AVs. Hence, the learned AV 
controllers could potentially result in self-centered and 
aggressive driving behaviors, which may cause significant 
traffic issues, such as congestion and even crashes [14]. In 
addition, many studies assumed that the AV could 
communicate with surrounding vehicles in the mixed-traffic 
environment. However, this may not be realistic at the current 
stage since AVs that have been deployed on public roads (e.g., 
Waymo) cannot communicate with surrounding vehicles. 

Second, former studies considered the car-following control 
as a multi-objective reinforcement learning (MORL) problem 
by including multiple terms in the reward function. 
Specifically, they converted the multi-objective reward vector 
into a scalar weighted-sum reward and then identified the 
optimal weight combination by massive experiment trials [15]. 
However, manually determining the weight for each objective 
may lead to two critical deficiencies: (1) choosing the 
appropriate scalarization is non-trivial and time-consuming 
because objectives are often defined in different units and 
scales and there might be trade-offs among objectives, and (2) 
optimizing the DRL model upon the fixed weight combination 
can only infer an optimal policy for specific preferences. As a 
result, the learned optimal policy has limitations in its 
adaptability to various user preferences and different driving 
scenarios. Facing these issues, this paper will propose an 
innovative algorithm -- preference-based soft actor-critic 
(PbSAC) for AV longitudinal control. Given any user-
specified preference, PbSAC can adaptively adjust the weight 
combination and then produce the optimal policy. 

Third, most studies assumed that HDVs would implement 
the same car-following behaviors regardless of whether they 
were following AVs or HDVs [16]. However, some studies 
suggest that HDVs may adapt their behaviors when following 
AVs since AVs are fundamentally different from HDVs [3]. 
For example, by conducting field experiments, Rahmati et al. 
[17] revealed that HDV-following-AV would make HDVs feel 
more comfortable compared to HDV-following-HDV based 
on Kahneman and Tversky’s Prospect Theory. Besides, traffic 
simulation results highlighted the importance of incorporating 
human behavior adaptations when analyzing the mixed traffic 
stream. Mahdinia et al. [18] found that AVs in mixed traffic 
could induce significant behavioral benefits to stability, safety, 
and the environment. Based on the real-world autonomous 
driving dataset collected by Waymo (Waymo Open Dataset), 
Wen et al. [3] compared HDV-following-AV and HDV-
following-HDV events and concluded that HDV-following-
AV exhibited significantly lower driving volatility, time 
headway and time-to-collision (TTC). Hence, this study will 
investigate how the performance of the proposed AV 
controller is influenced if such behavioral changes are not 
captured. 

AVs have advanced sensors that can collect real-time and 
accurate information on the surrounding environment. In this 
light, we argue that AVs should exhibit more selfless 
behaviors to enhance the traffic flow performance, given their 
superior ability to perceive the surrounding environment 

compared to HDVs. This study is among the few studies to 
develop a DRL-based leading cruise control algorithm for 
AVs in the three-vehicle car-following scenario, which 
enables AVs to “look behind” mixed traffic. As a result, AVs 
make car-following decisions adapting to the states of both the 
leading human-driven vehicle (LHDV) and FHDV, and 
improve safety, efficiency, and string stability of mixed traffic. 
PbSAC is developed as the AV car-following control model to 
handle the multi-objective optimization problem and a 
preference generator is proposed to dynamically determine the 
weight combination in the reward function based on expert 
evaluation. FHDV car-following behaviors are acquired 
through inverse reinforcement learning (IRL) using the 
Waymo Open Dataset. Two types of car-following models are 
obtained to mimic FHDV driving behaviors in HDV-
following-AV and HDV-following-HDV scenarios. A 
comparison is made to investigate whether implementing 
different types of car-following models for FHDV has 
significant impacts on the PbSAC performance. 

The main contributions of this study are: 
1) A DRL-based AV controller that can make car-

following decisions based on the states of both 
LHDV and FHDV is proposed. The controller can 
improve the mixed traffic flow performance by 
incorporating the safety, efficiency, and string 
stability of both AV and FHDV in the reward 
function. 

2) To address the multi-objective car-following control 
problem, we extend SAC to PbSAC where a 
preference learning module is proposed based on the 
Bayesian learning framework. This module integrates 
prior knowledge to automatically adjust the weights 
in the reward function towards expert preferences. 

3) FHDV driving behaviors are modeled using the 
HDV-following-AV or HDV-following-HDV car-
following model. Hence, this study can also quantify 
the impacts of FHDV car-following model types on 
the performance of the proposed AV controller. 

The remainder of this paper is organized as follows. Section 
II gives a summary of studies on AV control models in mixed 
traffic. Section III explains the proposed AV controller’s 
methodologies and study scenarios. Section IV discusses the 
experimental settings, evaluates the model performance, and 
discusses the results. Lastly, Section V concludes the paper 
and suggests future research. 

II. RELATED WORKS 
There has been a great deal of literature on the development 

of longitudinal controllers for AVs in past decades. As 
mentioned in Section I, these studies can be generally 
categorized into three types: linear or non-linear-based, MPC-
based, and DRL-based AV controllers. 

Linear and non-linear controllers have parameterized 
formulations and are easy to implement. For instance, in Naus 
et al. [19], a linear cooperative adaptive cruise control 
(CACC) model was developed and the required criteria for 



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

achieving string stability were analyzed. Morbidi et al. [20] 
proposed an infinite-time linear-quadratic regulator with 
measurable disturbances for platoon control. Zhang and Orosz 
[21] proposed a nonlinear controller for AVs such that they 
can mimic the behaviors of HDVs in the platoon. There are 
some other non-linear longitudinal control frameworks, e.g., 
the intelligent driver model (IDM) [22]. However, it is often 
difficult to design a multi-objective linear or non-linear 
controller to include safety constraints within reasonable 
vehicle acceleration ranges [9]. 

