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ABSTRACT 1 

Driving performance can be impaired by a high cognitive load of drivers. Thus, it is 2 

important to estimate drivers’ cognitive load. Although physiological and eye-tracking 3 

metrics have been widely used in many studies to assess cognitive load while driving, 4 

conflicts still exist regarding the association between physiological and eye-tracking 5 

metrics and different levels of cognitive load. Through a meta-analysis, our study aims 6 

to quantify the association between physiological, eye-tracking metrics and cognitive 7 

load induced by n-back tasks. A total of 18 articles met the inclusion criteria for the 8 

meta-analysis. The results indicate four types of metrics, including the sensitive-to-low 9 

ones that can only differentiate the low to medium level of cognitive load (i.e., the 10 

power spectrum of θ wave of electroencephalogram at Fp1 channel); high-resolution 11 

ones that can differentiate all levels of cognitive load (including pupil size, heart rate, 12 

and skin conductance); and low-resolution ones that can only differentiate low and high 13 

cognitive load (including the total power spectrum of electrocardiogram, eye blink rate, 14 

and respiration rate) and others (the power spectrum of θ wave of electroencephalogram 15 

at Fp2 channel). Furthermore, the association between metrics and cognitive load can 16 

be modulated by the n-back version, modality of n-back task, automation level, and 17 

percentage of male participants. In summary, this study contributes to the literature by 18 

quantifying associations between physiological and eye-tracking metrics and different 19 

cognitive load levels. Practically, we provide evidence for the selection of physiological 20 

and eye-tracking metrics for future driving cognitive load monitoring system design. 21 
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1. INTRODUCTION 1 

Human error is recognized as one of the dominating factors in road accidents 2 

(Singh, 2015). Though the human brain has long been recognized as a single-channel 3 

processor (C. D. Wickens, 1991), the driving task frequently involves multitasking. For 4 

example, during driving, in most cases, drivers need to control the vehicle (e.g., fine-5 

tuning the gas pedal/brake pedal and the steering wheel to track the target speed and 6 

direction of the vehicle) and monitor the surrounding natural and traffic environment 7 

to identify potential hazards simultaneously. Different driving tasks may require 8 

different types of attention resources. Specifically, according to the multi-resource 9 

theory (Wickens, 1991), speed controlling task mainly requires visual-manual 10 

resources; while hazard perception tasks mainly require visual-cognitive resources. It 11 

has been commonly acknowledged that, compared to driving tasks that are visually and 12 

manually demanding, the cognitive demanding tasks, such as hazard perception and 13 

driving strategy selection are more safety-critical, and thus drivers’ performance in 14 

these tasks is adopted as key metrics differentiating novice and experienced drivers 15 

(Jackson et al., 2009; Sagberg & Bjørnskau, 2006). In addition to driving-related tasks, 16 

in recent years, new technologies have been introduced into vehicles. For example, 17 

driving automation has been prevalent in newly sold vehicles, though it can reduce the 18 

overall workload of drivers, it may increase drivers’ cognitive load because of the 19 

additional responsibility to monitor the automation (Stapel et al., 2019); while the 20 

introduction of infotainment functions in the smart cabin (e.g., video-streaming and 21 
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internet browsing) and the prevalence of the bring-in smart devices (e.g., smartphones) 1 

may also increase the workload of drivers. 2 

The high cognitive load in driving, either as a result of driving tasks or non-3 

driving-related tasks, has been found to be closely related to driving safety in research 4 

environments (e.g., in driving simulators or instrumented vehicles). For example, a high 5 

cognitive load may lead to delayed responses to emergency events (Harbluk et al., 6 

2007), reduced visual search scope, leading to a visual tunnel effect (Recarte & Nunes, 7 

2000)), decreased ability to anticipate hazards (Muhrer & Vollrath, 2011), and 8 

increased reaction times (Du et al., 2020) and impaired performance (Melnicuk et al., 9 

2021) in takeover events during assisted driving. Thus, estimating drivers’ high 10 

cognitive load can be a potential approach to improve driving safety, both in vehicles 11 

with and without driving automation.   12 

As an intrinsic state, cognitive load can hardly be measured objectively and 13 

directly (e.g., the questionnaire is direct but subjective, while eye-tracking measures are 14 

objective but indirect). Moreover, unlike distracted driving and fatigue, the state of high 15 

cognitive load is not easily discernible from the normal driving state, as it can be an 16 

integral part of the driving task. In the domain of driving, the cognitive load can be 17 

evaluated using four different types of measures, i.e., subjective measures, such as the 18 

NASA-Task Load Index (NASA-TLX) scale (Hart & Staveland, 1988); physiological 19 

measures, such as the electrocardiogram (ECG), electroencephalogram (EEG), 20 

respiration, and electrodermal activity (EDA); eye-tracking measures, such as pupil size; 21 
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and task performance measures, including driving task measures and non-driving-1 

related task measures. All these measures have their pros and cons. For example, the 2 

subjective questionnaire methods cannot estimate cognitive load in real-time. The non-3 

driving-related tasks can disrupt drivers’ natural driving behavior and increase their 4 

cognitive load. The driving task measures are highly susceptible to traffic conditions 5 

and become invalid during automated driving, given that drivers do not need to control 6 

the vehicle for extended periods. Thus, the physiological measures and eye-tracking 7 

measures are most promising for real-time cognitive load detection. Further, with the 8 

advancement of new technologies, non-intrusive measures of physiological metrics and 9 

highly accurate eye-tracking measures have become possible (Ayres, 2020).  10 

However, although associations between some physiological and eye-tracking 11 

metrics and the variations in cognitive load have been observed in some studies, no 12 

consensus has been reached for some other physiological and eye-tracking metrics, 13 

which poses challenges in selecting appropriate metrics for developing cognitive load 14 

detection algorithms in drivers. For example, the correlation between the respiration 15 

rate (RR) and cognitive load has been found to be negative in some studies (He et al., 16 

2019), but positive in some other studies (Hajek et al., 2013). For other metrics, 17 

substantial differences in the strength of the association have been identified. For 18 

example, in Rahman et al (2020), the Low Frequency (LF) power (0.04–0.15 Hz) of 19 

heart rate variability (HRV) exhibited a strong positive correlation (r > 0.8) with 20 

cognitive load. However, only a weak correlation (r < 0.1) has been found in Tjolleng 21 
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et al (2017). Lastly, not all metrics are responsive in differentiating different levels of 1 

cognitive load. For example, the heart rate (HR) was able to differentiate between 2 

median to high levels of cognitive load but showed no difference between low to 3 

median levels of cognitive load (Ferreira et al., 2014). However, the feasible range of 4 

different cognitive load measures has not been systematically analyzed, which hinders 5 

the development of different algorithms targeting different levels of cognitive load, 6 

using minimum types of measures. 7 

Thus, it is necessary to quantify the relationships between the physiological and 8 

eye-tracking metrics and the driver’s cognitive load levels. Given that not all metrics 9 

are responsive to the whole range of cognitive load, the meta-analysis needs to be 10 

conducted for different ranges of cognitive load levels and a metric or task that can 11 

consistently impose different levels of cognitive load to drivers has to be selected. 12 

Traditionally, subjective responses such as NASA-TLX were regarded as the ground 13 

truth of cognitive load levels in previous studies (Chen et al., 2022; He et al., 2019; 14 

Hart & Staveland, 1988). Although NASA-TLX allows within-subject comparisons, 15 

individual differences in self-reported scores may exist and we can hardly compare the 16 

