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ABSTRACT 
The gradual deployment of automated vehicles (AVs) will lead to a transition period 
where AVs will share the roads with human-driven vehicles (HDVs), resulting into the 
so-called mixed traffic. Nevertheless, AV-HDV interactions, especially how the 
discretionary lane-changing (DLC) behaviors of AVs will affect the following vehicles 
(FVs) in the target lane, remains the key research gap. In this paper, the real-world 
Waymo Open Dataset is used to analyze AV DLC behaviors in comparison to HDV 
DLC behaviors. DLC characteristics, including driving volatility of FVs, are quantified 
and compared. Additionally, the block maxima (BM) model in extreme value theory 
(EVT) is adopted to estimate the crash risks using the gap time (GT) as the surrogate 
safety measure (SSM). The results reveal that compared to HDV DLC, AV DLC has 
lower speed and yaw rate volatility of FVs, and smaller acceleration rates of FVs. The 
results of non-stationary BM models show that the crash risk in AV DLC is half of that 
in HDV DLC. These findings confirm the traffic and safety benefits of AVs and can be 
beneficial for AV tech companies to improve AV controllers. 
 
INTRODUCTION 

Because of the gradual deployment of autonomous vehicles (AVs), AVs and 
human-driven vehicles (HDVs) are expected to share the roads in the near future, 
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resulting into mixed traffic. Previous literature has identified that human drivers may 
behave significantly differently in mixed traffic as compared to when there are only 
HDVs in the traffic stream (Mahdinia et al., 2021; Wen et al., 2022a; Zhao et al., 2020). 
Thus, understanding how HDVs’ behaviors change in mixed traffic is critical for 
evaluating the effects of AVs on traffic safety, traffic efficiency, energy consumption 
and exhaust emission (Hu et al., 2022). Further, modeling AV-HDV interactions can 
attain more insights into the improvement of AV controllers and propose appropriate 
public policies regarding AVs (Di and Shi, 2021). 

Since currently the market penetration rates of AVs is low, empirical AV 
trajectory data is still lacking. When investigating AV-HDV interactions, former works 
mostly implemented two methods, i.e., traffic/numerical simulations (e.g., Dixit et al., 
2019) and field experiments (e.g., Mahdinia et al., 2021; Zhao et al., 2020). However, 
traffic/numerical simulations simplify and even ignore important characteristics of 
mixed traffic, leading to questionable effects of AVs. Field experiments are often 
conducted with limited sample sizes (i.e., the number of driving events) and cannot 
reproduce the real-world driving scenarios with large speed fluctuations and complex 
interactions between road agents. In summary, the limitations of traffic/numerical 
simulations and field experiments can induce biased conclusions. In recent years, there 
have been more and more AVs being deployed on public roads and some AV tech firms 
(e.g., Waymo and nuScenes) have released large-scale real-world AV driving datasets 
(Wen et al., 2022b). These datasets include high-quality field data of movements of AV 
and surrounding road agents in the real world, and thus enable the transportation 
research community to analyze the effects of AVs on traffic flow, as well as HDVs’ 
behavioral changes when interacting with AVs. 

Previous literature on AV-HDV interactions usually analyzed car-following 
scenarios which involve with only longitudinal vehicle control (Mahdinia et al., 2021; 
Wen et al., 2022a; Zhao et al., 2020). On the contrary, lane-changing (LC) scenarios, 
which correspond to rear-end and sideswipe crashes (Ali et al., 2022a), are still under-
studied. LC scenarios involve with both longitudinal and lateral movements of 
involving road agents. In LC scenarios, the lead vehicle changes the current lane into 
an neighboring lane, which may cause the following vehicle (FV) in the neighboring 
lane to decelerate or even stop, leading to stop-and-go oscillations and bottlenecks in 
traffic flow (Jiang et al., 2021). Based on the objectives of drivers, LC maneuvers are 
classified into two categories, i.e., mandatory lane-changing (MLC) and discretionary 
lane-changing (DLC). MLC is a required task when drivers must leave the current lane, 
e.g., to turn left when approaching an intersection. DLC is voluntary when drivers 
perceive that driving conditions in the target lane are better, e.g., to reach a desired 
speed. The latter is more complex and dangerous than the former (Ali et al., 2022b; 
Toledo et al., 2005). To this end, the effects of DLC behaviors of AVs on the 
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surrounding HDVs, especially the FV in the target lane, need to be studied. 
This paper takes the first attempt to investigate the impacts of AVs’ DLC 

behaviors on the FV in terms of driving volatility and crash risks and compare these 
metrics to those of HDV’s DLC behaviors. The real-world AV trajectory data is 
retrieved from the Waymo Open Dataset (Ettinger et al., 2021). The contributions of 
this paper are listed as follows. First, it fulfills an in-depth analysis of HDVs’ behavioral 
adaptations when AVs are changing lanes using the real-world autonomous driving 
dataset which provides more insights into complicated driving conditions. Second, the 
crash risks of AV and HDV DLC maneuvers are calculated and compared using the 
extreme value theory (EVT). 
 