At each time step, MPC computes a set of acceleration 
values by solving an optimal control problem over a prediction 
horizon. However, only the initial acceleration value in the 
sequence is utilized [12][13]. This computation process will be 
iterated until the terminal requirements are met. For example, 
Gong et al. [23] considered the CACC platoon as an 
interconnected dynamic system that has acceleration, speed, 
and safety constraints. They solved a one-horizon MPC 
problem to optimize the objectives that stem from the transient 
and asymptotic dynamics. Wang et al. [24] developed a 
decentralized and distributed algorithm for CACC under a 
receding horizon control framework. In [11], the authors 
suggested a stochastic optimal control method with a rolling 
horizon, utilizing the constant time gap policy to regulate 
ACC and CACC in the presence of uncertainty. However, the 
problem to be convex for MPC to work effectively. The 
computational demands may vary depending on the 
complexity of the formulation. 

DRL-based approaches usually take the vehicle speed, gap, 
and relative speed as inputs and output the acceleration of AV. 
For instance, Qu et al. [25] developed a DRL-based car-
following model to mitigate stop-and-go disturbances and 
improve the energy economy of electric vehicles. The vehicle 
speed and time gap were incorporated into the reward 
function. Zhu et al. [13] proposed a safe, efficient, and 
comfortable DRL-based controller in the car-following 
scenario where TTC, time gap, and jerk values were 
considered in the reward function. Simulation results revealed 
that the DRL-based controller outperformed the MPC-based 
controller. Then a cooperative longitudinal control strategy for 
the CACC platoon based on DRL was developed in [10]. 
Simulation results showed that compared to human driving, it 
could dampen the speed fluctuations of LHDV and improve 
car-following efficiency and energy economy under different 
CACC market penetration rates (MPRs). In [26], the authors 
designed an AV control algorithm using the automating 
entropy adjustment on Tsallis actor-critic (ATAC) and 
considered the time margin, time gap, and jerk. There are 
other applications of DRL-based AV controllers, such as 
[27][28][29]. 

III. METHODOLOGY 
This section first describes the formulation of the car-following 

problem, introduces the design of the reward function and the 
proposed PbSAC model after that, and finally provides the study 
scenarios for comparison. 

 
Fig. 1. The proposed “look behind” control system has two 
HDVs and one AV in the platoon. The black vehicles are 
HDVs and the red ones are AVs. The blue arrows show the 
information collected by the AV. 

A. Problem Formulation 
In Fig. 1, this study concentrates on the three-vehicle car-

following scenario, representing a typical segment of mixed 
traffic. More specifically, the lead vehicle is LHDV which 
serves as an external input to achieve the speed profile derived 
from the Waymo Open Dataset. The second vehicle is an AV 
controlled by PbSAC. The AV can collect real-time 
information on the states of LHDV and FHDV. Then the 
HDV-following-AV model is implemented to approximate 
FHDV car-following behaviors. 

During a car-following scenario, the following vehicle 
modifies its acceleration to follow the leading vehicle. 
Therefore, the car-following problem is converted to a Markov 
Decision Process (MDP) defined by a tuple: (𝑆, 𝐴, 𝑅, 𝑃, 𝛾) , 
where 𝑆 is the state space, 𝐴 is the action space, 𝑅(𝑠! , 𝑎!) is 
the reward function representing the reward resulting from the 
interaction with the environment, the transition function 
𝑃(𝑠!"#|𝑠! , 𝑎!) determines the next state given the current state 
and action, and 𝛾 is the discount factor. At each time step 𝑡, 
the vehicle adopts an action 𝑎!  according to the policy 
𝜋(𝑎!|𝑠!). After that, the state 𝑠!  is updated to 𝑠!"# based on 
the transition function, and a scalar reward 𝑅(𝑠! , 𝑎!)  is 
returned. The objective of an MDP is to find the optimal 
policy to maximize the expected return: 𝜋∗ =
𝑎𝑟𝑔max

%
∑ 𝐸('!,)!)~,"[𝑅(𝑠! , 𝑎!)]
-
!.# . 

In the following, basic DRL concepts in the scenarios that 
are under investigation are provided. Note that “AV” and 
“agent” will be used interchangeably in the remainder of the 
paper. 

1) State: This study assumes that AVs collect real-time and 
accurate movement information on LHDV and FHDV, e.g., 
speed and position, via onboard sensors. Let 𝑠!  denote the 
state of AV at the time step 𝑡. The state vector 𝑠! involves two 
aspects of information: (1) the speed of AV 𝑉#(𝑡), the gap 
between AV and FHDV 𝑆#,/(𝑡), the gap between LHDV and 
AV 𝑆0,#(𝑡) , the relative speed between AV and FHDV 
∆𝑉#,/(𝑡)  and the relative speed between LHDV and AV 
∆𝑉0,#(𝑡); and (2) the weight parameters in the reward function. 

2) Action: The action that an AV needs to take at the time 
step 𝑡 is the longitudinal acceleration 𝑎#(𝑡) which is bounded 
between −3 and 3𝑚/𝑠/ [30]. 

3) Transition function: After taking the action at the time 
step 𝑡 , the three-vehicle platoon state is updated using the 
kinematic point-mass function: 
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 𝑉/(𝑡 + 1) = 𝑉/(𝑡) + ∆𝑇 ∗ 𝑎/(𝑡) (1) 

 𝑉#(𝑡 + 1) = 𝑉#(𝑡) + ∆𝑇 ∗ 𝑎#(𝑡) (2) 

 ∆𝑉#,/(𝑡 + 1) = 𝑉/(𝑡 + 1) − 𝑉#(𝑡 + 1) (3) 

 ∆𝑉0,#(𝑡 + 1) = 𝑉#(𝑡 + 1) − 𝑉0(𝑡 + 1) (4) 

 𝑆#,/(𝑡 + 1) = 𝑆#,/(𝑡) − ∆𝑇 ∗
∆2#,%(!)"∆2#,%(!"#)

/
 (5) 

 𝑆0,#(𝑡 + 1) = 𝑆0,#(𝑡) − ∆𝑇 ∗
∆2&,#(!)"∆2&,#(!"#)

/
 (6) 

where ∆𝑇 is the simulation time interval (which is 0.1𝑠 in this 
study); 𝑉0(𝑡) and 𝑉/(𝑡) are the speed of LHDV and FHDV at 
the time step 𝑡; 𝑎/(𝑡) is the acceleration of FHDV at the time 
step 𝑡. 

B. Reward Function 
This section will describe the development of the reward 

function, which is designed to address safety, efficiency, and 
string stability in a typical car-following situation. It should be 
noted that there are no universally accepted methods for 
formulating the reward function, and thus in this study, it is 
defined through a combination of prior research and trial-and-
error. 