NASA-TLX scores across participants and experiments (Muth et al., 2012). Thus, in 17 

this study, we adopted a more standard task to label the levels of cognitive – the n-back 18 

task. 19 

The n-back task is mainly a working memory task and has been proven as an 20 

effective manipulation of cognitive load in vehicles (Mehler et al., 2012a; von 21 
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Janczewski et al., 2021). In the n-back task, a series of stimuli (such as numbers or 1 

letters) are presented. Between each stimulus, there is a sustained pause that allows 2 

participants to repeat the stimuli presented n positions before (see an example in Figure 3 

1). The levels in the n-back task (i.e., n) reflect the difficulty and complexity of the task, 4 

the larger the n, the more difficult the task is. The utilization of 3-back is rare in research 5 

as 2-back is already sufficiently demanding. A substantial body of behavioral and 6 

neuroimaging research has confirmed the sensitivity of different levels of N-back tasks 7 

to cognitive load (Broadbent et al., 2023; Rieck et al., 2022; Solhjoo et al., 2019). 8 

Further, other commonly used cognitive tasks usually have no clear standard definition 9 

of cognitive levels. For example, the difficulty levels of hybrid tasks (obstacle 10 

avoidance and recall) (Yang et al., 2023) and mathematical tasks (von Janczewski et 11 

al., 2021) are difficult to quantify (e.g., the difficulty level of “3455 – 15” and “3455 – 12 

7” are not clearly quantified, though the former has one more digit than the latter). 13 

Given that the difficulty of 0-, 1- and 2-back tasks are comparable to common in-vehicle 14 

tasks (Mehler & Reimer, 2019) in our study, we treat the cognitive level triggered by 15 

the driving task only and 0-back task as low, the cognitive load triggered by 1-back task 16 

as median, and the cognitive load triggered by 2-back task as high. 17 
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 1 

Fig. 1. Demonstration of a typical n-back task procedure for n = 0, n = 1, and n = 2. 2 

Therefore, in this study, based on a meta-analyses approach, we systematically 3 

analyzed the changes in drivers’ physiological and eye-tracking metrics in response to 4 

the variation in cognitive load during driving, as defined by the levels of the n-back 5 

tasks. All metrics explored in this study were found to be associated with the cognitive 6 

load at least in some of the previous studies. To the best of our knowledge, though 7 

previous meta-analysis validated the effectiveness of n-back task in imposing high 8 

cognitive load in drivers (von Janczewski et al., 2021), no research has quantified the 9 

relationship between drivers’ cognitive load and their physiological and eye-tracking 10 

measures. The summary of the abbreviations, descriptions, and units of the 11 

physiological and eye-tracking metrics mentioned in the text is shown in Table 1.  12 

In addition, given that the cognitive load is a multi-dimensional concept and the 13 

settings in different studies can affect the responses of physiological and eye-tracking 14 

measures (Nilsson et al., 2022). we adopted meta-regression to account for 1) the 15 

influence of measurable individual differences so that future driver monitoring systems 16 

may take adaptive strategies; 2) and artificial experiment settings so that we can better 17 
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isolate the cognitive effects. Specifically, the demographic variables, including age 1 

(Wickens et al., 2011; Zhang et al., 2017) and gender (Sârbescu et al., 2014; Zhang et 2 

al., 2017) that can affect driving behavior, and the experiment-related settings including 3 

simulator fidelity, experimental environment, the modality of stimulus presentation and 4 

response, and the time interval between stimuli (Janczewski et al., 2021) that could 5 

modulate the drivers’ cognitive load were considered. Besides, different versions of n-6 

back tasks were used in previous driving studies. For example, the participants were 7 

required to only memorize and repeat the item that is n position before (repeating 8 

version, see Figure 1) in Gable et al (2015) and Mehler et al (2012b); while in Nilsson 9 

et al (2022) and Rahman et al (2020), participants needed to indicate whether the judge 10 

if the two items that are n positions apart are the same or not (matching version), which 11 

required additional cognitive resource to compare the two items. Another version of the 12 

n-back task was used by He et al (2019), which required participants to count how many 13 

times a pattern appeared (counting version) in addition to the matching version. 14 

Different versions require different cognitive components and hence the n-back version 15 

is also considered to account for the multi-dimensionality of the cognitive task. 16 

In summary, the contribution of this study is 2-fold. First, the meta-analysis 17 

approach was employed to investigate the association between physiological, and eye-18 

tracking metrics and cognitive load levels. Second, the moderating effects of 19 

participants’ age and gender, driving automation level, the fidelity of simulators, n-back 20 
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version, modality of n-back stimulus and response, and the time interval between 1 

stimuli on these associations were explored. 2 

Table 1. Summary of the abbreviations, descriptions, and units of the physiological metrics. 3 
Measure Metric Abbreviation Description Unit 

Eye 

Pupil size PS The diameter of the opening in 
the center of the iris mm 

Fixation duration FD 
The length of time that gaze 
remains focused on a specific 
object or region of interest 

ms 

Eye blink rate EBR The number of blinks per unit 
of time blinks/min 

Eyeblink duration EBD 
The time taken for each blink 
from closure to reopening of 
the eyes 

ms 

Electroencep
halography 

(EEG) 

Theta wave-Fp1 
channel θ-Fp1 The θ waves (4-8 Hz) located 

in the Fp1 channel. μV 

Theta wave-Fp2 
channel θ-Fp2 The θ waves (4-8 Hz) located 

in the Fp2 channel. μV 

Electrocardi
ogram 
(ECG) 

Heart rate HR The number of heartbeats 
occurring per minute 

Beats/minut
e 

Standard deviation 
of normal-to-

normal intervals 
SDNN 

The variability of the time 
intervals between consecutive 
normal heartbeats 

ms 

Root mean square 
of successive 
differences 

RMSSD 

The magnitude of the 
differences between 
consecutive R-R intervals (the 
time between successive 
heartbeats) 

ms 

Low frequency LF 

The spectral power in the low-
frequency range (usually 0.04 
to 0.15 Hz) of the heart's 
electrical activity 

ms² 

High frequency HF 

The spectral power in the 
high-frequency range (usually 
0.15 to 0.4 Hz) of the heart's 
electrical activity 

ms² 

Low frequency/ 
High frequency LF/HF Ratio of LF to HF % 

Total power TP The overall power spectrum ms² 

pNN50 pNN50 

The percentage of successive 
RR intervals (the time 
between R-peaks on an ECG) 
that differ by more than 50 
milliseconds 

% 

Very low 
frequency. VLF 

The frequency range of 
electrical signals in the ECG 
waveform that are below 0.04 
Hz 

Hz 

Low frequency 
power LFun The power or intensity of low-

frequency electrical activity ms² 



 

 12 

High frequency 
power HFun 

The power or intensity of 
high-frequency electrical 
activity 

ms² 

Inter-beat interval IBI The time duration between 
successive heartbeats ms 

Skin Electrodermal 
activity SC-EDA 

The general term that 
encompasses the electrical 
activity of the skin 

µS 

Respiration Respiration rate RR The number of breaths taken 
per minute 

Respirations
/ minute 

1 

2. METHOD 2 

2.1 Literature search and study selection 3 

We adopted the approach based on the PRISMA statement (Moher, 2009), a 4 

comprehensive guideline for reporting items in meta-analysis. An extensive literature 5 

search was conducted, covering articles published up until Feb 2024. The study 6 

selection process is summarized in Figure 2. In our search, the title, abstract or 7 

keywords must include ("driver" OR "driving" OR "automobile" OR “automated” OR 8 

"vehicle" OR "car") and (“cognitive load” OR “workload” OR “working memory” OR 9 

“mental workload”); and the full text must have "N-back" and (“physiological” OR 10 