METHODOLOGY 
 
Driving Volatility 

The driving volatility is adopted to measure the variation of driving behaviors 
by extracting useful information from the longitudinal and lateral vehicle control. It 
has been identified that higher driving volatility is associated with higher driver 
instability, which corresponds to higher crash risks, more energy consumption, and 
increased exhaust emissions (Wen et al., 2022a). Three kinds of driving volatility 
measures are introduced and quantified for the selected DLC events: speed-based 
volatility, acceleration-based volatility, and yaw-rate-based volatility. The 
mathematical formulations of the driving volatility are given in Eqs. (1)-(6). Note that 
the driving volatility measure is computed for each FV involved with the selected DLC 
events. 

Standard deviation (𝑺𝒕𝒅): 𝑆𝑡𝑑 is one of the most commonly-used variation 
measure, which can be calculated as follows: 
 

𝑆𝑡𝑑 = (∑ (#!$#̅)"#
!$%
'$(

     (1) 

 
where 𝑥) is the 𝑖th observation, �̅� is the mean value of observations and 𝑛 is the 

sample size. 𝑆𝑡𝑑 can be applied to measuring speed, acceleration and yaw rate. 
Mean Absolute Deviation (𝑫𝒎𝒆𝒂𝒏 ): 𝐷./0'	represents the average distance 

between the observations and the mean value and can be computed as follows: 
 

𝐷./0' =
∑ |#!$#̅|
#
!$%

'
     (2) 

 
where 𝑥) is the 𝑖th observation, �̅� is the mean value of observations and 𝑛 is the 
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sample size. Similar to 𝑆𝑡𝑑, it can be applied to speed, acceleration and yaw rate. 
Coefficient of Variation (𝑪𝒗): 𝐶3	captures the dispersion of data using the ratio 

of the standard deviation to the mean value, which can be expressed as below: 
 

𝐶3 =
456
|#̅|
∗ 100     (3) 

 
where 𝑆𝑡𝑑 is the standard deviation and �̅� is the mean value of observations. It 

can only be applied to speed. 
Quartile Coefficient of Variation (𝑸𝒄𝒗): 𝑄83	is another prevailing statistic for 

describing the dispersion of data: 
 

𝑄83 =
9&$9%
9&:9%

      (4) 

 
where 𝑄( and 𝑄; are the first and third quartiles of data, respectively. It can 

only be applied to speed. 
Time-Varying Stochastic Volatility (𝑽𝒇): 𝑉=	reflects the fluctuation of data by 

computing the changes of the proportion of observations: 
 

𝑉= = (∑ (>!$>̅)"#
!$%
'$(

     (5) 

𝑟) = ln < #!
#!'%

= ∗ 100     (6) 

 
where 𝑥)  and 𝑥)$(  are the 𝑖 th and 𝑖 − 1 th observation 𝑠 , ln  is the natural 

logarithm, �̅� is the mean value of 𝑟) and 𝑛 is the sample size. It can only be applied to 
speed. 
 
Extreme Value Theory (EVT) 

To estimate the crash risks of DLC events, this study opts for the block maxima 
(BM) approach in EVT to ensure that extreme events are sufficiently smooth to enable 
the extrapolation from observable traffic conflicts to unseen traffic crashes. The gap 
time (GT) which is a variant of time-to-collision (TTC) is adopted as the surrogate 
safety measure (SSM). GT represents the elapsed time between the expected 
completion time of LC for LCV and the expected time for FV to arrive at the conflict 
area. GT is negatively proportional to crash risks meaning that smaller GT values 
indicate higher crash risks. 
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Block maxima (BM) approach 
In the BM approach, observations are aggregated into fixed intervals over time, 

and the maxima in each interval are treated as extremes. Suppose that a series of 
random observations {𝑋(, 𝑋?, … , 𝑋'}  are independently and identically distributed 
which follow an unknown distribution function 𝐹(𝑥) = 𝑃𝑟(𝑋) ≤ 𝑥), and let maximum 
𝑀' = 𝑚𝑎𝑥(𝑋(, 𝑋?, … , 𝑋'). When 𝑛 is approaching to the infinity (𝑛 → ∞), 𝑀'  will 
converge to a GEV distribution as shown in Eq. (7): 
 

