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Abstract—The development of autonomous driving technology 
will lead to a transition period where human-driven vehicles (HVs) 
share the road with autonomous vehicles (AVs). Understanding 
the interactions between AVs and HVs are critical to traffic safety 
and efficiency. Previous studies used traffic/numerical simulations 
and field experiments to investigate HVs’ behavioral changes 
when following AVs. However, such approaches simplify the 
actual scenarios and may result in biased results. To this end, the 
objective of this study is to realistically model HV-following-AV 
dynamics and their microscopic interactions which are important 
for intelligent transportation applications. HV-following-AV and 
HV-following-HV events are extracted from the high-resolution 
(10Hz) Waymo Open Dataset. Statistical test results reveal that 
there are significant differences in calibrated intelligent driver 
model (IDM) parameters between HV-following-AV and HV-
following-HV. An inverse reinforcement learning model (Inverse 
soft-Q Learning) is proposed to retrieve HVs’ reward functions in 
HV-following-AV events. A deep reinforcement learning (DRL) 
approach -- soft actor-critic (SAC) is adopted to estimate the 
optimal policy for HVs when following AVs. The results show that 
compared with other conventional and data-driven car-following 
models, the proposed model leads to significantly more accurate 
trajectory predictions. Additionally, the recovered reward 
functions indicate that drivers’ preferences when following AVs 
are different from those when following HVs. 
 

Index Terms—Autonomous vehicles, car-following, vehicle 
trajectory, driver behavior, inverse reinforcement learning, deep 
reinforcement learning 

I. INTRODUCTION 
N recent years, the technologies of autonomous vehicles 
(AVs) have been tested and deployed through a variety 
of approaches, including traffic microsimulation, 

numerical simulations, dedicated test tracks and public road 
experiments. It is widely acknowledged that before the mobility 
is fully automated, there will be a transition period when the 
traffic flow is composed of both AVs and human-driven 
vehicles (HVs) [1]. When sharing the roads with AVs, human 
drivers behave differently compared to when sharing the roads  
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with only HVs [2][3][4]. This difference in human drivers’ 
behaviors can significantly affect traffic safety and efficiency, 
thus should be investigated comprehensively [5][6]. Among 
driving behavioral models, car-following models intend to 
describe the longitudinal interactions between vehicles on the 
road, which forms the core component in microscopic 
simulation as well as in traffic flow theory. Therefore, 
understanding the fundamental mechanisms of such 
interactions, e.g., how human drivers adapt to the new driving 
environments when following AVs, remains among the key 
research questions. 

Previous research on car-following interactions between 
HVs and AVs mainly adopted traffic/numerical simulations or 
field experiments, due to the lack of empirical data as a result 
of the low AV market penetration rate [2]. However, traffic 
microsimulation may simplify and ignore important aspects of 
traffic characteristics and vehicle interactions. Field 
experiments cannot reproduce the complicated driving 
conditions where vehicle speed has higher fluctuations and 
surrounding traffic interacts with the subject vehicles, both of 
which can result in biased estimation of AV effects. Recently, 
more and more AV tech firms such as Waymo and Lyft have 
released real-world datasets collected by the sensors mounted 
on a fleet of AVs at 10-Hz frequency. These datasets include 
abundant information about not only the AVs but also the 
surrounding environments, as such provides the transportation 
research community with new opportunities to investigate 
human drivers’ behavioral adaptations when interacting with 
AVs in reality. 

Human drivers’ car-following behaviors involve making 
sequential decisions on longitudinal acceleration based on the 
motion of the surrounding vehicles. Conventional methods to 
study car-following behaviors are based on physics-based and 
data-driven models. However, physics-based models rely on 
strict assumptions about car-following behaviors and a small set 
of parameters which may not be generalizable to a variety of 
driving scenarios; data-driven models based on machine 
learning (ML) methods are challenging due to the large, 
stochastic and continuous state space in the highly interactive 
environment [7]. Compared to physics-based and ML models, 
the imitation learning (IL) based models are promising for this 
problem where the agent learns an optimal policy to imitate 
human demonstration [6][8]. 

Popular IL approaches include behavior cloning (BC) and 
inverse reinforcement learning (IRL). However, BC may cause 
the so-called “cascading errors” problem because small 
predictive errors will compound and ultimately lead the policy 
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to unseen situations that are underrepresented in the training 
data. On the other hand, previous IRL methods such as 
generative adversarial imitation learning (GAIL) [9] and 
adversarial inverse reinforcement learning (AIRL) [10] use the 
adversarial training technique which learns the reward and 
policy functions separately and train these two jointly in a min-
max game. However, the adversarial training makes these 
methods sensitive to hyperparameter choice or minor 
implementation details and thus affects their performance 
negatively. To tackle the above issues, the inverse soft-Q 
Learning (IQ-Learn) algorithm [11] has been introduced. IQ-
Learn is an IRL method that approximates only the Q-function, 
representing both reward and policy. As such, the min-max 
problem in GAIL and AIRL can be turned into a simple 
minimization problem over the Q-function, which enables IQ-
Learn to achieve state-of-the-art results. 

This study aims to imitate human drivers’ trajectories when 
following AVs on highways and learn their reward functions 
using IQ-Learn with a deep reinforcement learning (DRL) 
approach – soft actor-critic (SAC) [12]. In more detail, the car-
following data is extracted from a naturalistic driving dataset 
published by Waymo. Typical car-following patterns are 
determined by the hierarchical clustering and compared 
between HV-following-AV and HV-following-HV. Then the 
effectiveness of the proposed method is validated in terms of 
trajectory-reproducing accuracy and reward functions of human 
drivers are recovered. In summary, the main contributions of 
this study are listed as follows: 

1) Instead of traffic/numerical simulation or field tests, 
we compare HV-following-AV and HV-following-
HV data by calibrating the intelligent driver model 
(IDM) [13] for each car-following event using the 
real-world Waymo Open Dataset. The results of 
Mann-Whitney U test reveal that human drivers 
perform different car-following behaviors when they 
are following AVs compared to following HVs. 

2) By using IQ-Learn with SAC to mimic HVs’ car-
following trajectories when following AVs, the reward 
functions of human drivers which indicate their 
preferred states are recovered. Drivers are found to 
show different preferences when following AVs 
compared to followings HVs, suggesting the 
significant impacts of AVs on the following human 
drivers. These reward functions can be used to infer 
the following HVs’ behaviors and improve the 
performance of AV controllers. 

The rest of the paper is organized in the following manner. 
The next section briefly reviews relevant studies in modeling 
human drivers’ car-following behaviors. Sections III presents 
the methodologies of both the proposed model and the 
benchmark models. Sections IV compares calibrated IDM 
parameter values in HV-following-AV and HV-following-HV, 
discusses the performance of the proposed model and the 
recovered reward functions. Finally, Section V provides the 
conclusions and recommendations for future research. 

II. RELATED WORK 
Learning the car-following policy of human drivers can be 

classified into two categories including: (1) physics-based 
models which refer to the predefined mathematical functions 
with a small set of parameters and (2) data-driven models which 
refer to leveraging artificial intelligence methods, such as deep 
neural networks (DNN), DRL, and IL to mimic human 
behaviors. 