“eye” OR “electroencephalogram” OR “electrocardiogram” OR “respiration” OR 11 

“electrodermal activity” OR “galvanic skin reaction” OR “skin conductance” OR 12 

“pulse rate variability” OR “temperature”).  13 
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Fig. 2. Literature review process based on the PRISMA method. 2 

2.2 Inclusion and exclusion criteria 3 

The inclusion criteria for studies were as follows: (1) The n-back task should be a 4 

task secondary to the driving task of four-wheel cars and only empirical studies 5 

conducted on real roads or in simulated driving environments were included. (2) The 6 

study should have at least two different n-back levels or one n-back level and a baseline 7 

without a secondary task. (3) The statistics of the physiological or eye-tracking 8 

measures must be reported or could be obtained by contacting the authors. (4) The 9 

physiological and eye-tracking measures associated with the n-back level should be 10 

independent of other tasks in the vehicle so that the cognitive load was only induced by 11 

the n-back task. (5) Due to language barriers, only publications in Chinese and English 12 

were included. Publications that did not meet any of the above criteria were excluded 13 
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from the analysis. Initial determinations were made based on the abstracts, followed by 1 

a thorough examination of the full texts based on the inclusion criteria. Ultimately, 18 2 

studies were kept for further analysis.  3 

2.3 Data extraction 4 

 The following information was extracted from each publication: (1) Meta-5 

information of the study (i.e., title, author, and publication year); (2) Descriptions and 6 

measures of the cognitive workload; (3) sample characteristics (i.e., sample size, mean 7 

age, and characteristics of participants); (4) experimental conditions (i.e., automation 8 

level, experimental environment, simulator fidelity); (5) characteristics of n-back tasks 9 

(i.e., modality of the stimulus and response, and time interval between stimuli) and (6) 10 

associations between the physiological and eye-tracking metrics and n-back levels or 11 

the raw values of the metrics under each experimental condition.  12 

These data were extracted and coded independently by two doctoral students (the 13 

first two authors). To ensure a consistent understanding of the coding scheme between 14 

the two coders, we conducted a preliminary "coding trial" phase. During this phase, the 15 

two coders independently coded five articles and discussed any discrepancies in coding 16 

to reach a consensus on the coding scheme. Necessary modifications and refinements 17 

were made to the coding manual based on the issues encountered during this phase. 18 

2.4 Data processing 19 

In the meta-analyses, the Pearson correlation coefficient (r) was used as the effect 20 

size for each study. We followed a systematic eight-step process to analyze the data for 21 
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our meta-analyses. An overview of these steps is provided in Figure 3. In the meta-1 

analyses, we focused on conducting meta-analyses of the physiological and eye-2 

tracking metrics. Specifically, the physiological and eye-tracking metric from each 3 

level of cognitive load (as imposed by the n-back task or baseline task) was compared 4 

to all other levels of cognitive load. In total, six (𝐶!"=3 for baseline and 2 levels of n-5 

back tasks) pairwise comparisons for all metrics were explored in this study. If the 6 

correlation coefficient was not provided in the study, we did the calculation according 7 

to Lipsey & Wilson (2001) based on the mean value, standard deviation (SD), and 8 

sample size. It is worth noting that the meta-analyses were only conducted for metrics 9 

that were investigated in at least two studies, which is the minimum requirement for a 10 

meta-analysis (McCarthy et al., 2017; Zheng, 2013). 11 

 Then, for each metric in each pairwise comparison, we transferred r (ranging 12 

between -1 and 1) to Fisher's Z value following the equation in Lipsey & Wilson (2001):  13 

                Zr = 0.5 * ln ((1 + r) / (1 - r))                      (1) 14 

where Zr represents Fisher's Z value, and r denotes the correlation coefficient 15 

between two variables. This transformation can alleviate the constraints of the 16 

correlation coefficient, as Zr ranges from negative infinite to positive infinite, which 17 

enables the weighted combination of effect sizes from multiple studies in meta-analysis. 18 

Next, the meta-analyses were conducted using RevMan 5.4 (Schmidt et al., 2019). 19 

The random-effects model was used to calculate the weighted average correlation, in 20 

which the calculation of weight factors was based on the inverse of the variance (Lipsey 21 
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& Wilson, 2001). The forest plots were provided to visualize the results (see Appendix 1 

1), in which, the pooled Zr derived from the amalgamation of all incorporated studies 2 

was visually represented as a rhombus positioned at the lower section of the graph, 3 

wherein the breadth of the rhombus denoted the 95% confidence interval (95%CI). The 4 

significance of the estimated overall effect size was evaluated using the 95%CI (Lipsey 5 

& Wilson, 2001) and the p-value, with .05 as the significance threshold.  6 

In addition, for each meta-analysis, the heterogeneity of the research was evaluated 7 

using the I2 statistic, tau squared (τ2), and Q statistic (Lipsey & Wilson, 2001). The I2 8 

statistic quantifies the proportion of the observed variation in correlation that can be 9 

accounted for by actual variations between studies. A value of 25%, 50%, or 75% 10 

corresponds to low, moderate, or high levels of variance, respectively (Higgins & Deeks, 11 

2003). The τ2 represents the overall extent of heterogeneity, with a smaller τ2 indicating 12 

a lower level of heterogeneity. The Q statistic reflects the degree of heterogeneity 13 

resulting from actual differences between studies, with a significant Q statistic implying 14 

the existence of heterogeneity among the studies. Out of the above-mentioned metrics, 15 

the Q-test is the most used for testing heterogeneity. However, its testing power is 16 

limited when the number of studies is small. In contrast, the I2 statistic can mitigate the 17 

impact of the sample size on the testing power. In our study, we adopted the I2 of 50% 18 

as the threshold for the existence of heterogeneity (Zheng, 2013), but still reported τ2 19 

and Q statistics for readers’ reference. 20 
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Finally, to investigate the origins of research heterogeneity, meta-regression was 1 

conducted for potential moderators, including experimental conditions (i.e., automation 2 

level), characteristics of n-back tasks (i.e., modality of the stimuli and responses, the 3 

time interval between stimuli), and demographic variables (i.e., mean age and 4 

percentage of male). The automation level here refers to driving automation defined by 5 

the Society of Automotive Engineers (SAE) (Committee, 2014). It is worth noting that 6 

we refined the simulator-type classification scheme proposed by Spyridakos et al., 7 

(2020) as follows: "Occlusion" and "Desktop" were classified as the category of low-8 

fidelity driving simulators, "Cabin with narrow field projection" and "Cabin with 9 

widefield projection" were classified as medium fidelity driving simulators; and 10 

"Hexapod," "Hexapod and lateral motion," and "Hexapod and longitudinal motion" 11 

were classified as high-fidelity driving simulators. Furthermore, since the median of the 12 

median age among the 18 studies included in the analysis is 27.2, we thus adopt the 13 

threshold of 27 years for age stratification. 14 

Then, intergroup homogeneity was performed and heterogeneity coefficients were 15 

computed to assess the intergroup effects (Viechtbauer, 2010). For significant 16 

moderators, sub-group meta-analyses were conducted. Subsequently, we proceeded to 17 

assess the homogeneity of effect sizes within a specific group (QW) and the 18 

heterogeneity across different sub-groups (QB) (Lipsey & Wilson, 2001). The 19 

moderator analyses were conducted using Stata 17.  20 
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It should be noted that to facilitate interpretation, when reporting the results, the 1 