𝐺(𝑥) = exp	{−[1 + 𝜖(#$@
A
)]

'%
( }    (7) 

 
where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜖 is the shape 

parameter, and we have −∞ < 𝜇 < ∞ , 𝜎 > 0  and −∞ < 𝜖 < ∞ . When the shape 
parameter 𝜖 is 0, the GEV is a Gumbel distribution; when 𝜖 is positive, the GEV is a 
Frechet distribution; when 𝜖 is negative, the GEV is a Weibull distribution. 

The tail behavior of an extreme value distribution should be focused on since 
the EVT enables the extrapolation of the fitted distributions to the unobserved events. 
When it comes to traffic safety, this is performed by using observable traffic conflicts 
to predict traffic crashes which are unobservable in a short time period. To measure the 
crash risks in DLC maneuvers, GT is chosen as a SSM. When 𝐺𝑇 ≤ 0, there will be 
trajectory overlaps between LCV and FV, indicating the occurrence of traffic crashes. 
The negated values of GTs are used to fit the GEV distribution, and a crash can be 
identified if negated 𝐺𝑇 ≥ 0. The crash risk is calculated based on the tail region of the 
GEV distribution as follows: 
 

𝑅 = Pr(𝑍 ≥ 0) = 1 − 𝐺(0)     (8) 
 

where 𝑅  is the crash risk and also the probability of negated 𝐺𝑇 ≥ 0 , 𝑍 
represents the maximum negated GT, and 𝐺(∙) represents the fitted GEV distribution. 
 
DATA SOURCES 

AV and HDV DLC events used in this study are extracted from the motion part 
of Waymo Open Dataset. Waymo is a leading AV tech firm and has been conducting 
road tests using SAE Level 4 AVs for more than 32 million km (kilometers) on public 
roads in the U.S. (Ettinger et al., 2021). 28,358 clips of 20-second scenes representing 
approximately 157.5 hours of driving data are retrieved from the motion part of Waymo 
Open Dataset. The motion part contains high-quality and continuous records of road 
agents’ type, size (e.g., length, width and height), position and movement (e.g., speed 
and yaw angle) at 10-Hz frequency. Interesting readers are suggested to refer to Waymo 
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Open Dataset for more information, following the link https://waymo.com/open/data/. 
All the 20-second clips are manually reviewed by the research team to detect 

possible DLC events. Note that since the sample size is limited to support studies 
related to DLC events on highways (40 events for AV DLC), only DLC events that 
occur on surface roads are used in this study. After screening, 180 AV DLC and 178 
HDV DLC events have been extracted from the motion part. 
 
RESULTS 
 
Driving Volatility Analysis 

Table 1 shows the summary statistics of driving volatility of FVs in different 
DLC modes. It should be noted that only the driving data collected within the DLC 
period is included in the computation. The column named “Difference (%)” represents 
the mean value changes in driving volatility of AV DLC with respect to HDV DLC. 
The positive (negative) values of “Difference (%)” represent the increase (decrease) in 
driving volatility of AV DLC relative to HDV DLC. 
 
Table 1 Driving volatility comparison of FVs between AV DLC and HDV DLC 

Metrics 
LC mode Difference 

(%) AV DLC (𝑛 = 180) HDV DLC (𝑛 = 178) 
Max Min Mean Std Max Min Mean Std 

Speed volatility 

Std(𝑚/𝑠) 2.115 0.057 0.854 0.488 4.792 0.067 1.049 0.733 -18.59% 
𝐷)*+,(𝑚/𝑠) 1.865 0.043 0.739 0.439 4.396 0.056 0.913 0.656 -19.06% 

𝐶- 25.539 0.278 7.221 5.255 41.201 0.378 9.979 7.952 -27.64% 
𝑄.- 27.479 0.090 5.935 4.820 42.867 0.261 8.447 7.262 -29.74% 

𝑉/(𝑚/𝑠) 1.434 0.045 0.397 0.225 2.838 0.053 0.490 0.427 -18.98% 

Acceleration volatility 

Std(𝑚0/𝑠) 0.807 0.015 0.376 0.185 1.305 0.045 0.389 0.250 -3.34% 
𝐷)*+,(𝑚/𝑠) 0.709 0.013 0.327 0.164 1.218 0.032 0.338 0.226 -3.25% 