Inspired by [9][10], the reward function is designed to 
account for both control efficiency and string stability. The 
control efficiency reward 𝑅345!647 is expressed as a quadratic 
function that regulates the vehicle to maintain the predefined 
state: 

 𝑅345!647 = −(𝒙(𝑡))8𝑸𝒙(𝑡) (7) 

 𝒙(𝑡) = [∆𝑆F(𝑡), ∆𝑉G(𝑡)] (8) 

 ∆𝑆F(𝑡) = 𝑆59#,5(𝑡) − 𝑡∗ ∗ 𝑉5(𝑡) (9) 

 ∆𝑉G(𝑡) = 𝑉5(𝑡) − 𝑉59#(𝑡) (10) 

 𝑸 = H𝛼# 0
0 𝛼/

J , 𝛼#, 𝛼/ > 0 (11) 

where 𝒙(𝑡)  refers to the difference from the predetermined 
state. ∆𝑆F(𝑡) indicates the discrepancy between the actual gap 
and the target gap, and 𝑆59#,5(𝑡)  denotes the actual gap 
between consecutive vehicles. The target gap is defined as 𝑡∗ ∗
𝑉5(𝑡) where 𝑡∗ is the target time gap. In this study, 𝑡∗ is set to 
be 1.5𝑠, according to [31]. ∆𝑉G(𝑡) represents the relative speed 
between consecutive vehicles while 𝑉5(𝑡) and 𝑉59#(𝑡) are the 
speed of the vehicle and its leader. 𝛼# and 𝛼/ are fixed at 0.04 
and 0.08 based on massive experiments. 

As the control efficiency reward 𝑅345!647 is optimized to be 
maximum, ∆𝑆F(𝑡) and ∆𝑉G(𝑡) will both converge to zero. This 
indicates that the actual gap is approaching the target gap. 
Besides, note that the commonly-used safety indicator – TTC 
is calculated in Eq. (12): 

 𝑇𝑇𝐶(𝑡) = :'(#,'(!)
2'(!)92'(#(!)

 (12) 

When ∆𝑉G(𝑡) = 𝑉5(𝑡) − 𝑉59#(𝑡) → 0, 𝑇𝑇𝐶(𝑡) → ∞. Since the 
proposed AV controller considers the benefits of AV and 
FHDV, both 𝑅345!647_<2  and 𝑅345!647_=>?2  are incorporated 
into the reward function. 

The capacity of a vehicle to dampen the speed oscillations 
of its leader, known as string stability, is a crucial attribute. If 
the magnitude of the leader's perturbation is greater than the 
magnitude of the vehicle's perturbation, the vehicle is deemed 
string stable. By referring to [9][10][30], it is found that string 
stability is negatively correlated with acceleration behaviors, 
meaning that sharp and frequent acceleration behaviors result 
in the string instability issue. Hence, this study uses the 
negative square of the acceleration as the string stability 
reward 𝑅'!)@A7A!B  and another term − ()'(!)9)'(!9#))%

())*+9)),')%
 is added 

to ensure driving comfort: 

 𝑅'!)@A7A!B = −𝑎5(𝑡)/ −
()'(!)9)'(!9#))%

())*+9)),')%
 (13) 

where 𝑎C)D  and 𝑎CA5  are the maximum and minimum 
acceleration (which are 3𝑚/𝑠2  and −3𝑚/𝑠2  in this study), 
respectively. Similarly, both 𝑅'!)@A7A!B_<2  and 𝑅'!)@A7A!B_=>?2 
are considered in the reward function. 

In summary, Eq. (14) shows the completed reward function: 

𝑅# = 𝜔#𝑅345!647_<2 +𝜔/𝑅345!647_=>?2 +𝜔E𝑅'!)@A7A!B_<2 +
𝜔F𝑅'!)@A7A!B_=>?2  (14) 

𝑠. 𝑡.				∀𝑖:	𝜔A > 0 

											X𝜔A

F

A.#

= 1 

where 𝜔#, 𝜔/, 𝜔E, and 𝜔F are the weight parameters that need 
to be tuned. 

C. Preference-based Soft Actor-Critic (PbSAC) 
The reward function (as presented in Eq. (14)) contains four 

terms, and manually setting the weight parameters is a 
challenging and laborious task. However, this study proposes 
a new preference generator that can automatically optimize the 
weights for each reward term using expert knowledge. For 
example, the developers of the AV algorithm can assess AV 
car-following trajectories by evaluating the average time gap. 
The weights will then be adjusted based on their preferences. 
Subsequently, the control policy can be improved by 
considering the updated weights in the reward function. 

According to [15][32], the weight parameters are updated 
on human preferences using a Bayesian learning framework. 
Let 𝜏A  denote the 𝑖𝑡ℎ car-following trajectory of an AV. The 
total rewards obtained from the trajectory 𝜏A is: 

 𝒓(𝜏A) = (𝑟#A , 𝑟/A , … , 𝑟8A) (15) 

where 𝑇 is the length of the car-following trajectory. 
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Then any trajectory pair (i.e., 𝜏A  and 𝜏G) can be compared 
according to expert evaluation, e.g., a pair of car-following 
trajectories can be compared based on safety and efficiency 
indicators. Following [32], a probabilistic model over expert 
preferences is employed to compare two trajectories: 

 𝑝^𝜏A > 𝜏G_𝑤a =
HIJ	(L-6(M,))

HIJNL-6(M,)O"HIJ	(L-6(M.))
 (16) 

where 𝜏A > 𝜏G  means the preference of 𝜏A  over 𝜏G  based on 
expert evaluation. As a result, trajectories that achieve a higher 
linearly scalarized reward will be given a higher ranking. 
 
Algorithm 1 Preference-based Soft Actor-Critic (PbSAC) 
Initialize memory buffer M. 
Initialize system buffer S. 
Initialize trajectory buffer T. 
Initialize weight parameters w. 
Initialize critic 𝑄P and actor 𝜋Q networks. 
for 𝑒𝑝 in {1,2,3, …𝑁} do 
    for t in {1,2,3,…T} do 

    Sample action 𝑎!  based on actor network, given 
current state 𝑠! . 