There is a great deal of literature on modeling car-following 
behaviors using physics-based models, e.g., the Gipps [14], 
IDM, full velocity difference model (FVDM) [15] and more 
[16][17]. Physics-based models assume that each driver acts as 
an automated particle, within which human cognitive process 
and the machine’s mechanical dynamics are highly simplified 
[6]. The inputs of the physics-based models usually include 
speed, inter-vehicle spacing and relative speed while the output 
is the acceleration at the current time step. The main task of 
physics-based models is to find an optimal set of parameters 
that best fit the empirical data. However, the physics-based 
models show poor predictive performance especially in highly 
complex environments. This is because they usually impose 
strict assumptions on human driving behaviors with a limited 
number of parameters, which can hardly capture human’s 
strategic planning behaviors [18]. 

In recent years, data-driven models have been in the spotlight 
since they have high flexibility and require few prior 
assumptions regarding the dataset [19][20][21]. Generally, 
three kinds of data-driven methods have been applied to 
modeling human drivers’ car-following behaviors, including 
ML, DRL and IL. For example, [22] revealed that DNN based 
car-following models were more accurate and robust than the 
Gipps and psycho-physical models. In another study, [23] 
modeled the car-following behaviors using a recurrent neural 
network (RNN). It was identified that the RNN based car-
following model showed superior performance in predicting 
traffic oscillations with different driver characteristics 
compared to the IDM and DNN. Using the NGSIM dataset, [24] 
combined Markov theory and a gated recurrent unit (GRU) to 
propose a new car-following model. The proposed model 
showed higher accuracy and could enhance the stability of 
trajectory prediction relative to FVDM and DNN. Later, [25] 
used the deep deterministic policy gradient (DDPG) algorithm 
to achieve human-like car-following behaviors and the DDPG 
outperformed the IDM and RNN in terms of predictive 
accuracy. In another empirical research, [26] implemented a 
variety of DRL frameworks in developing a car-following 
model with time margin, time gap, and jerk included in the 
reward function. The results indicated that automating entropy 
adjustment on Tsallis actor-critic (ATAC) achieved the highest 
rewards and the ATAC based model enabled vehicles to drive 
safely, efficiently, and comfortably, had good stability, and 
were more acceptable for drivers. However, ML based models 
may fail due to large, stochastic and continuous state space of 
the car-following problem. On the other hand, it is often 
difficult to craft the reward functions in DRL models to 
perfectly encode human drivers’ desired behaviors in every 
setting. 
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More recently, applying IL methods to inferring optimal 
sequential policies by observing how experts perform that task 
has attracted more and more attention. [27] assumed that human 
drivers follow hierarchical reasoning decision-making strategy 
and employed Dataset aggregation (Dagger) to build a function 
mapping from the ego vehicle’s state, all others’ state, and the 
ego vehicle’s reasoning level-k to the ego vehicle’s level-k 
action. While Dagger learns actions from observed states, the 
aim of IRL is to estimate the underlying reward function prior 
to finding the optimal policy. For example, [28] modeled the 
reactions of human drivers to AVs in three different driving 
scenarios by approximating the human as an optimal planner 
with a reward function that was acquired through IRL. [7] 
applied GAIL to the task of modeling human driver behaviors 
on the simulation platform where expert demonstrations were 
retrieved from the NGSIM dataset. In another study, [29] 
combined GAIL with Parameter Sharing Trust Region Policy 
Optimization (PS-TRPO) to enable IL in the multi-agent 
setting. Experiment results showed that compared to the single-
agent models, the multi-agent model generated significantly 
more realistic behaviors, particularly over longer time horizons. 
Later, [30] modeled human driver heterogeneous behaviors by 
incorporating a social preference value (SVO) into one’s 
reward function. SVO improves the model predictive 
performance by quantifying the degree of one’s selfishness or 
altruism. An IRL algorithm was trained for the AV to observe 
HVs, estimate their SVOs, and generate a control policy in real 
time. In [31], a reward function-based driver model that imitates 
human’s decision-making mechanisms was proposed. They 
assumed that human driver behaviors consisted of three 
processes, which were trajectory generation, trajectory 
evaluation, and trajectory selection. This converted the 
continuous behavior modeling problem to a discrete setting, 
thus adopted the maximum entropy inverse reinforcement 
learning (MaxEnt IRL) approach to learn reward functions. 

Most of the studies focused on emulating interactions within 
human drivers or learning the optimal policy from human 
demonstrations for AVs to perform human-like driving 
behaviors. However, existing studies have found that human 
drivers may adapt their car-following behaviors when they are 
behind AVs [2], which highlights the necessity to study drivers’ 
behavioral changes when interacting with AVs. IRL is a 
promising approach to solve this research question since the 
recovered reward function can extend to unobservable states 
and then the corresponding policy can be more generalizable. 

Another problem is the traffic heterogeneity, which can be 
defined as the differences between car-following behaviors of 
driver/vehicle combination under comparable conditions [32]. 
For example, [33] proposed a two-level probabilistic approach 
to run stochastic simulations of three NGSIM I-80 traffic 
scenarios and quantitatively study the effects of heterogeneity. 
It was found that heterogeneity of driver/vehicle parameters 
significantly affected the car-following model accuracy. 
Specifically, simulations with homogeneous parameters 
demonstrated the highest errors, by one order of magnitude. 
[34] developed a long- and short-term driving (LSTD) model to 
incorporate driver’s heterogeneity in modeling car-following 

behaviors. The long-term driving characteristics were extracted 
through clustering, and the changes after an external stimulus 
were identified and measured as the indicator of the short-term 
driving characteristics. The results showed a promising 
performance as the errors significantly decreased after applying 
the LSTD model to the NGSIM dataset. 

III. METHODOLOGY 
This section first introduces the formulation of the car-

following problem, then describes the detailed implementation 
of IQ-Learn built upon SAC, next introduces four benchmark 
models: intelligent driver model (IDM), long short-term 
memory (LSTM) model, generative adversarial imitation 
learning (GAIL) and adversarial inverse reinforcement learning 
(AIRL), and finally provides the metrics to assess the model 
performance. 

A. Problem Formulation 
Car-following models depict the process by which drivers 

follow each other in the traffic stream. During the process, 
drivers interact with the environment by adjusting their 
accelerations to maximize the long-term rewards. The problem 
of car-following can be formulated as a Markov Decision 
Process (MDP) which is defined with a five-element tuple: 
(𝑆, 𝐴, 𝑅, 𝑃, 𝛾), where 𝑆 is the state space, 𝐴 is the action space, 
𝑅(𝑠! , 𝑎! , 𝑠!"#) is the reward function which provides the reward 
received while interacting with the environment, 𝑃(𝑠!"#|𝑠! , 𝑎!) 
is the transition function determining the next state given the 
current state and action and 𝛾 is the discount factor of future 
cumulative rewards. The process of interacting with the 
environment can be defined below: At each time step 𝑡, the 
vehicle will take an action 𝑎! by observing the current state 𝑠!, 
according to a stochastic policy 𝜋(𝑎!|𝑠!) . Then, the 
environment will be updated to the next state 𝑠!"# based on the 
transition function 𝑃(𝑠!"#|𝑠! , 𝑎!), and return a scalar reward 
𝑅(𝑠! , 𝑎! , 𝑠!"#) to the vehicle. The objective in an MDP is to find 
the optimal policy that maximizes the expected return: 𝜋∗ =
𝑎𝑟𝑔max

%
∑ 𝐸('!,)!)~,"[𝑅(𝑠! , 𝑎!)]
-
!.# , where 𝑡 is the time step. 