Yaw rate volatility 

Std(𝑑𝑒𝑔𝑟𝑒𝑒/𝑠) 3.549 0.455 1.001 0.519 6.035 0.366 1.159 0.800 -13.63% 
𝐷)*+,(degree/

𝑠) 2.477 0.348 0.758 0.373 4.665 0.299 0.894 0.607 -15.21% 

 
The results shown in Table 1 indicate that FVs show lower speed volatility in 

AV DLC compared to those in HDV DLC. The percentage changes of standard 
deviation (𝑆𝑡𝑑), mean absolute deviation (𝐷./0'), coefficient of variation (𝐶3), quartile 
coefficient of variation (𝑄83), and time-varying stochastic volatility (𝑉=) of speed for 
AV DLC are −18.59%, −19.06%, −27.64%, −29.74%, and −18.98%, respectively. 
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All driving volatility measures except for 𝑉=  are found to be significantly different 
between these two DLC modes (𝑆𝑡𝑑: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .046; 𝐷./0': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .04; 
𝐶3: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .003; 𝑄83: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .002) by the Mann-Whitney U test. It may 
be explained by the precise motion control logic of AVs which enables them to handle 
complex driving scenarios on surface roads. 
 

 
    (a)     (b) 

 
    (c)     (d) 

Fig. 1 Empirical cumulative distributions of (a) acceleration mean; (b) maximum acceleration; 
(c) minimum acceleration and (d) yaw rate mean 

 
To further illustrate the impact of DLC on traffic flow, the speed change rate is 

computed: 

𝑠𝑝𝑒𝑒𝑑	𝑐ℎ𝑎𝑛𝑔𝑒	𝑟𝑎𝑡𝑒 = 31$32
31

∗ 100%   (9) 
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where 𝑣B and 𝑣4 are the FV speed at the start and end points of the DLC, respectively. 
The FV is considered to be adversely affected only if the absolute value of speed change 
rate is higher than 20%. In our dataset, in 42.78% of AV DLC events and in 50% of 
HDV DLC events, the speed change rate of FV exceeded 20%. The comparisons of 
speed volatility and speed change rate suggest that the penetration of AVs in the mixed 
traffic can improve the driving smoothness of FVs, and thus, mitigate stop-and-go 
oscillations resulting from DLC behaviors. 

As shown in Table 1, 3.34% and 3.25% reductions are found in the 𝑆𝑡𝑑 and 
𝐷./0' of acceleration. The mean, maximum and minimum values of acceleration of 
FVs are assessed as displayed in Fig. 1(a)-(c). Although Mann-Whitney U test shows 
no significant differences in the acceleration volatility (, 𝑆𝑡𝑑: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .5 ; 
𝐷./0': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .5), one can observe in Fig. 1(a)-(c) that FVs in HDV DLC are 
more likely to perform harsh acceleration and deceleration., indicating that AV DLC 
induces lower acceleration rates of FVs compared to the HDV counterpart, and thus 
lead to better driving comfort. 

Yaw rate describes the angular speed of the forward direction of the vehicle, 
which plays a crucial role in vehicle lateral dynamics. From Table 1, one can observe 
that FVs in AV DLC events has smaller 𝑆𝑡𝑑 and 𝐷./0' of yaw rate than that in HDV 
DLC events. The differences are statistically significant based on the Mann-Whitney 
U test (𝑆𝑡𝑑: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .04; 𝐷./0': 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .02). The empirical cumulative 
distributions of the mean values of yaw rate are depicted in Fig. 1(d). It shows that FVs 
in AV DLC have smaller and more stable yaw rates and therefore more lateral stability 
compared to FVs in HDV DLC. 
 
Crash Risk Analysis 

Note that since the aim of this study is to understand how DLC behaviors of 
AVs will affect FVs, only traffic conflicts between LCVs and FVs are focused on in 
this part. According to Ali et al. (2022b), each block represents a DLC maneuver where 
the duration of the block is the same as the duration of the corresponding DLC event. 
For each block, the minimum value of GT is chosen and used to develop the BM model. 
Only the GT value less than 3𝑠 is treated as an extreme event. Then, the GT data is 
filtered according to this approach, resulted in 177 maxima for AV DLC and 173 
maxima for HDV DLC. 