    Implement 𝑎! and transfer to the next state 𝑠!"#. 
    Obtain reward vector 

[𝑅')RS!B/0 , 𝑅')RS!B1230 , 𝑅'!)@A7A!B/0 , 𝑅'!)@A7A!B1230 , 
𝑅34CR46!_<2 , 𝑅34CR46!_=>?2]. 
    Save the reward vector into trajectory buffer T. 
    Calculate reward 𝑟!  based on Eq. (14) and current 

weights w. 
    Save transition (𝑠! , 𝑎! , 𝑟! , 𝑠!"#) into M. 
    for k in {1,2,3,…K} do 
        Sample random batch of B transitions from M 
        Update 𝜃 and 𝜙 
    end for 
end for 
Save T into system buffer S. 
if 𝑒𝑝 mod L ≡ 0 then 
    Sample L trajectory pairs from S and evaluate them 

upon expert knowledge. 
    Calculate the likelihood of w using Eq. (16). 
    Update weight parameters w through MCMC using 

Eq. (18). 
    Clear trajectory buffer T. 
end if 

end for 
 

After each policy improvement, a pair of trajectories (𝜏A , 𝜏G) 
will be randomly sampled and evaluated based on the removal 
of posterior volume (as shown in Eq. (17)). (𝜏A , 𝜏G)  that 
removes the most volume among the previous pairs since the 
last posterior update will be saved into the volume buffer and 
prepared for the next comparison. 

max
(T4,T5)

min(𝐸L[1 − 𝑝^𝜏A > 𝜏G_𝑤a, 𝐸L[1 − 𝑝^𝜏G > 𝜏A_𝑤a])(17) 

Let 𝑞C  represent the comparison between two trajectory 
samples: 𝑞C = (𝜏A > 𝜏G)C . After multiple pairwise 
comparisons {𝑞#, 𝑞/, … , 𝑞5}, the posterior of the weights can 
be updated in a Bayesian fashion: 

 𝑝(𝑤|𝑞#, 𝑞/, … , 𝑞5) ∝ 𝑝(𝑤)∏ 𝑝(𝑞C|𝑤)5
C.#  (18) 

where 𝑝(𝑤)  is the prior which is set to be normally 
distributed. This Bayesian model can prioritize the reward 
components in each iteration. Then an expert can regularize 
the agent’s behaviors by providing pairwise preferences. 
Finally, the weight parameters can be updated using Markov 
Chain Monte Carlo (MCMC), and the Softmax function is 
implemented to normalize weight parameters. 

Such a weight-adjusting module can be combined with most 
off-the-shelf DRL methods. In this study, soft actor-critic 
(SAC) [33] is selected as the backbone DRL algorithm for 
multi-objective car-following control. The SAC algorithm is a 
model-free DRL algorithm that employs an actor-critic 
approach, and is designed to work with continuous action 
spaces. It considers both the expected rewards and the policy 
entropy. For a detailed explanation of the SAC algorithm, 
readers are encouraged to refer to [33]. The implementation 
specifics of PbSAC are outlined in Algorithm 1. 

D. Study Scenarios 
This paper proposes a PbSAC-based leading cruise 

controller for AVs in the three-vehicle car-following 
condition. To validate the effectiveness of the proposed 
approach, the four scenarios are carried out for comparison: 
• Scenario 1: The AV control algorithm based on PbSAC 

utilizes data from the three vehicles and takes into 
account the benefits of AV and FHDV. As a result, the 
agent’s state is defined as 
[𝑉#(𝑡), 𝑆#,/(𝑡), 𝑆0,#(𝑡), ∆𝑉#,/(𝑡), ∆𝑉0,#(𝑡), 𝜔#, 𝜔/, 𝜔E, 𝜔F] 
and the reward function is specified in Eq. (14). 
According to [31], there is a trade-off among safety, 
efficiency, and stability where pursuing less efficiency 
(e.g., larger time gaps) can lead to improvements in 
safety and stability. Thus, expert preferences are 
applied in the following way: given two car-following 
trajectories (𝜏A , 𝜏G) , if the discrepancy between the 
average time gap and 1.5𝑠 in 𝜏A is smaller than that in 
𝜏G, (𝜏A > 𝜏G) is returned. 

• Scenario 2: The AV control algorithm based on PbSAC 
uses data from both LHDV and AV and only takes into 
account the benefits of AV. Consequently, the state of 
the agent is [𝑉#(𝑡), 𝑆0,#(𝑡), ∆𝑉0,#(𝑡), 𝜔U, 𝜔V] and the 
reward function is defined in Eq. (19). Expert 
preferences are provided like in scenario 1. 

 𝑅/ = 𝜔U𝑅345!64W_XY +𝜔V𝑅'!)@A7A!B_<2 (19) 

• Scenario 3: The sole difference between scenario 2 and 
scenario 3 is that the agent is controlled by SAC, 
resulting in the manual determination of weight 
parameters through extensive experiments:	[0.5,0.5]. 
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• Scenario 4: The agent is an AV with an MPC-based 
adaptive cruise control (ACC) module. It also does not 
use FHDV’s information and ignores the benefits of 
FHDV. The constrained linear-quadratic MPC model 
developed in [12][13] is adopted: 

min
)
X[
Z9#

!.0

𝛽# p
∆𝑉0,#(𝑡 + 1)
∆𝑉C)D

q
/

+ 𝛽/ p
𝑆0,#(𝑡) − 𝑆F0,#(𝑡)

𝑆C)D
q
/

+ 

𝛽E(
)#(!)
))*+

)/ + 𝛽F(
)#(!)9)#(!9#)
))*+9)),'

)/] (20) 

𝑠. 𝑡.				𝒇(𝑡 + 1) = 𝑨𝒇(𝑡) + 𝑩𝒖(𝑡) 

										𝑆0,# > 0 

										𝑉# > 0 

										−3 ≤ 𝑎 ≤ 3 

where 𝑁 is the prediction horizon which is set to be 10; 𝛽#, 𝛽/, 
𝛽E  and 𝛽F  are fixed at 20, 20, 1 and 1; 𝑆F0,#(𝑡) = 1.5 ∗ 𝑉#(𝑡) 
represents the constant time gap policy; ∆𝑉C)D , and 𝑆C)Dare 
constants to normalize various trajectory errors (∆𝑉C)D =
15, 𝑆C)D = 30); 𝑨 and 𝑩 are matrices used to update the state 
of AV ( 𝑨 = [[1, ∆𝑇, 0], [0,1,0], [0,0,1]]8 , 𝑩 =
[[−0.5∆𝑇/], [−∆𝑇], [∆𝑇]]8 ); 𝒇(𝑡) = [𝑆0,#(𝑡), ∆𝑉0,#(𝑡), 𝑉#(𝑡)] ; 
𝒖(𝑡) = [𝑎(0), 𝑎(1), … , 𝑎(𝑁 − 1)] . Note that these hyper-
parameters are defined based on [12][13] and our experiments. 