In our case, let 𝑠!  denote driver’s state at time step 𝑡. It is 
described by the following features: the speed of the following 
vehicle 𝑉/(𝑡) , the inter-vehicle spacing 𝑆/0#,/(𝑡)  and the 
relative speed between the following and the leading vehicles 
∆𝑉/0#,/(𝑡). The action that the following vehicle needs to take 
at time step 𝑡 is the longitudinal acceleration, denoted as 𝑎/(𝑡). 
The simulation environment initializes HVs and AVs with 
information about their initial positions and speed according to 
the observed data. At time step 𝑡, the action taken by HVs is 
sampled from the learned optimal policies. Then, the state will 
be updated using Newtonian equations of motion [25]: 
 

 𝑉/(𝑡 + 1) = 𝑉/(𝑡) + ∆𝑇 ∗ 𝑎/(𝑡) (1) 
 ∆𝑉/0#,/(𝑡 + 1) = 𝑉/(𝑡 + 1) − 𝑉/0#(𝑡 + 1) (2) 

𝑆/0#,/(𝑡 + 1) = 𝑆/0#,/(𝑡) − ∆𝑇 ∗
∆2#$%,#(!)"∆2#$%,#(!"#)

3
 (3) 

 
where ∆𝑇  is the simulation time interval which is the data 
collection interval (which is set to be 0.1𝑠  in this study); 
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𝑉/0#(𝑡 + 1) is the speed of the leading vehicle which is set to 
be known over time. 

The training of one car-following event is defined as an 
episode. When a traffic crash happens (i.e., 𝑆/0#,/(𝑡) ≤ 0) or 
the simulation reaches the maximum time step, the training will 
be terminated and the state will be re-initialized using the next 
car-following event data. 

B. IQ-Learn 
In GAIL and AIRL models, the adversarial training strategy 

formulates the IRL problem as a min-max game between 
reward and policy, which makes these two models sensitive to 
hyperparameter choices or minor implementation details [11]. 
The IQ-Learn model adopted in this study learns a single Q-
function that optimizes both reward and policy simultaneously. 
Therefore, the min-max game is converted to a relatively simple 
minimization problem over the Q-function. We then introduce 
the model formulation and corresponding algorithms of the IQ-
Learn approach. 

The Q-function is denoted as 𝑄(𝑠! , 𝑎!), which represents the 
amount of future cumulative rewards obtained by taking action 
𝑎! under state 𝑠!. The update rules to learn 𝑄(𝑠! , 𝑎!) in the IQ-
Learn algorithm are listed as follows: 

1) For a fixed policy 𝜋4 , optimize 𝑄(𝑠! , 𝑎!)  by 
maximizing the objective function 𝒥(𝜋4, 𝑄) using the 
gradient descent: 

 
𝒥D𝜋4, 𝑄E = 𝐸,' F𝜙 H𝑄 − 𝛾𝐸5(~67∙8𝑠! , 𝑎!9𝑉

%)(𝑠!"#)JK − (1 −
𝛾)𝐸,*[𝑉

%)(𝑠:)]   (4) 
 
where 𝜌; and 𝑃(∙ |𝑠! , 𝑎!) are the occupancy measure of the 
optimal policy and the transition function; 𝜙(∙) is a concave 
function; 𝛾 represents the discount factor; 𝑉%)(𝑠) =
𝐸)~%)(∙|𝑠)[𝑄(𝑠, 𝑎) − log	(𝜋4(𝑎|𝑠))]. 

2) For a fixed Q-function	 𝑄(𝑠! , 𝑎!) , the SAC actor 
(which will be introduced in the next subsection) will 
be updated to minimize the following equation using 
the gradient descent: 

 
min
%)

𝐸'~=,)~%)(∙|𝑠)[𝑄(𝑠! , 𝑎!) − log	(𝜋4(𝑎!|𝑠!))] (5) 

 
where 𝐷 is the replay buffer. In this step, the policy 𝜋4 will be 
optimized towards the optimal policy and Eq. (4) will be 
minimized. The detailed calculation process is presented in 
Algorithm 1. 
 

Algorithm 1 IQ-Learn 
1: Initialize an Q-function 𝑄> and random policy 𝜋4 
2: for step 𝑡 in {1,2,3, …𝑁} do 
3: Train Q-function using the objective 𝒥(𝜃) from Eq. 

(4): 
𝜃!"# ← 𝜃! − 𝛼?∇>[−𝒥(𝜃)] 

4: Improve policy 𝜋4 with SAC actor update: 
𝜙!"# ← 𝜙! − 𝛼%∇4𝐸'~=,@~%)(∙|𝑠)[𝑄(𝑠! , 𝑎!)

− 𝑙𝑜𝑔𝜋4(𝑎!|𝑠!)] 
5: end for 

Given the learned Q-function 𝑄(𝑠! , 𝑎!), IQ-Learn recovers 
the reward function for each transition (𝑠! , 𝑎! , 𝑠!"#) as Eq. (6) 
reveals. The detailed calculation process is presented in 
Algorithm 2. 
 

𝑟(𝑠! , 𝑎! , 𝑠!"#) = 𝑄(𝑠! , 𝑎!) − 𝛾𝑉%)(𝑠!"#) (6) 
 

Algorithm 2 Recover policy and reward 
1: Given the learnt Q-function 𝑄> and trained policy 𝜋4 
2: Recover policy 𝜋: 

𝜋 ≔ 𝜋4 
3: For state 𝑠!, actions 𝑎! and next state 𝑠!"#~𝒫(∙ |𝑠! , 𝑎!) 
4: Recover reward 𝑟(𝑠! , 𝑎! , 𝑠!"#) = 𝑄>(𝑠! , 𝑎!) −

𝛾𝑉%(𝑠!"#) 
 

C. Soft Actor-Critic 
The optimal policies of human drivers are learned during the 

training process of IQ-Learn using SAC since SAC has the 
following advantages: (1) the policy is incentivized to explore 
more widely; (2) it is highly sample-efficient; and (3) it is 
suitable for continuous action space [12]. SAC is an off-policy 
MaxEnt DRL algorithm with the actor-critic framework. The 
soft policy iteration which alternates between policy evaluation 
and policy improvement is used to maximize the MaxEnt 
objective. In the policy evaluation step, the soft Q-function 
𝑄'AB! is given as follows: 
 

𝑄'AB!(𝑠! , 𝑎!) = 𝑟(𝑠! , 𝑎!) + 𝛾𝐸'!+%,)!+%[𝑄(𝑠!"#, 𝑎!"#) −
𝛼log	(𝜋∅(𝑎!"#|𝑠!"#))]]  (7) 

 
where 𝛼 is the temperature parameter; 𝜋∅ is the adopted policy 
with the distribution ∅. 