Zr was transformed back to r. According to Cohen (1988), |𝑟| ≤ 0.3	denotes a small 2 

correlation, 0.3≤ |𝑟| ≤ 0.5 denotes a medium correlation, and |𝑟| ≥ 0.5 denotes a 3 

large correlation. 4 

 5 

Fig. 3. Overview of the Processing Workflow. 6 

3. RESULT 7 

The process of literature retrieval and study selection is illustrated in Figure 3. 8 

Initially, a total of 2,046 records were retrieved through database search, and an 9 

additional 7 records were included after examining the reference list of the identified 10 

literature. After removing duplicates, 1,318 records remained, which were then 11 

screened based on their titles and abstracts. Then, full-text evaluation was conducted 12 

for 35 records, and 18 records that met our criteria were kept for meta-analyses.13 



 

 19 

Table 2. A summary of the identified literature 1 

Study Participant 
Number Metrics Automation 

Level 
Experimental 
Environment N-back Levels N-back 

Version 

N-back 
Modalities 
(stimuli-

responses) 

Inter-stimulus 
Interval (s) 

Male Ratio 
(%) 

Mean Age 
(SD/Range) 

(Deng et al., 
2024) 20 HR, SC-EDA L3 

Medium 
fidelity 

simulator 
N, 1B, 2B Matching Visual-verbal — 90 25.3 (3.8/23-

39) 

(Nilsson et al., 
2022) 70 

HR, RMSSD, RR, 
SC-EDA, PS, EBR, 

EBD 
L0 

Medium 
fidelity 

simulator 
N, 1B, 2B Matching Auditory-

manual 1 100 43 (4/35-51) 

(Mehler et al., 
2012b) 108 HR, SC-EDA L0 On-road N, 0B, 1B, 2B Repeating  Auditory- 

verbal — 50 
24.6 (2.7/-), 
44.5 (3.0/-), 
63.3 (3.1/-) 

(Chen et al., 
2022) 36 PS L0, L1, L2 Low fidelity 

simulator N, 2B Repeating 

Visual-verbal; 
Auditory-

verbal; 
Auditory-

spatial 

0.2 50 26 (2.8/-) 

(Zhang et al., 
2022) 18 

θ-Fp1, θ-Fp2, SC-
EDA, IBI, HR, 

SDNN, RMSSD, 
LF, HF, LF/HF 

L0 Low fidelity 
simulator N, 1B, 2B Matching Auditory-

manual — 100 23.2 (1.6/-) 

(Meteier et al., 
2022) 80 HR L3 Low fidelity 

simulator N, 1B, 3B Matching 
Auditory-

manual；Visua
l-manual 

0.5 32.5 23.9 (8.2/19-
66) 

(Yang et al., 
2021) 75 HR, SDNN, TP L0 

Medium 
fidelity 

simulator 
N, 2B Matching Auditory-

manual 1 67 31 (11.6/-) 

(Gable et al., 
2015) 8 HR, PS L0 Low fidelity 

simulator N, 0B, 1B, 2B Repeating Auditory-
verbal 2.25 62.5 21.1 (19-23/-) 

(Du et al., 
2020) 102 HR L3 High fidelity 

simulator 1B, 2B Matching Visual-manual 2.5 — 22.9 (3.8/18-
38) 

(Rahman et 
al., 2020) 33 SDNN, RMSSD, 

pNN50，VLF, LF, L0 High fidelity 
simulator N, 1B, 2B Matching Auditory-

manual — 100 42.5 (-/35-50) 
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HF, TP, LF/HF, 
LFun, HFun 

(Cegovnik et 
al., 2018) 22 PS L0 Low fidelity 

simulator 
N, 0B, 1B, 2B, 

3B Repeating Auditory-
verbal 5.5 81.8 32.9 (-/22-61) 

(Tjolleng et 
al., 2017) 15 IBI, LF L0 

Medium 
fidelity 

simulator 
0B, 1B, 2B Repeating Auditory-

verbal — 100 27.7 (3.0/-) 

(Niezgoda et 
al., 2015) 46 PS L0 High fidelity 

simulator N, 0B, 1B, 2B Repeating Auditory-
verbal 2.25 63 36.6 (9.7/21-

59) 
(Reimer et al., 

2009) 26 HR, EDA L0 On-road N, 0B, 1B, 2B Repeating Auditory-
verbal — — 23.9 (1.6/-) 

(Hajek et al., 
2013) 47 HR, RR, SC-EDA, 

RMSSD L2 Low fidelity 
simulator N, 2B Repeating Auditory-

verbal 2.25 72.3 28.5 (8.7/19-
55) 

(Zheng et al., 
2021) 20 

SDNN, RMSSD, 
pNN50, LF, HF, 
TP, LF/HF, VLF, 
LFun, HFun, SC-

EDA 

L0 Low fidelity 
simulator N, 0B, 1B, 2B Repeating Auditory-

verbal 2.5 75 26.7 (3.8/-) 

(Mehler et al., 
2009) 121 HR, SC-EDA, RR L0 

Medium 
fidelity 

simulator 
N, 0B, 1B, 2B Repeating Auditory-

verbal 2.25 48.8 24.5 (2.8/20-
29) 

(He et al., 
2019) 34 PS, HR, RR, SC-

EDA, θ-Fp1, θ-Fp2 L0 Low fidelity 
simulator N, 1B, 2B Counting Auditory-

verbal 2.5 48.6 26.4 (4.3/20-
35) 

Note: “—” means that the information has not been mentioned in the corresponding paper. In the table, N, 0B, 1B, 2B, and 3B standard for baseline without n-back task, 1-1 
back task, 2-back task, and 3-back task, respectively. L0, L1, L2, and L3 donate SAE Level 0, Level 1, Level 2, and Level 3 automation, respectively.2 
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3.1 Descriptive statistics 1 

Table 2 provides descriptive information of all studies included in the meta-2 

analyses. Overall, a total of 881 participants were involved in the experiments and 3 

experienced various levels of n-back tasks. Table 3 provides a summary of correlation 4 

coefficients between the metrics and cognitive load levels in all studies included for 5 

meta-analyses. It was found that cognitive levels induced by 1-back and 2-back tasks 6 

were most intensively investigated. At the same time, among all psychological and eye-7 

tracking measures, the relationship between heart measures and cognitive load levels 8 

attracted the most attention in previous research, with HR attracting the most attention 9 

among heart-related metrics. Moreover, the total sample sizes of studies for a single 10 

meta-analysis varied widely, ranging from 38 to 711 participants. Finally, it should be 11 

noted that substantial differences in correlation coefficients of the metrics have been 12 

observed between different studies, confirming the need for further meta-analyses. 13 

At the same time, given the small number of studies that could be identified, and 14 

considering the task difficulties, the 0-back (which only requires participants to simply 15 

repeat what they hear immediately) and baseline without n-back were aggregated as 16 

low task load (L); the 1-back was labeled as medium task load (M); and the 2-back was 17 

categorized as high task load (H).18 
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Table 3. Correlation coefficients between the physiological and eye-tracking metrics and cognitive load levels in all studies. 1 