Table 2 presents the stationary and selected non-stationary BM models based 
on the maximum likelihood estimation (MLE) method. Two covariates are included in 
each non-stationary model: 𝑙𝑎𝑔_𝑠𝑝𝑎𝑐𝑖𝑛𝑔  which means the distance (in meters) 
between LCV and FV at the start point of DLC and 𝑟𝑒𝑙𝑠𝑝𝑑_𝑚𝑒𝑎𝑛_𝑙𝑐𝑣_𝑓𝑣  which 
represents the average relative speed between LCV and FV during the LC period. One 
can see that incorporating the covariates into the location parameter can greatly reduce 
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the negative log-likelihood and thus improve the model fit. Fig. 2 shows the simulated 
quantile-quantile (Q-Q) plot and the probability density function of the empirical and 
modeled standardized maximum negated GT derived from the non-stationary BM 
models. For both DLC modes, the Kolmogorov–Smirnov (K-S) test is implemented, 
of which the null hypothesis is that the sample is drawn from the fitted GEV 
distribution. In both conditions, 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠  are significantly greater than 0.05 
( 𝐴𝑉	𝐷𝐿𝐶: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .9 ; 𝐻𝐷𝑉	𝐷𝐿𝐶: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .99 ), meaning that the null 
hypothesis cannot be rejected. 
 

 
(a) AV DLC 

 
(b) HDV DLC 

Fig. 2 QQ-plot (left) and probability density function (right) for the non-stationary BM model 

 
The crash risk suggesting the probability of a collision during an AV DLC or 

HDV DLC is computed using Eq. (8). The confidence intervals of crash risks are 
generated based on simulation where estimated parameters are assumed to follow the 
normal distribution. Based on the non-stationary BM model, the crash risk is computed 
as 0.010 with a 95% confidence interval (0.001,0.039) for AV DLC and 0.020 with a 
95% confidence interval (0.003,0.078) for HDV DLC. Overall, the DLC maneuvers 
of AVs has been found to improve traffic safety significantly compared to those of 
HDVs, with a 2 times reduction in crash risk. This finding indicates the efficacy and 
potential of AVs in eliminating DLC crash risks. 
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Table 2 BM model estimation results 

DLC mode Model type nllh Location(𝜇)(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑒𝑟𝑟𝑜𝑟, 𝑆𝐸) 
Scale(𝜎)(𝑆𝐸) Shape(𝜖)(𝑆𝐸) AIC BIC 𝜇3 𝜇4+5_78+.9,5 𝜇:*478;_)*+,_4.-_/- 

AV DLC Stationary 203.655 -1.391(NA) -- -- 1.612(NA) -1.185(NA) 413.310 422.839 
Non-stationary 79.033 -0.242(0.069) -0.043(0.003) -0.338(0.027) 0.395(0.022) -0.334(0.037) 168.065 183.946 

HDV DLC Stationary 143.023 -0.981(0.058) -- -- 0.690(0.052) -0.679(0.075) 292.047 301.507 
Non-stationary 125.490 -0.739(0.052) -0.009(0) -0.126(0.009) 0.637(0.045) -0.707(0.053) 260.979 276.746 

Note: nllh: negative log-likelihood; NA: indicates that the standard error of the corresponding parameter does not exist. 
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CONCLUSIONS 
We take the first attempt to investigate the attributes of AV LDC and its effects 

on FVs in the target lane using the real-world AV trajectory data. Driving volatility is 
measured and compared based on 180 AV DLC and 178 HDV DLC events collected 
on surface roads. Using the gap time (GT) as the SSM, the BM approach in EVT is 
employed to calculate the crash risks from the observed traffic conflicts in two DLC 
conditions. 

For the driving volatility, in AV DLC, the FVs in the target lane show 
significantly lower speed and yaw rate volatility, indicating more longitudinal and 
lateral stability of FVs. Compared to HDV DLC, a smaller portion of FVs will be 
adversely affected in AV DLC events in terms of the speed change rate. Besides, 
smaller acceleration rates in AV DLC can be observed, which indicates more 
comfortable driving experiences. In short, inserting AVs into the traffic stream will 
have benefits in a variety of aspects, including the behavioral certainty and oscillation 
mitigation. The reasons may be that AVs with better speed management and route 
planning tend to have fewer speed and yaw angle fluctuations, and adopt more 
conservative driving strategies, and thus impose less interference on FVs. 

Moreover, by developing the BM models, it is identified that in a AV DLC event, 
the crash risk is significantly lower compared to that in a HDV DLC event. This may 
be attributed to AVs’ better ability to sense their surrounding environments and thus 
plan their routes in advance, which can minimize the uncertainty during the DLC 
decision-making process. For HDV DLC, higher crash risk is expected since most of 
the crashes happen due to human driver’s risky behaviors caused by its uncertainty (Ali 
et al., 2022b). 
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