In the policy improvement step, the policy is updated 
according to the function as follows: 
 

𝜋/DE = 𝑎𝑟𝑔min
%∅∈G

𝐷HI(𝜋∅(∙ |𝑠!)||
JKL	(?('!,∙)/@)

P('!)
) (8) 

 
where Π is the feasible set of the policy function; 𝐷HI is the 
Kullback-Leibler (KL) divergence; the partition function 
𝑍(𝑠!) does not contribute to the gradient of the new policy and 
thus can be ignored. 

The action of SAC is obtained from the policy network: 
 

𝑎! = 𝑓∅(𝜖!; 𝑠!) = 𝑓∅
Q(𝑠!) + 𝜖!⨀𝑓∅R(𝑠!) (9) 

 
where 𝜖! is the input noise vector following the multivariate 
Gaussian distribution; 𝑓∅

Q is the mean of the action; 𝑓∅R is the 
standard deviation of the action. 

The value network 𝑄> and the policy network 𝜋4 are built 
using DNNs. A target network 𝑄S is developed to stabilize the 
training process for the continuous control problem. As the 
replay buffer is adopted during the training of SAC, the 
sampled state transitions will be stored into the experience 
pool: 
 

𝐷! = [𝑠! , 𝑎! , 𝑟(𝑠! , 𝑎!), 𝑠!"#]  (10) 
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The parameters of the soft Q-function are updated by 
minimizing the soft Bellman residual: 
 

𝒥?(𝜃) = 𝐸'!,)!~=[
#
3
(𝑄>(𝑠! , 𝑎!) − (𝑟(𝑠! , 𝑎!) +

𝛾𝑄S j𝑠!"#, 𝜋4(𝑠!"#)k − 𝛼log	(𝜋∅(𝑎!"#|𝑠!"#))))3] (11) 
 

The parameters of the target network perform a soft update: 
 

𝜃?( ← 𝜏𝜃? + (1 − 𝜏)𝜃?(  (12) 
 
where τ is the soft update factor. 

Then the update of parameters of the policy network is 
given by: 
 

𝒥%(∅) = 𝐷HI(𝜋4(∙ |𝑠!)||exp	(
?('!,∙)
@

− log	(𝑍(𝑠!)))) =

𝐸'!~.[logj𝜋∅(𝑎!|𝑠!)k −
?/T'!,%)('!)U

@
+ log	(𝑍(𝑠!))] (13) 

 

D. Benchmark models 
Intelligent driver model (IDM): The IDM [13] was proposed 

to model the highway bottleneck congestions. The 
acceleration/deceleration generated by IDM considers both the 
desired speed and the desired distance, which is presented in the 
following equation: 
 

𝑎/(𝑡) = 𝑎V)W
(/) (1 − j2#(!)

2#X(!)
k
Y
− (5#

X(!)
5#(!)

)3) (14) 
 
where 𝑎V)W

(/)  is the maximum acceleration/deceleration of the 
following vehicle; 𝑉/(𝑡) is the speed of the following vehicle 
at time step 𝑡; 𝑉/o(𝑡) is the desired speed of the following 
vehicle; 𝑆/(𝑡) is the spacing between the two vehicles at time 
step 𝑡; 𝛽 is the constant which is usually fixed at 4. 

The desired inter-vehicle spacing 𝑆/q(𝑡) is given by: 
𝑆/q(𝑡) = 𝑆Z)V

(/) +max	(0, 𝑉/(𝑡)𝑇/q(𝑡) +
2#(!)∆2#(!)

3[)012
(#) )560768!

(#)
)(15) 

where 𝑆Z)V
(/)  is the minimum inter-vehicle spacing at standstill; 

𝑇/q(𝑡) is the desired time headway of the following vehicle; 
∆𝑉/(𝑡)  is the relative speed at time step 𝑡 ; 𝑎\AVBA]!

(/)  is the 
comfortable deceleration of the following vehicle. 

To find the optimal parameter set of the IDM, the most 
commonly-used gradient-free algorithm – Genetic Algorithm 
(GA) [35] is implemented. The gradient-free algorithms are 
heuristic methods which do not require any information on the 
gradient [18]. A great advantage of this algorithm is that it can 
avoid the local minima and reach the global optimum. The 
relevant GA parameters for calibrating the IDM are specified as 
follows: population size 300, maximum number of generations 
300, and number of stall generations 100. For the IDM, the 
desired speed 𝑉/o  is set to be within the range [1, 30] 𝑚/𝑠; the 
desired time gap 𝑇/q is set to be [0.1, 3] 𝑠; the minimum distance 
𝑆Z)V  is set to be [0.1, 5] 𝑚; and the maximum acceleration 
𝑎V)W  and the comfortable deceleration 𝑎\AVBA]!  are set to be 
[0.1, 3] and [0.1, 5] 𝑚/𝑠3, respectively. 

Long short-term memory (LSTM) neural network: The 
LSTM based car-following model is similar to [23] which takes 
the inputs including vehicle speed, inter-vehicle spacing and 
relevant speed at the current time step and outputs the 
longitudinal acceleration of the following vehicle. Then, the 
state for the next time step will be updated using Eqs. (1)-(3). 
The objective function of the LSTM model is described as 
follows: 
 

𝐶(𝑊,𝐵) = (5#$%,#(!)05#$%,#
69: (!));

(5#$%,#69: (!));
  (16) 

 
where 𝑆/0#,/(𝑡) is the simulated spacing at time step 𝑡 , and 
𝑆/0#,/A^' (𝑡)  is the observed spacing at time step 𝑡 ; 𝑊  and 𝐵 
represent the weights and biases in the LSTM model. The 
LSTM model minimizes the objective function by back-
propagating a small update in the direction of optimizing the 
weights and biases. 

Generative adversarial imitation learning (GAIL): [9] 
proposed GAIL based on generative adversarial networks 
(GAN) to mimic expert demonstration. A discriminator (𝐷_) 
parametrized by 𝜓 is trained to distinguish whether a trajectory 
is from expert demonstration (𝜋;) or synthetic demonstration 
generated by the policy (𝜋>). The policy (𝜋>) parameterized by 
𝜃  is trained to generate synthetic trajectories to “fool” the 
discriminator ( 𝐷_ ). The objective function of GAIL is 
formulated as a min-max game between the discriminator (𝐷_) 
and the policy (𝜋>): 
 
min
>
max
_

𝐸%'[𝑙𝑜𝑔𝐷_(𝑠! , 𝑎!)] + 𝐸%/[𝑙𝑜𝑔(1 − 𝐷_(𝑠! , 𝑎!))](17) 

 
In order to fit 𝜋>, a surrogate reward function is calculated: 

 
𝑟̃(𝑠! , 𝑎!; 𝜓) = −log	(1 − 𝐷_(𝑠! , 𝑎!)) (18) 

 
As the state-actions pairs (𝑠! , 𝑎!) sampled from 𝜋> become 

similar to the pairs sampled from 𝜋;, the value of the reward 
function will increase. After performing rollouts, surrogate 
reward function 𝑟̃(𝑠! , 𝑎!; 𝜓) is calculated and proximal policy 
optimization (PPO) [36] is used to update the policy 
parameters. 