 Metrics n Sample size r 
Min Max Total Mean SD Min Max 

L vs. M 

Eye PS 6 8 70 212 0.39 0.31 -0.12 0.77 
EBR 3 46 70 162 0.11 0.03 0.08 0.15 

Brain 𝜃-Fp1 2 18 34 52 0.42 0.04 0.40 0.45 
𝜃-Fp2 2 18 34 52 0.39 0.05 0.36 0.43 

Heart 

HR 18 8 121 711 0.22 0.19 -0.2 0.76 
SDNN 3 18 33 51 0.35 0.65 -0.34 0.94 

RMSSD 3 18 33 51 0.36 0.65 -0.34 0.94 
LF 5 18 33 106 0.20 0.44 -0.13 0.97 
HF 3 18 33 71 0.34 0.45 -0.22 0.88 

LF/HF 3 18 33 71 0.49 0.46 0.05 0.97 
TP 2 20 33 53 0.35 0.87 -0.26 0.97 

pNN50 2 20 33 53 0.42 0.79 -0.14 0.98 
VLF 2 20 33 53 0.47 0.51 -0.05 0.98 
LFun 2 20 33 53 0.50 0.70 0.00 0.99 
HFun 2 20 33 53 0.35 0.90 -0.29 0.99 

Skin EDA 15 18 121 571 0.15 0.26 -0.52 0.8 
Respiration RR 3 34 121 225 0.13 0.34 -0.34 0.44 

L vs. H 

Eye 

FD 2 36 46 82 0.02 0.22 -0.14 0.18 
PS 7 8 46 248 0.37 0.34 -0.2 0.82 

EBR 4 36 70 198 0.12 0.12 0.12 0.22 
EBD 2 36 70 106 -0.09 0.11 -0.11 -0.08 

Brain 𝜃-Fp1 2 18 34 42 0.33 0.02 0.32 0.35 
𝜃-Fp2 2 18 34 42 0.28 0.33 0.04 0.51 

Heart 

HR 17 8 121 653 0.47 0.30 0.00 0.69 
SDNN 3 18 75 113 -0.23 0.58 -0.70 0.43 

RMSSD 3 18 47 85 0.30 0.61 -0.37 0.84 
LF 4 18 33 73 0.03 0.19 -0.22 0.30 
HF 4 15 20 73 0.04 0.18 -0.18 0.30 

LF/HF 2 18 20 38 0.27 0.15 0.16 0.38 
TP 2 20 75 95 -0.34 0.19 -0.21 -0.48 
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Skin EDA 14 18 121 628 0.11 0.33 -0.99 0.45 
Respiration RR 4 34 121 272 0.31 0.27 -0.13 0.59 

M vs. H 

Eye PS 4 8 46 158 0.23 0.10 0.13 0.34 
EBR 2 46 70 116 0.08 0.02 0.06 0.1 

Brain 

𝜃-Fp1 2 18 34 52 0.02 0.02 0.01 0.04 
𝜃-Fp2 2 18 34 52 -0.25 0.02 -0.27 -0.24 

HR 12 8 121 522 0.17 0.16 0.02 0.56 
SDNN 3 18 33 71 0.30 0.52 -0.09 0.84 

RMSSD 4 18 70 141 0.21 0.40 -0.19 0.84 
LF 4 15 33 86 0.34 0.38 0.04 0.98 
HF 3 18 33 71 0.33 0.36 0.02 0.84 

LF/HF 3 18 33 71 0.46 0.44 0.12 0.96 
TP 2 20 33 53 0.50 0.63 0.06 0.95 

pNN50 2 20 33 53 0.40 0.74 -0.12 0.92 
VLF 2 20 33 53 0.51 0.45 0.06 0.96 
LFun 2 20 33 53 0.52 0.65 0.05 0.98 
HFun 2 20 33 53 0.41 0.82 -0.18 0.99 

Skin SC-EDA 11 18 121 437 0.23 0.27 0.00 0.80 
Respiration RR 3 34 121 225 0.08 0.08 0.02 0.19 

Note："vs." denotes the act of conducting pairwise comparisons, n denotes the number of studies included. 1 
 2 

  3 
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3.2 Results for meta-analyses 1 

The results of the meta-analyses are presented in Table 4. A majority of the 2 

analyses in Table 4 have a significant unexplained variance (I2>50%), indicating the 3 

necessity for moderators’ analyses. The forest plots of the meta-analysis in Table 4 are 4 

provided in Appendix 1.  5 
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Table 4. Meta-analyses’ results of the association between the physiological metrics and cognitive load levels. 1 

Metrics k 
Random Effects Model Heterogeneity Test 

n Pooled Zr 
(95 % CI) 

Pooled r 
(95 % CI) p    τ2 Chi2 (df) I2 (%) 

L vs. M 

Eye PS 212 6 0.48 (0.13,0.82) 0.45 (0.13, 0.68) .006 0.15 38.82 (5) 87 
EBR 162 3 0.11 (-0,0.22) 0.11 (-0,0.22) .06 0 0.23 (2) 0 

Brain 𝜃-Fp1 52 2 0.43 (0.21,0.66) 0.41 (0.21, 0.58) <.001 0.00 0.06 (1) 0 
𝜃-Fp2 52 2 0.44 (0.22,0.67) 0.41 (0.22, 0.58) <.001 0.00 0.1 (1) 0 

Heart 

HR 711 18 0.22 (0.13,0.32) 0.22 (0.13, 0.32) <.001 0.02 38.92 (17) 56 
SDNN 51 3 0.88 (-0.06,1.82) 0.71 (-0.06, 0.95) .07 0.63 26.61 (2) 92 

RMSSD 121 3 0.61 (-0.34,1.56) 0.61 (-0.33, 0.92) .2 0.9 91.33 (3) 97 
LF 106 5 0.43 (-0.48,1.33) 0.41 (-0.45, 0.87) .4 1.02 109.35 (4) 96 
HF 71 3 0.52 (-0.47,1.51) 0.48 (-0.44, 0.91) .3 0.71 29.62 (2) 93 

LF/HF 71 3 0.89 (-0.43,2.21) 0.71 (-0.41, 0.98) .2 1.31 53.86 (2) 96 
TP 53 2 0.92 (-1.40,3.23) 0.73 (-0.89, 1.00) .4 2.74 60.76 (1) 98 

pNN50 53 2 1.09 (-1.31,3.48) 0.80 (-0.86, 1.00) .4 2.93 64.13 (1) 98 
VLF 53 2 1.13 (-1.17,3.43) 0.81(-0.82,1) .3 2.71 59.51(1) 98 
LFun 53 2 1.33 (-1.27,3.93) 0.87 (-0.85, 1.00) .3 3.46 75.66 (1) 99 
HFun 53 2 1.18 (-1.7,4.07) 0.83 (-0.94, 1.00) .4 4.27 92.11 (1) 99 

Skin SC-EDA 551 14 0.20 (0.08,0.31) 0.20 (0.08,0.30) <.001 0.03 37.92(13) 66 
Respiration RR 225 3 0.15 (-0.28,0.58) 0.15 (-0.27,0.52) .5 0.13 30.29 (2) 93 

L vs. H 

Eye 

FD 82 2 0.03 (-0.28,0.34) 0.03 (-0.27, 0.33) .9 0.02 1.93 (1) 48 
PS 248 7 0.47 (0.18,0.76) 0.44 (0.18, 0.64) .002 0.12 49.12 (6) 88 

EBR 198 4 0.16 (0.06,0.27) 0.16 (0.06,0.26) .002 0 2.44 (3) 0 
EBD 106 2 -0.09 (-0.23,0.06) -0.09 (-0.23,0.06) .3 0 0.02 (1) 0 

Brain 𝜃-Fp1 52 2 -0.05 (-0.72,0.62) -0.05 (-0.62, 0.55) .9 0.2 5.73 (1) 83 
𝜃-Fp2 52 2 -0.35 (-1.06,0.36) -0.34 (-0.79, 0.35) .3 0.22 6.12 (1) 84 