IV. EXPERIMENTAL RESULTS 

A. Waymo Open Dataset 
In this study, trajectory data is extracted from the Waymo 

Open Dataset [34][35], which contains the real-world 
autonomous driving scenarios. Waymo AVs are equipped with 
5 LiDARs and 5 cameras, enabling high-precision data 
collection on AVs and surrounding vehicles at a frequency of 
10 Hz on public roads in the U.S. The Waymo Open Dataset is 
divided into two parts: perception and motion. The perception 
part includes 1,000 20𝑠 segments with well-synchronized and 
calibrated high-resolution LiDAR and camera data recorded in 
urban and suburban areas [34]. The motion part has 103,354 
20𝑠  segments, representing 574 hours of driving data over 
1,750 km of roadways [35]. Each segment denotes each road 
agent as a 3D ground truth bounding box and high-resolution 
maps that correspond to the recorded data are provided. Both 
the perception and motion parts offer continuous and high-
quality records of road agents' type, size, position, and 
trajectory. 

To extract qualified car-following events, this study adopts 
the following rules based on previous research in car-
following event extraction [3][5]: 

1) The lead and following vehicles were traveling in the 
same lane on a straight segment of the highway. 

2) Throughout the event, neither the lead nor the 
following vehicle changed lanes. 

3) The gap between the lead and following vehicles was 
less than 60𝑚. 

4) The speed of the lead and following vehicles was 
higher than 3𝑚/𝑠. 

5) The duration of a car-following event was longer 
than 15𝑠. 

253  HDV-following-AV and 1,301  HDV-following-HDV 
events are extracted. 

B. Data Processing 
This section describes the data processing framework for 

preparing raw data for car-following research. The framework 
involves three steps. First, the raw data is denoised using a two-
step trajectory reconstruction method. Second, each car-
following event is calibrated using the intelligent driver model 
(IDM) and the calibrated parameter distributions are compared. 
Third, an inverse reinforcement learning (IRL) based model is 
used to fit HDVs’ trajectories in HDV-following-AV and HDV-
following-HDV scenarios. 

1) Data denoising: Following the guidelines in [4], a two-step 
data denoising approach is implemented to enhance the quality 
of car-following trajectories. In the first step, this study involves 
developing an optimization-based outlier removal approach. 
Trajectory points with anomalous acceleration are identified as 
outliers and a linear optimization model is utilized to replace the 
original trajectories with outlier-free and smooth trajectories. 
Smoothness in this context refers to the variation between the 
maximum and minimum acceleration within the optimization 
horizon. In the second step, a second-order Savitzky-Golay filter 
is applied to denoise the car-following trajectories to remove 
unusual fluctuations in the position and speed data. 
 

TABLE I 
CALIBRATED IDM PARAMETERS AND MANN-WHITNEY U TEST 

RESULTS 
 

 
HDV-following-

AV 
HDV-following-

HDV Mann-Whitney 
U test Mean 𝑆𝑡𝑑 Mean 𝑆𝑡𝑑 

𝑎!"# 1.61 0.86 1.46 0.83 0.01 
𝑎$%!&%'( 3.01 1.67 3.04 1.73 0.74 

𝑉&  22.53 6.97 21.95 6.98 0.18 
𝑇&  0.91 0.67 0.99 0.63 0.02 
𝑆)"! 4.62 3 4.87 3.09 0.26 

 
2) Car-following model comparison: To quantify the effects 

of AVs on FHDV, IDM is fitted for each extracted car-following 
pair in HDV-following-AV and HDV-following-HDV scenarios. 
The study specifically employs the genetic algorithm (GA), 
using gap as the measure of performance and root mean square 
error (RMSE) as the goodness-of-fit, as recommended by [36]. 
The mean values and standard deviation (𝑆𝑡𝑑)  of calibrated 
IDM parameters in two scenarios and the results of the Mann-
Whitney U test are shown in Table I. One can observe that when 
comparing calibrated parameter sets in two scenarios, the 
differences in maximum acceleration 𝑎C)D  (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .02) 
and desired time gap 𝑇G  (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < .01) are significant at the 
95% confidence level. According to [37], the most significant 
contribution to RMSE of gap comes from 𝑇G  which accounts for 
the most share of the variance of 𝑅𝑀𝑆𝐸 , followed by 𝑎C)D , 
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whereas the other parameters are negligible. In summary, it is 
revealed that AVs have significant effects on the car-following 
behaviors of FHDV. 

3) Car-following model fitting: According to the results of the 
previous steps, an IRL method -- Inverse soft-Q Learning [38] is 
conducted to recover human driver reward functions in HDV-
following-AV and HDV-following-HDV scenarios. By 
approximating the Q-function, which represents both the reward 
and policy, this method turns the complex min-max game in 
traditional IRL methods into a simple minimization problem. 
With the recovered reward functions, a SAC model is trained to 
mimic human driving policies when they are following AVs or 
HDVs. The model training and selection procedures are similar 
to our previous studies [5][7]. Finally, two types of car-following 
models, HDV-following-AV and HDV-following-HDV, are 
retained and will be adopted to control FHDV in this study. 

C. Simulation Setup and PbSAC Training 
As mentioned earlier, 1,301  HDV-following-HDV events 

have been identified in the Waymo Open Dataset. Out of these 
car-following events, 459 three-HDV platoons are extracted. 
These three-HDV platoons are randomly divided into training 
and testing sets, where 80%  (367)  of them are used for 
training while the rest of them (92) are used for testing. 
 