Adversarial inverse reinforcement learning (AIRL): [10] 
developed AIRL which is based on the Guided Cost Learning 
(GCL) and adversarial training strategy. The essential 
assumption of AIRL is that demonstration likelihood is 
proportional to the exponential of rewards. The discriminator 
(𝐷_) is formulated as follows: 
 

𝐷_(𝑠! , 𝑎!) =
JKL(B<('!,)!))

JKLTB<('!,)!)U"%/()!|'!)
 (19) 

 
where 𝑓_(𝑠! , 𝑎!) is the learned function and trained to infer the 
reward function; 𝜋>(𝑎!|𝑠!) is the current policy. 

The discriminator (𝐷_) is updated by maximizing the cross-
entropy loss given by Eq. (20) to tell expert demonstration apart 
from generated demonstration; while the policy (𝜋>) is updated 
towards the maximization of the reward function given by 
𝑓_(𝑠! , 𝑎!). 
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TABLE I 

DRIVERS CLUSTERING RESULTS 
 

 
max
_

𝐸%' z𝑙𝑜𝑔𝐷_(𝑠! , 𝑎!){ + 𝐸%/z𝑙𝑜𝑔(1 − 𝐷_(𝑠! , 𝑎!)){(20) 

 
To alleviate the reward ambiguity, 𝑓_ is further decomposed 

to a reward estimator 𝑔_ and a potential shaping function ℎ∅: 
 

𝑓_,∅(𝑠! , 𝑎! , 𝑠!"#) = 𝑔_(𝑠! , 𝑎!) + 𝛾ℎ∅(𝑠!"#) − ℎ∅(𝑠!)(21) 
 
where 𝜓  and ∅  are parameters trained to maximize the 
objective function shown in Eq. (20); 𝛾 is the discount factor. 
Similarly, PPO [36] is adopted as the policy optimization 
algorithm using the estimated reward function. 

E. Performance Comparison 
According to [37][38][39], spacing is selected as the measure 

of performance (MoP) to compare different car-following 
models. The normalized root mean square error of spacing 
𝑁𝑅𝑀𝑆𝐸(𝑆) is adopted as the goodness-of-fit function (GoF) 
for model evaluation. The calculation process of 𝑁𝑅𝑀𝑆𝐸(𝑆) is 
presented in Eqs. (22)-(23): 
 

𝑅𝑀𝑆𝐸(𝑆) = ~#
`
∑ (𝑆a'aV − 𝑆aA^')3`
a.#  (22) 

𝑁𝑅𝑀𝑆𝐸(𝑆) = bc5;(5)

[%=∑ (5>
69:);=

>?%

  (23) 

 
where 𝑆a'aV  is the 𝑖!e  simulated spacing; 𝑆aA^'  is the 𝑖!e 
observed spacing; 𝑁 is the number of total observations. 

IV. EXPERIMENTAL RESULTS 

A. Data Description 
Car-following events used to train the models are extracted 

from the Waymo Open Dataset released by Waymo LLC. 
Waymo has been conducting road tests using SAE Level 4 AVs 
without any communication systems for more than 32 million 
km (kilometers) on public roads in many U.S. cities [40][41]. 5 
Lidar and 5 cameras mounted on a fleet of AVs collected high-
resolution data on AV’s movements and the environments 
surrounding the AVs at 10-Hz frequency. The Waymo Open 
Dataset is constituted of two parts: the perception and motion 
parts, both of which have been used in this study. 

The perception part contains 1,000 20-second video clips (as 
of March 2020), each of which is composed of well- 

 
synchronized and calibrated high-resolution Lidar and camera 
data recorded in urban and suburban areas. The Lidar data 
contains 12 million annotated 3D ground truth bounding boxes 
and the camera data contains 12 million annotated 2D fitting 
bounding boxes, which generates around 113k Lidar object 
tracks and around 250k camera image tracks [40]. 

The motion part consists of 103,354 20-second video clips 
representing 574 hours of driving data collected over 1,750 km 
of U.S. roadways. Each clip in the motion part contains the 
high-quality 3D ground truth bounding box and the speed 
vector for each road user (e.g., vehicles, pedestrians, and 
cyclists). Compared to the perception part, the motion part 
additionally provides a high-resolution map for each video clip 
as a set of polylines and polygons created from curves sampled 
at 0.5 meters [41]. 

These two parts both contain high-quality and continuous 
records of road agents’ type, size (e.g., length, width and height), 
position (e.g., latitude and longitude) and movement (e.g., 
speed). Considering the sample size of the Waymo Open 
Dataset, timespan of each video clip and sensor detection range, 
this study extracts car-following events which satisfy the 
following criteria [2]: 

1) The leading and following vehicles were driving in the 
same lane on a straight highway segment; 

2) Neither the leading vehicle nor following vehicle 
changed lanes in the event; 

3) The inter-vehicle spacing between the leading and 
following vehicles should be less than 85𝑚; 

4) The following vehicle’s speed should be greater than 
10km/h to exclude the effects of traffic congestion; 

5) The duration of car-following event should be at least 
15 seconds long. 

After data screening, 264 HV-following-AV and 1,376 HV-
following-HV events are extracted from the dataset. For each 
car-following event, the second-order Savitzky–Golay filter 
[42] is used to filter the speed data to remove noises. Then, the 
acceleration/ deceleration is derived based on the filtered speed 
profiles and further smoothed to eliminate the remaining noises 
using the Savitzky–Golay filter again. 

B. Driver Behavior Classification 
Previous research shows that incorporating the inter-driver 

heterogeneity into the car-following modeling process can 
depict realistic car-following behaviors [33][34]. In this study, 

Features 
HV-following-AV HV-following-HV 

Non-aggressive Aggressive Non-aggressive Aggressive 
Mean Std Mean Std Mean Std Mean Std 

maximum vehicle speed (𝑚/𝑠) 12.407 5.005 12.153 3.331 11.299 4.089 13.227 3.145 
minimum vehicle speed (𝑚/𝑠) 8.881 4.511 6.288 2.557 7.019 3.402 6.430 2.702 

Mean vehicle speed (𝑚/𝑠) 10.768 4.825 9.025 2.764 9.140 3.573 9.702 2.597 
Standard deviation of vehicle speed (𝑚/𝑠) 1.019 0.486 1.787 0.727 1.272 0.738 2.047 0.831 

Vehicle acceleration (𝑚!/𝑠) 0.287 0.140 0.494 0.187 0.338 0.158 0.521 0.196 
Vehicle deceleration (𝑚!/𝑠) 0.240 0.129 0.471 0.245 0.295 0.210 0.569 0.299 

Spacing (𝑚) 21.657 9.442 14.094 5.722 18.164 8.255 12.913 2.961 
Time headway (𝑠) 2.745 0.888 2.239 0.580 2.685 0.813 1.976 0.532 
Number of drivers 89 112 892 358 
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human drivers’ car-following styles are captured by the 
hierarchical clustering. By conducting a thorough literature 
view [2], critical features are chosen to reflect heterogeneous 
car-following preferences, including maximum speed, 
minimum speed, speed mean, speed standard deviation, 
acceleration, deceleration, spacing, and time headway. 
However, clustering multivariate data may lead to two 
problems: (1) the clusters are difficult to be visualized and 
assigned with specific driving patterns; and (2) features which 
do not vary across the samples make few contributions to 
differentiating driving styles. To this end, the principal 
component analysis (PCA) is adopted to reduce the dimension 
of the features to three principal components. Afterwards, the 
agglomerative hierarchical clustering method with the weighted 
linkage and Euclidean distance function is used to classify 
drivers in HV-following-AV and HV-following-HV scenarios. 
Readers are referred to our previous study [2] for more details 
on car-following behavior clustering results. 