Heart 

HR 653 17 0.4 (0.25, 0.54) 0.38 (0.24, 0.49) <.001 0.07 83.37 (16) 81 
SDNN 113 3 -0.3 (-1.06,0.46) -0.29 (-0.79, 0.43) .4 0.41 22.09 (2) 91 

RMSSD 155 4 0.24 (-0.79,1.27) 0.24 (-0.66, 0.85) .7 1.06 248.43 (3) 99 
LF 73 4 0.02 (-0.17,0.21) 0.02 (-0.17,0.21) .8 0 2.54 (3) 0 
HF 73 4 0.03 (-0.17,0.22) 0.03 (-0.17,0.22) .8 0 2.2 (3) 0 
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LF/HF 38 2 0.28 (-0.07,0.63) 0.27 (-0.07, 0.56) .1 0 0.42 (1) 0 
TP 95 2 -0.47 (-0.68, -0.26) -0.44 (-0.59, -0.25) <.001 0 0.86 (1) 0 

Skin SC-EDA 608 13 0.20 (0.12,0.28) 0.20 (0.12,0.28) <.001 0 15.27 (12) 21 
Respiration RR 272 4 0.34 (0.04,0.63) 0.34 (0.04, 0.56) .03 0.08 23.3 (3) 87 

M vs. H 

Eye PS 158 4 0.29 (0.17,0.41) 0.28 (0.17, 0.39) <.001 0 2.15 (3) 0 
EBR 116 2 0.08 (-0.05,0.22) 0.08 (-0.05, 0.22) .2 0 0.08 (1) 0 

Brain 

𝜃-Fp1 52 2 0.03 (-0.16,0.22) 0.03 (-0.16, 0.22) .8 0 0.02 (1) 0 
𝜃-Fp2 52 2 -0.25 (-0.45, -0.06) -0.24 (-0.42, -0.06) .009 0 0.04 (1) 0 

HR 522 12 0.14 (0.05,0.23) 0.14 (0.05, 0.23) .002 0.01 18.74 (11) 41 
SDNN 71 3 0.47 (-0.42,1.36) 0.44 (-0.40, 0.88) .3 0.59 43.72 (2) 95 

RMSSD 141 4 0.29 (-0.21,0.78) 0.29 (-0.21, 0.65) .3 0.24 52.57 (3) 94 
LF 86 4 0.67 (-0.35,1.69) 0.59 (-0.34, 0.93) .2 1.06 110.6 (3) 97 
HF 71 3 0.45 (-0.26,1.17) 0.42 (-0.25, 0.82) .2 0.37 28.15 (2) 93 

LF/HF 71 3 0.79 (-0.3,1.88) 0.66 (-0.29, 0.95) .2 0.91 65.5 (2) 97 
TP 53 2 0.94 (-0.79,2.68) 0.74 (-0.66, 0.99) .3 1.54 53.36 (1) 98 

pNN50 53 2 0.73 (-0.94,2.41) 0.62 (-0.74, 0.98) .4 1.43 49.7 (1) 98 
VLF 53 2 1 (-0.85,2.85) 0.76 (-0.69, 0.99) .3 1.76 61.34 (1) 98 
LFun 53 2 1.35 (-1.2,3.9) 0.87 (-0.83, 1.00) .3 3.35 117.52 (1) 99 
HFun 53 2 1.23 (-1.54,4.01) 0.84 (-0.91, 1.00) .4 3.98 137.67 (1) 99 

Skin SC-EDA 417 10 0.18 (0.04,0.33) 0.18 (0.04,0.33) .01 0.04 35.95 (9) 75 
Respiration RR 225 3 0.05 (-0.04,0.14) 0.05 (-0.04, 0.14) .3 0 1.53 (2) 0 

Notes：L denotes the baseline condition and 0-back task, 1B denotes the 1-back task, and 2B represents the 2-back task, whereas "vs." denotes the act of conducting pairwise 1 
comparisons, k denotes the cumulative sample size, n denotes the number of studies included. The bolded pooled r indicates significant (p<.05) metrics. The bolded I2 2 
indicates the existence of heterogeneity of the metrics.3 
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3.3 Moderator analysis 1 

Given that the inclusion of a sufficient number of studies is required for conducting 2 

meta-regression, we specifically focused on meta-analyses with an I2 greater than 50% 3 

or p-value in heterogeneity tests smaller than .05 and a minimum of three included 4 

studies. The results of the meta-regression model are summarized in Table 5. In addition, 5 

inter-group homogeneity tests were conducted on significant moderating factors 6 

(p<.05). Table 6 displays the weighted average effect size Zr and r (as well as their 7 

95%CI) for each subgroup, as well as the QW value that captures the overall 8 

heterogeneity within all the sub-groups of one moderator. Additionally, QB values are 9 

listed for each moderating variable, indicating the presence of heterogeneity among 10 

subgroups for each moderating factor (Lipsey & Wilson, 2001). The forest plots 11 

regarding the aggregated Zr for each subgroup analysis are provided in Appendix 2. 12 
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Table 5. Results of meta-regression models. 1 

 Moderators 
L vs. M L vs. H M vs. H 

n Coefficient p n Coefficient p n  Coefficient p 

PS 

Simulator fidelity 6 0.20 .3 7 0.19 .4 - - - 
Modality of stimuli and responses 6 0.04 .95 7 -0.03 .9 - - - 

n-back version 6 -0.46 .02 7 -0.14 .6    
Inter-stimulus interval 6 0.13 .8 7 -0.03 .9    
Percentage of males 6 0.001 .09 7 0.01 .3 - - - 

Mean age 6 0.01 .7 7 0.04 .07 - - - 

HR 

Automation level 18 0.09 .09 17 0.33 <.0001 - - - 
Experimental environment 18 0.06 .6 17 0.32 .06 - - - 

Simulator fidelity 10 0.17 .5 9 -0.50 .14 - - - 
n-back version 18 0.12 .2 17 0.20 .2    

Modality of stimuli and responses 18 0.08 .09 17 0.18 .04 - - - 
Inter-stimulus interval 8 0.10 .08 7 0.16 .4 - - - 
Percentage of males 16 0.002 .4 15 0.01 .02 - - - 

Mean age 18 -0.003 .4 17 -0.009 .2 - - - 

EDA 

Automation level 14 0.22 <.0001 - - - 10 0.21 .005 
Simulator fidelity 6 0.15 .7 - - - 6 0.19 .6 

Experimental environment 14 0.25 .07    10 0.17 .4 
n-back version 14 0.06 .6    10 0.15 .3 

Modality of stimuli and responses 14 0.22 <.0001 - - - 10 0.22 .001 
Inter-stimulus interval 5 -0.03 .7 - - - 5 -0.09 .3 
Percentage of males 12 0.01 .07 - - - 9 0.01 .2 

Mean age 14 -0.002 .5 - - - 10 -0.002 .7 

RR 

Automation level - - - 4 -0.02 .97 - - - 
Simulator fidelity - - - 4 0.03 .97 - - - 

n-back version    4 -0.41 .052    
Modality of stimuli and responses - - - 4 0.03 .97 - - - 

Inter-stimulus interval - - - 4 -0.1 .9 - - - 
Percentage of males - - - 4 0.01 .6 - - - 