 
Fig. 2. PbSAC-based AV control framework in scenario 1. 
 

Fig. 2 shows the framework of the PbSAC-based AV 
controller in scenario 1. As it is shown, LHDV is treated as the 
external input. The AV takes the states of itself and FHDV as 
inputs, outputs the longitudinal acceleration, and considers the 
benefits of itself and FHDV. In contrast, the control models of 
AVs in scenarios 2, 3, and 4 only focus on AVs without 
considering FHDVs. In scenarios 1, 2, 3, and 4, FHDVs are 
controlled by the HDV-following-AV model acquired through 
IRL. 

The training process of a three-vehicle car-following event 
is defined as an episode. At the beginning of each episode, a 
three-HDV platoon from the training set is randomly drawn. 
Then the speed profile of the three-HDV platoon leader is 
assigned to LHDV in Fig. 2 and the initial states of AV and 
FHDV in Fig. 2 are set to match the two followers in the 
three-HDV platoon. AV and FHDV will take actions based on 
corresponding controllers. Afterwards, the states of AV and 
FHDV are updated according to Eqs. (1)-(6). When a traffic 
crash happens, the training will be terminated, and return a 
reward −10. Otherwise, the AV control algorithm ends the 

current episode at the maximum time step of the LHDV speed 
profile. Then another car-following event will be randomly 
selected from the training set, and the states will be re-
initialized with the new empirical data. 

The hyperparameters of the PbSAC model in scenario 1 
have been listed in Table II. The critic and actor networks both 
contain two fully connected layers (64 neurons in each layer) 
with the rectified linear unit (ReLU) activation function. Fig. 3 
presents the training process of the PbSAC model in scenario 
1. The study employs the rolling mean episode reward as a 
metric to determine model convergence. To calculate the mean 
episode reward, the average reward of one episode is recorded 
since the training step for each episode is not consistent. The 
rolling mean episode reward is then obtained by averaging the 
mean episode rewards using a window size of 50. It is shown 
that the PbSAC-based algorithm has been trained with 1,200 
episodes. A sharp increasing trend can be identified in the first 
200  episodes. As the training process proceeds, the rolling 
mean episode reward begins to converge, indicating the 
stableness and effectiveness of the reward function and the 
preference generator. As a result, the PbSAC model with the 
highest rolling mean episode reward is selected as the AV 
controller in scenario 1. The same model training and 
selection strategy is also applied to scenarios 2 and 3. 
 

TABLE II 
HYPERPARAMETER SETTINGS OF PBSAC IN SCENARIO 1 

 
PARAMETERS VALUE 

Optimizer Adam 
Learning rate 0.0001 

Replay buffer size 10,000 
Discount factor 0.99 
Minibatch size 64 

Soft update factor 0.005 
 

 
Fig. 3. Training process of the proposed PbSAC-based model 
in scenario 1. 

D. Evaluation of the Proposed Approach 
To demonstrate the superior capability of the proposed 

leading cruise controller to follow LHDV safely, efficiently, 
and stably, the three-vehicle trajectories generated in the four 
scenarios are compared. All comparison results are obtained 
based on the testing set. The testing process is similar to the 
training process which externally inputs the speed profile of 
LHDV. It starts by extracting car-following events from the 
testing set sequentially and performing the action selection for 
the agent with the learned model. The state of the three-
vehicle platoon will be updated using Eqs. (1)-(6) till the
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TABLE III 
TRAFFIC FLOW PERFORMANCE ON THE WAYMO OPEN DATASET 

 

 
maximum time step of the LHDV speed profile. 

1). Car-following safety: The study assesses car-following 
safety by examining critical TTC values in the testing set. Fig. 
4 illustrates the empirical cumulative distributions of TTCs in 
the four scenarios. Upon visual inspection, it is apparent that 
scenarios 1, 2, 3, and 4 have no critical TTCs for AV-LHDV. 
Also, it is clear that scenario 1 is the safest for FHDV-AV out 
of all the scenarios as the blue line consistently remains below 
the other lines. 
 

 
(a) AV-LHDV TTC 

 
(b) FHDV-AV TTC 

Fig. 4. TTC empirical cumulative distributions. 
 

To quantitatively assess car-following safety under different 
scenarios, critical TTCs in each scenario are determined based 
on commonly-used thresholds including 1𝑠, 2𝑠, and 3𝑠, and 
presented in Table III. The findings indicate that scenario 1 
consistently has the lowest proportion of critical TTCs for 
AV-LHDV and FHDV-AV, regardless of the threshold used. 
Scenarios 2, 3, and 4, on the other hand, have a comparable 
number of critical AV-LHDV TTCs but significantly more 
critical FHDV-AV TTCs than scenario 1. It is confirmed that 
considering FHDV safety in the AV control algorithm will not 
compromise AV safety. 

To strengthen the statistical validity of the findings, the 
Kolmogorov-Smirnov test is conducted to compare the AV- 

 
LHDV and FHDV-AV TTC distributions in scenario 1 with 
those in the other scenarios. The results indicate that, except 
for AV-LHDV TTCs between scenarios 1 and 2 and scenarios 
1 and 3, other comparison results are all statistically 
significant with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 lower than 0.05. This means that 
the proposed AV controller, which takes into account the 
benefits of AV and FHDV, can reduce the risks of rear-end 
crashes for both AV and FHDV, compared to AV controllers 
that do not consider FHDV. 

2). Traffic efficiency: This study evaluates traffic efficiency 
by examining the average speeds. Table III shows the average 
speeds for AV and FHDV. The results indicate that scenarios 
1-4 have similar average speeds whereas the Mann-Whitney U 
test also supports this finding. This is because scenarios 1-4 
use DRL or MPC controllers to regulate the AV, which helps 
it follow LHDV closely. 

3). String stability: This study uses the 𝑙/-norm acceleration 
cumulative dampening ratio 𝑑[,A to quantify the string stability 
as below [39]: 

 𝑑[,A =
\),

!\%
\)&!\%

= (∑ ^),
!^
%6

!7& )
#
%

(∑ ^)&! ^
%6

!7& )
#
%
 (21) 

where 𝑎A! is the acceleration of the 𝑖!_ vehicle at the time step 
𝑡; 𝑎0!  is the acceleration of LHDV at the time step 𝑡; 𝑁 is the 
car-following event duration. A lower dampening ratio 𝑑[,A 
means the vehicle has better capability to mitigate traffic 
perturbation, making it more string stable. 