For the HV-following-AV scenario, 201 drivers are 
identified as either non-aggressive or aggressive drivers based 
on acceleration, deceleration, spacing and time headway while 
the remaining 63 drivers belong to smaller clusters. Table I 
summarizes the statistics of non-aggressive and aggressive 
driver groups in HV-following-AV. Similarly, 1,250 out of 
1,376 drivers in HV-following-HV are categorized into non-
aggressive or aggressive groups using the same clustering 
strategy. Two additional clusters consist of 126 drivers but they 
cannot be assigned with specific car-following patterns 
according to the above metrics. The summary statistics of driver 
features in HV-following-HV are also displayed in Table I. It 
should be noted that the presented values are the aggregation 
and average of vehicular kinematics of corresponding human 
driver groups. 

Note that in the following study, we focus on the non-
aggressive and aggressive driver groups in HV-following-AV 
and HV-following-HV, while the minority driver groups are not 
analyzed. This is because (1) those minority driver groups have 
very limited sample sizes; and (2) only two typical clusters are 
identified in HV-following-HV, suggesting that the smaller 
clusters in HV-following-AV have no counterparts in HV-
following-HV. Due to these reasons, the following experiment 
is conducted using only the non-aggressive and aggressive 
driver groups in HV-following-AV and HV-following-HV. For 
each group of drivers, 80% of the car-following events are 
randomly selected for training and the remaining 20% car-
following events are included in the testing set. 

C. Car-following Scenario Comparison 
We then demonstrate the effects of AVs on the following 

HVs by calibrating car-following models. The objective is to 
identify if there are any significant differences in the calibrated 
parameters of IDM between HV-following-AV and HV-
following-HV. The IDM is calibrated for each car-following 
event to compare the behavioral characteristics of the drivers 
between HV-following-AV and HV-following-HV. Five 
representative parameters including 𝑎V)W

(/) , 𝑎\AVBA]!
(/) , 𝑉/o(𝑡) , 

𝑇/q(𝑡) and 𝑆Z)V
(/)  are used as a data point to represent each car-

following event. Inter-vehicle spacing is chosen as the MoP and 
the root mean square error of inter-vehicle spacing 𝑅𝑀𝑆𝐸(𝑆) is 

selected as the GoF of GA. The distribution of parameters 
calibrated for each car-following event are shown in Fig. 1. 

To determine if there are any significant differences in the 
calibrated IDM parameters between HV-following-AV and 
HV-following-HV scenarios, the unpaired two sample test is 
used since car-following events in these two scenarios are 
independent. Before performing the unpaired two sample test, 
the Shapiro-Wilk test is conducted to examine if any of these 
parameters in two scenarios follows the normal distribution. 
TABLE II shows that the p-values for all parameters are lower 
than the significance level of 0.05 , suggesting that the null 
hypothesis should be rejected, thus no parameters are normally 
distributed. Based on this fact, the Mann-Whitney U test is 
conducted to identify if the differences in the calibrated 
parameters are statistically significant between two scenarios. 
In TABLE II, one can observe that at a 95% confidence level, 
the differences in 𝑎V)W and 𝑇�  are always significant while the 
differences in other parameters are not always significant. This 
observation implies that the leading AVs have considerable 
impacts on 𝑎V)W  and 𝑇�  while the other parameters are 
insensitive to AVs. This finding is consistent with [43] which 
investigated the contributions of IDM parameters to the total 
output variance of the GoF. They concluded that 𝑇�  explains the 
most share of the variance of 𝑅𝑀𝑆𝐸(𝑆), followed by 𝑎V)W and 
the other parameters make negligible contributions. In 
summary, the comparison results indicate that the leading AVs 
can indeed affect the car-following behaviors of the following 
HVs. 
 

TABLE II 
SHAPIRO-WILK AND MANN-WHITNEY U TEST RESULTS 

 

 

Non-aggressive drivers Aggressive drivers 

Shapiro-Wilk 
test 

Mann-
Whitney U 

test 

Shapiro-
Wilk test 

Mann-
Whitney 

U test 
𝑎"#$ < 0.001 0.042 < 0.001 0.028 

𝑎%&"'&() < 0.001 0.930 < 0.001 0.866 
𝑉(  < 0.001 0.868 < 0.001 0.049 
𝑇(  < 0.001 0.022 < 0.001 0.003 
𝑆*#" < 0.001 0.070 < 0.001 0.883 

 

D. IQ-Learn Training and Model Comparison 
IQ-Learn with SAC is conducted to reproduce car-following 

trajectories for both non-aggressive and aggressive drivers in 
HV-following-AV. For SAC, the frameworks of value and 
policy networks are similar in two scenarios. For the value 
network, two soft Q-networks and two target networks are built 
and their architectures are the same. In each network, there are 
four layers: an input layer to input the state and action, an output 
layer to output the 𝑄'AB!  as the evaluation of the state-action 
pair, and two hidden layers each containing 64 neurons. One 
policy network is constructed, which also includes four layers: 
an input layer to input the state, an output layer to output the 
mean and the standard deviation of a Gaussian distribution, and 
two hidden layers each containing 64 neurons. The Adam 
optimizer is used to update the value and policy networks. The 
critical hyperparameters which can significantly affect IQ- 
Learn and SAC performance have been tuned and provided in 
Table III [11]. 
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(a) 𝑎V)W 

 
(b) 𝑎\AVBA]! 

 
(c) 𝑉�  

 
(d) 𝑇�  

 
(e) 𝑆Z)V 

Fig. 1. The distributions of the optimal parameters of the calibrated IDM. 
 

For non-aggressive drivers, the IQ-Learn model is trained 
with 150 episodes where each episode represents a car-
following event. During the training process, car-following 
events are fed into the model sequentially. To detect if there are 
overfitting issues, 𝑁𝑅𝑀𝑆𝐸(𝑆) for the entire training and testing 
datasets is computed whenever a training episode ends. The 
same training strategy is applied to the aggressive drivers with 
180 episodes. 

Fig. 2 and Fig. 3 show the IQ-Learn training loss (𝒥D𝜋4, 𝑄>E 
in Eq. (4)) and 𝑁𝑅𝑀𝑆𝐸(𝑆) of training and testing datasets for 
non-aggressive and aggressive drivers, respectively. In Fig. 
2(a), it is observed that at round 11,000 steps, the training loss 
has converged to zero. The convergence speed is even faster for 
aggressive drivers (as shown in Fig. 3(a)). It should be noted  

 
that there are periodical jumps of the training loss which may 
be attributed to the fact that the environment will be re-
initialized and the state will change abruptly at the end of each 
training episode. One can still identify the overall tendency 
where the training loss keeps decreasing and then stabilizes. 
Fig. 2(b) demonstrates the model performance improvement in 
terms of 𝑁𝑅𝑀𝑆𝐸(𝑆). Similarly, it can be seen that 𝑁𝑅𝑀𝑆𝐸(𝑆) 
fluctuates before 60 episodes and no significant improvement 
is observed after 60 episodes. Finally, the IQ-Learn model that 
generates the smallest testing 𝑁𝑅𝑀𝑆𝐸(𝑆) is selected. The same 
model selection strategy is applied to the aggressive drivers as 
shown in Fig. 3(b). 