 Mean age - - - 4 0.01 .9 - - - 
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 Notes: In this table and the following tables, n denotes the number of studies included; “-” means that there is no need for subgroup analysis, as the meta-analysis results did 1 
not demonstrate the presence of heterogeneity (see Table 4). The significant metrics (p<.05) are bold2 

 3 

Table 6. Results of sub-group moderator analyses. 4 

Pairwise 
Comparison 
of Cognitive 

Load 

Physiological 
Metrics Moderator Moderator 

Level n 
Pooled Zr within 

Subgroup 
(95%CI) 

Pooled r within 
Subgroup (95%CI) QB QW 

L vs. M 

PS n-back 
Version 

Repeating 4 0.66 (0.28, 1.03) 0.58 (0.27, 0.77) 
17.36  

(p<.001) 

10.83 
Matching 1 0.53 (0.36,0.70) 0.49 (0.35, 0.60) - 
Counting 1 -0.12 (-0.40,0.16) -0.12 (-0.38, 0.16) - 

EDA Automation 
Level 

L0 12 0.13 (0.06,0.19) 0.13 (0.06, 0.19) 
33.82 

(p<.001) 

4.10 
L2 1 0.29 (0.05,0.53) 0.29 (0.05, 0.53) - 

   L3    1 1.10 (0.77,1.43) 0.89 (0.65, 0.89) - 

EDA n-back 
Modality 

Auditory-verbal 11 0.12 (0.05,0.19) 0.12 (0.05, 0.19) 
33.43 

(p<.001) 

4.13 
Auditory-manual 2 0.21 (0.07,0.36) 0.21 (0.07, 0.36) 0.35 

Visual-verbal 1 1.1 (0.77,1.43) 0.89 (0.65, 0.89) - 

L vs. H 
 

HR n-back 
Modality 

Auditory-verbal 11 0.42 (0.25,0.58) 0.41 (0.25, 0.56) 
27.42 

(p<.001) 

43.31 
Auditory-manual 4 0.21 (0.04, 0.38) 0.21 (0.04, 0.36) 5.94 

Visual-verbal 1 1.18 (0.86,1.50) 0.84 (0.71, 0.91) - 

 
HR 

Automation 
Level 

L0 13 0.25 (0.19,0.32) 0.25 (0.19, 0.31) 
57.97 

(p<.001) 

12.03 
L2 2 0.97 (0.73, 1.22) 0.75 (0.66, 0.82) 1.38 
L3 1 1.18 (0.86,1.50) 0.84 (0.71, 0.91) - 

HR Percentage 
of Male 

<=50 9 0.31 (0.20, 0.42) 0.30 (0.20, 0.40) 
9.85 

(p=.007) 

17.73 
(50-90) 3 0.49 (-0.36, 1.34) 0.46 (-0.32, 0.85) 32.54 
[90-100] 2 1.01 (0.58,1.43) 0.77 (0.67, 0.86) 2.04 

EDA L0 8 0.08 (0.01,0.15) 0.08 (0.01, 0.15) 6.18 
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Automation 
Level 

L2 1 0 (-0.13,0.13) 0.00 (-0.13, 0.13) 38.08 
(p<.001) 

- 
L3 1 1.09 (0.76,1.42) 0.8 (0.64,0.89) - 

M vs. H EDA n-back 
Modality 

Auditory-verbal 7 0.06 (-0.02,0.14) 0.06 (-0.02, 0.14) 
7.60 

(p<.001) 

4.15 
Auditory-manual 2 0.21 (0.06,0.35) 0.21 (0.06, 0.35) 0.18 

visual-verbal 1 1.09 (0.76,1.42) 0.8 (0.64,0.89) - 

 Notes: The bolded pooled r indicates significant (p<.05) associations; The bolded QW indicates the existence of heterogeneity of the metrics.1 



 

 31 

4. DISCUSSION 1 

In this study, we systematically reviewed previous research regarding the 2 

associations between physiological and eye-tracking metrics and cognitive load levels 3 

in vehicles. The n-back tasks, which were commonly adopted to impose cognitive load 4 

in previous driving research, have been used as benchmarks of cognitive load levels 5 

(Janczewski et al., 2021). The random effects meta-analyses were conducted followed 6 

by moderator analyses. 7 

4.1 Associations between the metrics and varying levels of cognitive load 8 

Through meta-analyses, we found that although some metrics were found to be 9 

sensitive to the cognitive load in certain previous studies, they failed to pass the 10 

significance test in our meta-analyses. For example, the LF/HF ratio was found to be 11 

positively associated with the increase of cognitive load in Rahman et al (2020) and 12 

Zheng et al (2021), but it did not achieve statistical significance in our analyses. 13 

At the same time, although it has been widely acknowledged that not all 14 

physiological features are sensitive to all levels of cognitive load (e.g., (Ayres et al., 15 

2021; Li et al., 2022)) our meta-analyses provide further evidence to support this 16 

statement. For example, some metrics were more sensitive to lower levels of cognitive 17 

load compared to higher levels of cognitive load. We call these metrics Sensitive-to-18 

Low Metrics. For example, the power of theta waves at Fp1 was sensitive to the low 19 

to median cognitive load levels with a median association (r=0.41), but it was not 20 

sensitive to higher levels of cognitive load (i.e., between medium and high cognitive 21 
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load levels). This finding is partially in line with the findings in the meta-analysis by 1 

Chikhi et al (2022), who also observed a positive association between the power of 𝜃 2 

wave at the frontal area and high cognitive load. But our research has provided higher 3 

resolution as we quantified more levels of cognitive load. Specifically, some metrics 4 

(e.g., 𝜃-Fp1) may increase rapidly with a small increment of the cognitive load and 5 

reach a plateau at a medium level of cognitive load. This might be because some 6 

physiological indicators may cease to rise beyond a certain threshold, similar to some 7 

observations in brain studies (Bosking et al., 2017). The potential “ceiling effect” of 𝜃-8 

Fp1 may explain our observations, which has also been mentioned by Chikhi et al (2022) 9 

to explain the weaker association between the power of 𝜃  in multitasking versus 10 

single-tasking situation. It is also possible that beyond this “ceiling” point, other neural 11 

mechanisms or states can dominate (e.g., Weiss et al., 1995; Sauseng et al., 2004), and 12 

this may explain the significant difference between low to medium but insignificant 13 

difference between low to high cognitive load in terms of 𝜃 -Fp1. Though future 14 

research is needed to explain this phenomenon, the findings have some practical 15 

implications. Specifically, if we aim to detect medium (e.g., heavy traffic) to high 16 

cognitive load (e.g., heavy traffic and non-driving-related tasks) in drivers, the weights 17 

of sensitive-to-low metrics should be downgraded. 18 

At the same time, some other metrics, for example, pupil size (PS), heart rate (HR), 19 

and skin conductance-electrodermal activity (SC-EDA) demonstrated a consistent 20 

growth relationship with the increase of cognitive load levels. We call these metrics 21 
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High-Resolution Metrics. Specifically, from low to medium, and from medium to high 1 

cognitive load, significant associations were observed for HR, SC-EDA, and PS. 2 

However, we should also be aware that, there are still differences in resolution among 3 

high-resolution metrics. Specifically, HR showed a substantially higher association 4 

strength with cognitive load variations than SC-EDA, and PS from eye-tracking 5 

measures exhibited an even higher association compared to HR and SC-EDA. The 6 

finding regarding HR is consistent with previous meta-analyses in non-driving domains 7 

(Hughes et al., 2019), which also found an association between high cognitive load and 8 

HR. In addition, the superior performance of PS is consistent with previous research 9 