Table III shows the string stability for AV and FHDV, 
which is measured by the average cumulative dampening 
ratios. The results show that the average cumulative 
dampening ratios for AV and FHDV are the lowest in scenario 
1, indicating that the proposed AV controller can also 
optimize the dampening performance of FHDV without 
compromising the string stability for AV. 

Apart from cumulative dampening ratios, average 𝑆𝑡𝑑  of 
speeds for AV and FHDV are also calculated and shown in 
Table III. One can observe that the proposed control strategy 
has lower average 𝑆𝑡𝑑 of speeds for AV and FHDV than the 
three baseline methods. This means that the proposed AV 
control model serves as a virtual regulator that refines FHDV 
driving decisions, ultimately reducing the traffic oscillations 
for the entire mixed traffic stream. Besides, compared to 
scenario 3, scenario 2 can lower the average 𝑆𝑡𝑑 of speed for 
AV by 3%, suggesting that the preference adjusting module 
can enhance the DRL-based AV controller. By adjusting the 
weights towards the human-preferred time gap, the time gap  

Scenarios 
% of 𝑇𝑇𝐶 < 1𝑠 % of 𝑇𝑇𝐶 < 2𝑠 % of 𝑇𝑇𝐶 < 3𝑠 Average speed 

(𝑚/𝑠) 
Average cumulative 

dampening ratios 
Average 𝑆𝑡𝑑 of 

speed (𝑚/𝑠) 
AV-

LHDV 
FHDV-

AV 
AV-

LHDV 
FHDV-

AV 
AV-

LHDV 
FHDV-

AV AV FHDV AV FHDV AV FHDV 

1 0 0 0 0.45 0 2.69 9.80 9.78 0.93 0.58 1.26 1.16 
2 0 0 0 7.17 0 8.19 9.83 9.81 0.95 0.62 1.30 1.17 
3 0 0 0 6.77 0 7.32 9.82 9.79 0.96 0.64 1.34 1.20 
4 0 0 0 7.53 0 7.80 9.80 9.77 0.95 0.66 1.38 1.23 
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TABLE IV 
TRAFFIC FLOW PERFORMANCE ON THE NGSIM DATASET 

 

 
distribution becomes more centralized, resulting in the 
dampening of speed perturbations. This demonstrates the 
capability of incorporating expert knowledge to handle 
multiple objectives in car-following control. 

In summary, the main findings include: (1) The AV 
controller proposed in scenario 1 enhances safety and string 
stability while maintaining comparable efficiency to other 
scenarios; (2) Scenario 2, which involves PbSAC with a 
preference adjusting module, is more efficient than scenario 3 
(SAC) and scenario 4 (MPC) in improving the string stability 
of the AV; and (3) SAC demonstrates superior string stability 
compared to MPC. 
 

 
(a) Scenario 1 

 
(b) Scenario 2 

Fig. 5. Convergence of the weights in the reward function. 
 

E. Weight Learning Curves 
Fig. 5 shows the convergence of the weight parameters 

during the model training. It is revealed that the proposed 
preference generator can efficiently determine the stable 
weight combination, even if there are four terms in the reward 
function in scenario 1. In addition, experimental results show 
that weighting rewards with preference weights does not 
significantly induce instability for policy improvement. 

F. Generalizability Analysis 
To evaluate the generalization capability of the proposed 

AV controller, this subsection randomly selects 200  three-
HDV platoons from the reconstructed NGSIM dataset [40], 
each with a time length of over 15𝑠 . In more detail, each 
speed profile of the three-HDV platoon leader is assigned to 
the leader of the simulated platoon. Then the initial states of 
AV and FHDV are set to match the two followers in the three-
HDV platoon and controlled by their respective models, 
resulting in 200 simulated platoons under each scenario. After 
that, the states of AV and FHDV are updated using Eqs. (1)-
(6). 

The performance indicators of the mixed traffic stream for 
four scenarios are presented in Table IV. With regard to traffic 
safety, scenario 1 exhibits a slightly higher number of critical 
AV-LHDV TTCs compared to the other scenarios. However, 
the critical FHDV-AV TTCs in scenario 1 are significantly 
lower than those in scenarios 2, 3, and 4, which is supported 
by the Kolmogorov-Smirnov test. The speeds of AV and 
FHDV remain comparable across the different scenarios. As 
for string stability, scenario 1 shows the lowest average 
cumulative dampening ratios for FHDV and the lowest 
average Std of speeds for AV and FHDV. These analysis 
results provide evidence that the proposed AV controller can 
effectively adapt to different traffic conditions. 

G. Platoon Analysis 
This subsection will explore the AV controller’s 

performance in a seven-vehicle platoon, with the second 
vehicle being the AV and the rest being HDVs. The Waymo 
Open Data comprises 20𝑠  segments, meaning that car-
following events cannot exceed this duration. However, it is 
unlikely that speed fluctuations of LHDV can propagate 
through the entire platoon in 20𝑠. So, we again extract 100 
vehicle trajectories from the NGSIM dataset that last over 
30𝑠, assigning each as the platoon leader’s trajectory. The AV 
and following HDVs will be controlled by corresponding 
models. The vehicle length and the initial time gap of two 
consecutive vehicles are fixed as 5𝑚  and 1.5𝑠 , and all the 
initial speeds of the followers are equal to that of LHDV. As a 
result, there will be 100 simulated seven-vehicle platoons. 