Note that the same model training and selection strategies are 
also utilized for calibration of other car-following models. 
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Specifically, IDM is calibrated using the corresponding training 
set and 𝑁𝑅𝑀𝑆𝐸(𝑆)  is chosen as the GoF. The objective 
functions of LSTM, GAIL and AIRL are defined by Eqs. (16), 
(17) and (20), respectively. After each training episode, these 
three car-following models are evaluated based on 𝑁𝑅𝑀𝑆𝐸(𝑆) 
for the testing set, and the best-performed models will be 
retained. 
 

TABLE III 
HYPERPARAMETERS USED FOR TRAINING IQ-LEARN 

 
PARAMETERS DESCRIPTION Non-

aggressive Aggressive 

𝑁+ replay buffer size 10000 6000 
𝛼, initial temperature 0.1 0.3 

𝑙𝑟#, 𝑙𝑟% learning rates of actor 
and critic networks 

0.00001, 
0.00001 

0.00001, 
0.00001 

𝛾 discount factor 0.975 0.99 
𝑛- minibatch size 64 64 
τ soft update factor 0.005 0.005 

 

 
(a) Track of training loss 

 
(b) Track of 𝑁𝑅𝑀𝑆𝐸(𝑆) 

Fig. 2. Training process for non-aggressive drivers. 
 

 
(a) Track of training loss 

 
(b) Track of 𝑁𝑅𝑀𝑆𝐸(𝑆) 

Fig. 3. Training process for aggressive drivers. 
 

The optimal car-following policy is learned during the 
training process of the IQ-Learn. After the best-performed IQ-
Learn models are determined, the corresponding SAC models 
are used to simulate the trajectory data based on the testing set. 
The details of the simulation are presented below. First, the 

following vehicle’s speed, spacing and relative speed are 
initialized with a car-following event extracted from the testing 
set. Second, the following vehicle implements an acceleration 
based on sampling from the learned optimal policy and the state 
is updated using Eqs. (1)-(3). Next, when one simulation run 
ends, the state will be re-initialized using the next car-following 
even data. Finally, the simulated speed and spacing are 
compared to the empirical data to calculate simulation errors. 
The same simulation process is applied to other trained car-
following models, i.e., IDM, LSTM, GAIL and AIRL. Table IV 
shows the performance of the proposed IQ-Learn model 
compared to benchmark models based on the testing set. On can 
observed that IQ-Learn outperforms the other investigated 
algorithms in terms of 𝑁𝑅𝑀𝑆𝐸(𝑆) for both non-aggressive and 
aggressive drivers in HV-following-AV. It is noteworthy to 
mention that from the microscopic perspective, there is not a 
“perfect” car-following model which can completely solve the 
discrepancy between the simulated and empirical data [44]. 
This is because there are always stochasticity or randomness in 
drivers’ behaviors (i.e., some driver behaviors may reveal no 
perceptible patterns) [25][34]. 
 

TABLE IV 
𝑁𝑅𝑀𝑆𝐸(𝑆) ON THE TESTING SET 

 
 Non-aggressive Aggressive NGSIM 

IDM 0.273 0.259 0.288 
LSTM 0.317 0.299 0.398 
GAIL 0.254 0.227 0.269 
AIRL 0.326 0.288 0.343 

IQ-Learn 0.204 0.212 0.252 
 

 
(a) Non-aggressive driver sample #1 

 
(b) Aggressive driver sample #5 

Fig. 4. Vehicle position generated by the IDM, LSTM, GAIL, 
AIRL, IQ-Learn. 
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Timespan of a car-following event is relatively short in this 
study and may not contain sufficient driving regimes for car-
following model calibration [45]. Thus, these car-following 
models are fitted using the reconstructed NGSIM I80-1 dataset 
[46][47] to explore the model accuracy in reproducing HV-
following-HV dynamics. Based on the aforementioned criteria, 
1,345 car-following events have been extracted, of which 80% 
(1,076) are randomly selected for training and the remaining 
20% (269) are used for testing. Table IV presents the testing 
𝑁𝑅𝑀𝑆𝐸(𝑆) values of different car-following models. One can 
see that IQ-Learn still outperforms the other models and 
achieves a decent degree of predictive accuracy. 

To demonstrate that the proposed IQ-Learn model can 
accurately reproduce human driver behaviors in dynamic traffic 
environments, two car-following events in the testing set are 
chosen (one is an non-aggressive driver while another is an 
aggressive driver). Fig. 4 displays the position of the observed 
and simulated data by the IDM, LSTM, GAIL, AIRL and IQ-
Learn. It is indicated that the position simulated by IQ-Learn 
(in purple) is always the closest to the observed (in red) data, 
which suggests that the IQ-Learn model can predict the vehicle 
position the most accurately. 

E. Recovery of HV-following-AV Reward Functions 
Human drivers’ car-following preferences can be inferred 

through the recovered reward functions, which can provide 
insights into their car-following behaviors when interacting 
with AVs. Each driver’s state, on which the reward function is 
based, is defined by vehicle speed, spacing and relative speed 
while the action is described as the longitudinal acceleration. 
The recovered reward functions for HV-following-AV are 
visualized in Fig. 5. Similar to [48], the reward functions are 
presented as bivariate feature spaces where the other features 
are held at their mean values. For instance, in Fig. 5(a), the 
spacing is fixed at its mean value while the following vehicle 
speed and relative speed change within their ranges. The 
brighter the color is, the higher the reward is. Higher rewards 
indicate that human drivers prefer to stay at corresponding 
states. It should be noted that the behavior preferences inferred 
from the reward functions are correlated with the mean values 
of the other features, i.e., some preferences may differ if the 
values of the other features change. 

For non-aggressive drivers, as depicted on the left panel of 
Fig. 5, one can observe that when the speed is within the range 
of 12𝑚/𝑠 and 16𝑚/𝑠, drivers who are following AVs have a 
tendency to be slower than AVs (Fig. 5(a)). Moreover, there is 
a clear decreasing tendency for the preferred relative speed, 
suggesting that as AVs accelerate, the following human drivers 
prefer to increase the speed discrepancies. Second, the reward 
function based on inter-vehicle spacing and following vehicle 
speed indicates that the preferred spacing increases linearly as 
the following HV speed increases (Fig. 5(c)). Third, the reward 
function which is presented using inter-vehicle spacing and 
relative speed reveals that the increment of the inter-vehicle 
spacing is correlated with the increased preferred relative speed 
(Fig. 5(e)). This can be explained as that the following HVs may 
need to catch up with the leading AVs if AVs drive away from 
them. 