To evaluate the performance of individual vehicles within 
the platoon, we calculate the performance metrics for each 
vehicle across 100 platoons generated in various scenarios, as 
illustrated in Fig. 6. The findings demonstrate that scenario 1 
outperforms the other scenarios in terms of safety and string 
stability. In particular, scenario 1 exhibits the highest 
minimum TTC for each vehicle, indicating better car- 

Scenarios 
% of 𝑇𝑇𝐶 < 1𝑠 % of 𝑇𝑇𝐶 < 2𝑠 % of 𝑇𝑇𝐶 < 3𝑠 Average speed 

(𝑚/𝑠) 
Average cumulative 

dampening ratios 
Average 𝑆𝑡𝑑 of 

speed (𝑚/𝑠) 
AV-

LHDV 
FHDV-

AV 
AV-

LHDV 
FHDV-

AV 
AV-

LHDV 
FHDV-

AV AV FHDV AV FHDV AV FHDV 

1 0 0 0 0 1.79 1.67 7.83 7.96 0.59 0.33 1.45 1.41 
2 0 0 0 1.09 0.78 7.23 7.85 7.97 0.60 0.35 1.47 1.41 
3 0 0 0 0.78 1.04 7.98 7.83 7.96 0.58 0.36 1.50 1.43 
4 0 0 0 2.77 0.98 9.96 7.83 7.95 0.55 0.36 1.52 1.45 
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TABLE V 
TRAFFIC FLOW PERFORMANCE UNDER TWO FHDV CONTROL SETTINGS 

 

 

 
(a) Minimum TTC 

 
(b) Average speed 

 
(c) Average cumulative dampening ratio 

Fig. 6. Performance indicators of each vehicle in the platoon 
under different scenarios. 
 
following safety. While the average speeds in scenarios 1 and 
2 are similar, they are greater than those in scenarios 3 and 4. 
Furthermore, the average cumulative dampening ratios of each 
vehicle in scenario 1 are lower than those in scenarios 2 and 3, 
signifying a better capacity to mitigate traffic disturbances 
throughout the platoon. Despite vehicle 1 in scenario 4 having  

 
a lower average cumulative dampening ratio than vehicle 1 in 
other scenarios, it also has the lowest minimum TTC and 
average speeds. More importantly, the average cumulative 
dampening ratios for the following vehicles are still higher 
than those in scenario 1. 

H. Comparison of FHDV Control Algorithms 
In Section IV-B, it is highlighted that HDVs exhibit distinct 

car-following behaviors when they are following AVs versus 
following HDVs. In scenario 1, FHDV car-following 
behaviors are approximated using the HDV-following-AV 
model. Here we aim to understand how the car-following 
model settings of FHDV will affect the performance of the 
proposed AV controller. To achieve this, the HDV-following-
AV model is replaced with the HDV-following-HDV model to 
control FHDV in scenario 1. The other settings, e.g., the AV 
control algorithm and the reward function, are identical to 
those in scenario 1. 

Table V illustrates the performance of the proposed AV 
controller under two FHDV control settings based on the 
testing set. As can be seen, if car-following behaviors of 
HDVs are imitated through the HDV-following-AV model, 
the AV controller has better safety and string stability 
performance. For example, the average cumulative dampening 
ratio for AV in the HDV-following-AV scenario is 4.30% 
( 0.ab90.aE

0.ab
∗ 100% = 4.30% ) lower than that in the HDV-

following-HDV scenario. In addition, significance tests on the 
distributions of FHDV-AV TTC values and speeds for FHDV 
both exhibit significant differences between the two scenarios 
( 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < .01 ). Hence, it can be concluded that the 
proposed approach using the HDV-following-AV model 
outperforms the counterpart. More importantly, it is revealed 
that during the development of AV controllers, if the 
responses of human drivers to the existence of AVs are not 
accurately modeled, the learned AV control policies may 
result in suboptimal performance. 

V. CONCLUSION 
In this study, a leading cruise controller for a mixed platoon 

of three vehicles is developed using PbSAC. Unlike previous 
studies that only focused on optimizing the AV, this approach 
also considers the benefits of FHDV. Real-world car-
following trajectories from the Waymo Open Dataset are 
extracted, processed, and analyzed. An IRL approach is used 
to model the car-following behaviors of HDVs. To address the 
multi-objective car-following control problem, a PbSAC-
based AV control model is introduced, which integrates SAC 

FHDV control 
setting 

% of 𝑇𝑇𝐶 < 1𝑠 % of 𝑇𝑇𝐶 < 2𝑠 % of 𝑇𝑇𝐶 < 3𝑠 Average speed 
(𝑚/𝑠) 

Average cumulative 
dampening ratios 

Average 𝑆𝑡𝑑 of 
speed (𝑚/𝑠) 

AV-
LHDV 

FHDV-
AV 

AV-
LHDV 

FHDV-
AV 

AV-
LHDV 

FHDV-
AV AV FHDV AV FHDV AV FHDV 

HDV-
following-AV 0 0 0 0.45 0 2.69 9.80 9.78 0.93 0.58 1.26 1.16 

HDV-
following-

HDV 
0 0 0 2.44 0 18.29 9.77 9.71 0.97 0.63 1.28 1.16 
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with a preference generator. This preference generator can 
dynamically optimize multiple car-following objectives based 
on expert evaluation. Simulation results demonstrate that this 
approach can enhance the safety, efficiency, and string 
stability of the mixed traffic stream when compared to other 
AV controllers that do not consider FHDV. In addition, a 
comparative analysis is conducted to evaluate the impact of 
different FHDV car-following model settings on the 
performance of the proposed approach. The results reveal that 
using an HDV-following-AV model to mimic HDV car-
following behaviors can achieve better performance than an 
HDV-following-HDV model. 

This paper has practical implications for various sectors 
related to AVs. It emphasizes the significance of considering 
human driver behavioral adaptations when studying AV-
involved traffic flow, which can be valuable for transportation 
researchers. For road engineers, it may drive them to propose 
appropriate traffic management policies to take advantage of 
AVs when AVs are publicly available. For AV manufacturers, 
it elucidates the potential for designing advanced AV control 
algorithms that can also consider the surrounding vehicles and 
thus benefit the mixed traffic flow, especially in situations 
where AVs on public roads currently lack communication 
technologies. 

This study has three major limitations. First, the proposed 
controller utilizes the HDV-following-AV model obtained 
from the Waymo Open Dataset. It is appealing to assess the 
controller if other autonomous driving datasets can be 
leveraged to calibrate the HDV-following-AV model. Second, 
the AV control algorithm has only been tested through 
simulation. However, it can be further evaluated for its 
effectiveness through the use of driving simulators, test tracks, 
or even public roads in the future. Third, DRL-based methods 
incorporating prior knowledge have shown potential in 
addressing multi-objective car-following control. Further 
research is necessary to improve control efficiency through the 
development of a more informative evaluation. 
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