On the right panel of Fig. 5, Fig. 5(b) which is displayed 
using the following vehicle speed and relative speed, reveals 

that aggressive drivers prefer to drive at high speeds, ranging 
from 13𝑚/𝑠 to 16𝑚/𝑠, but are 2.0𝑚/𝑠 to 2.5𝑚/𝑠 slower than 
the leading AVs. In terms of the reward function shown using 
the spacing and following vehicle speed, the desired inter-
vehicle spacing increases with the increment of the following 
vehicle speed (Fig. 5(d)). If the comparisons are made between 
non-aggressive and aggressive drivers, one can identify that the 
latter keeps shorter spacing to the AVs than the former given 
the same speed, which is consistent with the definition of 
aggressiveness. Fig. 5(f) demonstrates a positive relationship 
between inter-vehicle spacing and relative speed. When the 
inter-vehicle spacing is between 10𝑚 and 14𝑚 and the relative 
speed ranges from −2.5𝑚/𝑠 to 0𝑚/𝑠, aggressive drivers gain 
the highest rewards. 
 

 
(a) Non-aggressive drivers  (b) Aggressive drivers 

 
(c) Non-aggressive drivers  (d) Aggressive drivers 

 
(e) Non-aggressive drivers  (f) Aggressive drivers 
Fig. 5. Reward functions for HV-following-AVs. 
 

F. Comparison of Reward Functions 
The reward functions of non-aggressive and aggressive 

drivers in HV-following-HV have also been recovered in Fig. 
6. Comparing the reward functions of non-aggressive drivers in 
HV-following-AV (see the left panel of Fig. 5) and HV-
following-HV (see the left panel of Fig. 6) scenarios, one can 
observe that: 

1) Fig. 5(a) demonstrates that non-aggressive drivers 
following AVs prefer the speed between 12  and 
16𝑚/𝑠 and relative speed between −2.5 and −0.5𝑚/
𝑠; while Fig. 6(a) shows similar preferred speed (i.e., 
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14 − 16𝑚/𝑠 ) and intermediate preferred relative 
speed (i.e., −0.5 − 0.5𝑚/𝑠 ) for non-aggressive 
drivers following HVs. More importantly, the 
decreasing trend in Fig. 5(a) reveals that non-
aggressive drivers in HV-following-AV have more 
flexibility than those in HV-following-HV in the car-
following process. 

2) Both Fig. 5(c) and Fig. 6(c) indicate an apparent linear 
relationship between the preferred inter-vehicle 
spacing and following vehicle speed. But one can see 
that when drivers are driving at 12 − 16𝑚/𝑠 , the 
preferred inter-vehicle spacing is 22 − 28𝑚 and 14 −
20𝑚  in HV-following-AV and HV-following-HV, 
respectively. This suggests that non-aggressive drivers 
in HV-following-AV prefer to stay farther away from 
AVs compared to those in HV-following-HV. 

3) In Fig. 6(e), one can see that there is one hotspot when 
the spacing is within the range of 10 − 14𝑚 and the 
relative speed falls between −0.5  and 0.5𝑚/𝑠 . In 
contrast, Fig. 5(e) shows an increasing tendency and 
the highest rewards occur when the spacing is between 
14m and 22𝑚  and the relative speed ranges from 
−2.5𝑚/𝑠  to 0.5𝑚/𝑠 . The comparison between two 
scenarios again confirms that non-aggressive drivers 
who are following AVs are more flexible than those 
led by HVs. 

 

 
(a) Non-aggressive drivers  (b) Aggressive drivers 

 
(c) Non-aggressive drivers  (d) Aggressive drivers 

 
(e) Non-aggressive drivers  (f) Aggressive drivers 
Fig. 6. Reward functions for HV-following-HVs. 
 

Aggressive drivers in HV-following-HV (see the right panel 
of Fig. 6) have been compared to those behind AVs (see the 
right panel of Fig. 5). The findings are listed below: 

1) Comparing Fig. 5(b) with Fig. 6(b), one can see that 
aggressive drivers show similar speed preferences in 
HV-following-AV and HV-following-HV scenarios 
(i.e., 13 − 16𝑚/𝑠). However, the former group are 
inclined to be 2.0 − 2.5𝑚/𝑠 slower than the leading 
AVs. On the contrary, the latter group prefer relatively 
intermediate speed differences (0.5 − 1.5𝑚/𝑠). 

2) Fig. 5(d) and Fig. 6(d) show that although the linear 
relationship between aggressive drivers’ preferred 
spacing and speed exists in both scenarios, the slope in 
Fig. 5(d) is less than that in Fig. 6(d). This suggests 
that at similar speed, aggressive drivers following AVs 
prefer to keep longer spacing than those who are 
following HVs. 

3) Comparing Fig. 5(f) with Fig. 6(f), one can find that 
aggressive drivers show similar inter-vehicle spacing 
preferences (i.e.,10 − 14𝑚). But the difference is that 
in HV-following-AV, spacing preferences are linearly 
related to the preferred relative speed; while those who 
are following HVs prefer to maintain similar speed as 
the leading HVs (i.e., −1 − 0.5𝑚/𝑠). 

V. CONCLUSIONS 
This study bridges the gap in identifying the adaptations in 

human drivers’ car-following behaviors when they are 
interacting with AVs. HV-following-AV and HV-following-
HV events are extracted from the real-world dataset released by 
Waymo. Statistical test results reveal that the type of leading 
vehicle (i.e., AV versus HV) has significant effects on the 
following drivers’ behaviors. IQ-Learn has been proposed to 
reproduce human driver trajectories when following AVs on 
highway segments. Compared to other models such as IDM, 
LSTM, GAIL and AIRL, IQ-Learn exhibits superior 
performance for modeling and reproducing interactions 
between HVs and AVs in terms of 𝑁𝑅𝑀𝑆𝐸(𝑆). 

Moreover, the recovered reward functions based on IQ-Learn 
display the preferences of human drivers in HV-following-AV 
and HV-following-HV. The results show that there are 
significant differences in the preferred states of drivers in two 
scenarios. This paper highlights the needs to consider drivers’ 
heterogeneous car-following behaviors in response to the 
existence of AVs. Besides, it can provide feedbacks for the 
design of AV controllers, improve the inference ability of AVs 
and reflect the social acceptance of AVs. 

This study investigates on car-following events on highways 
where the traffic flow is uninterrupted. It would be interesting 
to identify how AVs affect HVs in more complicated settings 
such as urban streets. Future study can also investigate other 
interactions (e.g., lane-changing, merging, diverging and 
turning) between HVs and AVs. Furthermore, the benefits of 
AVs identified in this research may depend on the AV control 
algorithms – it is possible that different AV controllers may 
lead to different car-following behaviors of HVs. Thus, it would 
be interesting to analyze real-world datasets released by other 
AV technique companies such as Lyft and compare the results 
to testify the generalization of such findings. Third, since the 
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Waymo Open Dataset is composed of a number of 20-second 
discontinuous segments, the duration of car-following events is 
relatively short and may not contain sufficient information for 
car-following model calibration [45]. Future research needs to 
collect more completed car-following trajectories to analyze the 
interactions between AVs and HVs. 
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