(He et al., 2022) which found that, when predicting drivers' cognitive load states using 10 

five typical machine learning models, feature sets including eye-related measures could 11 

consistently result in high accuracies compared to feature sets with physiological 12 

measures alone. This highlights the superior performance of eye-related measures in 13 

monitoring drivers' cognitive load states (Chen et al., 2022).  14 

In contrast to high-resolution metrics, some metrics were only sensitive from low 15 

to high cognitive load, but cannot differentiate low to medium and medium to high 16 

cognitive load levels. We call these Low-Resolution Metrics. For example, eye blink 17 

rate (EBR), respiration rate (RR), the total power (TP) demonstrated associations 18 

between low and high cognitive load levels only. This suggests that significant changes 19 

in cognitive load are required to induce notable variations in EBR, RR, and TP.  20 
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Finally, we also observed a non-linear relationship between the power spectrum 1 

of θ waves at Fp2 (θ-Fp2) and cognitive load levels. Specifically, we observed a 2 

positive correlation (r = 0.41) from low to medium cognitive load levels, but a negative 3 

correlation (r = -0.24) from medium to high cognitive load levels. Similar to the 4 

findings in θ-Fp1, additional states of the participants might have dominated the EEG 5 

at Fp2 when the task becomes “too difficult”, which may have led to a decrease in θ-6 

Fp2 at some point. In driver state monitoring systems, acknowledging this non-linearity 7 

is vital for accurate assessments. 8 

It should be noted that the categorization of the metrics in this study is range-9 

specific. Specifically, we only considered the cognitive levels from no secondary task 10 

to 2-back task. Even with no secondary task condition, drivers were still responsible for 11 

driving tasks. With lower or higher extreme cognitive load, high- or low-resolution 12 

metrics may be downgraded to sensitive-to-low ones; and with higher resolution of the 13 

cognitive task, the high-resolution metrics may become low-resolution ones. It should 14 

also be noted that previous research indicated that the driving performance measures 15 

may only be sensitive to high cognitive load (Yang et al., 2023). As for physiological 16 

and eye-tracking measures, we did not observe any that can differentiate medium to 17 

high cognitive load levels only. Thus, it seems that physiological and eye-tracking 18 

measures and driving performance measures may complement each other in driver-19 

monitoring tasks. 20 

 21 
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4.2 Moderators 1 

First of all, as expected, the n-back task version can moderate the association 2 

between pupil size and cognitive load from low to medium levels. Specifically, the 3 

repeating version of the n-back task led to significant associations in the repeating and 4 

matching versions, but not in the counting version. It is likely that the increased 5 

cognitive demand to remember the running total number of cases in the counting 6 

version led to an already high cognitive load even in the 1-back task and thus shadowed 7 

the effect of the additional cognitive load in the 2-back task. Though future research is 8 

needed to validate this hypothesis, the finding reveals the influence of task 9 

characteristics in modulating the cognitive-related eye-tracking metrics.  10 

At the same time, we notice that the associations between HR and SC-EDA and 11 

cognitive load levels were moderated by the automation levels. Specifically, the 12 

associations between the HR and SC-EDA and the cognitive load were the strongest in 13 

vehicles with SAE Level 3 automation, both from low to medium and from low to high 14 

levels of cognitive load. It is possible that the drivers in SAL Level 3 vehicles are freed 15 

from continuous vehicle controlling tasks and they may experience the lowest workload 16 

in driving. Thus, the cognitive load imposed by the n-back task is less likely to be 17 

shadowed by the variations of task load in driving tasks. This finding suggests that 18 

different features and different algorithms may need to be designed for driver cognitive 19 

load detection in vehicles with driving automation, which is still lacking. To the best of 20 
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our knowledge, only one study has focused on the driver cognitive load estimation 1 

algorithms in vehicles with driving automation (Meteier et al., 2021). 2 

Moreover, in addition to automation levels, the associations were also moderated 3 

by the n-back task modality. Specifically, our analysis reveals that the correlation 4 

between HR and SC-EDA and cognitive load is most pronounced in the visual-verbal 5 

n-back tasks. It is likely that the high demand of visual resources in driving competes 6 

with the visual component in the visual-manual n-back tasks and thus leads to high 7 

sensitivity of the HR and SC-EDA to the visual-verbal n-back task. However, it should 8 

be noted that the visual component is not a cognitive component, and thus, the high 9 

associations of HR and SC-EDA might be the result of increased stress during the task 10 

(De Looff et al., 2018; Liu & Du, 2018) This finding indicates that the experiment 11 

settings may affect the physiological and eye-tracking measures (Nilsson et al., 2022).  12 

Additionally, we observed that the characteristics of the participants may also 13 

affect the association between cognitive load and physiological responses, with male 14 

participants leading to a stronger association between HR and low to high levels of 15 

cognitive load. This highlights the importance of considering participant characteristics 16 

when designing driver monitoring systems. 17 

Finally, it should be noted that heterogeneity has still been observed in most of the 18 

sub-groups, indicating that additional moderating factors may still exist. Future 19 

research is still needed to explore these factors and thus better guide the design of the 20 

driver monitoring systems. 21 
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4.3 Limitations and Future Directions 1 

The current investigation presents several limitations. Firstly, the included 2 

investigations only considered the cognitive load imposed by the n-back tasks. 3 

Although n-back tasks have been widely adopted as a method for inducing cognitive 4 

load in traffic research. (Janczewski et al., 2021), other cognitive load induction tasks, 5 

such as mathematical tasks, may also be considered if their difficulty levels are 6 

quantified (Yang et al., 2023). Second, four studies were excluded from the present 7 

investigation due to the absence of required information for meta-analysis (Barua et al., 8 

2017; Chihara et al., 2020; Solovey et al., 2014; Zhen et al., 2016). Consequently, 9 

though the meta-analysis based on a small sample size may still provide insights into 10 

potential trends and differences (Zheng, 2013), conclusions from our study should still 11 

be interpreted with caution, given that the associations between various metrics and 12 

cognitive load identified in our study are based on a limited number of studies. For 13 

similar reasons, the current investigation examined only a few potential moderators and 14 

some subgroups in the subgroup analyses contained relatively small numbers of studies. 15 

Finally, it should be noted that most of the research was conducted in simulators, and 16 

given the nature of the n-back task, some of the measures may be different from what 17 

they are in a natural driving condition (e.g., the response modality of the n-back task 18 

instead of cognitive load may have a strong influence on respiration rate and the 19 

complex lighting condition on a public road may shadow the influence of cognitive load 20 



 

 38 

on pupil size). Future research should be re-conducted when a larger sample size 1 

becomes available.  2 

5. CONCLUSIONS 3 

Despite the extensive research on the use of physiological and eye-tracking 4 

measures to assess cognitive load in driving, researchers have not reached a consensus 5 

on their associations with cognitive load. Based on a systematic review and a meta-6 

analysis, for the first time, we quantified the association between physiological and eye-7 

tracking metrics and cognitive load in driving. We identified four types of metrics, i.e., 8 

sensitive-to-low ones that can only differentiate the low (no secondary task or 0-back) 9 

to medium (1-back) level of cognitive load (including the power spectrum of θ waves 10 

of electroencephalogram at Fp1 channel); low-resolution ones that can only 11 

differentiate low and high cognitive load (including the overall power spectrum of 12 

electrocardiogram, eye blink rate and respiration rate) and others that show non-linear 13 

patterns with the increase of cognitive load (i.e., the power spectrum of θ waves at Fp2 14 

channel). Furthermore, it has been found that n-back task versions, the modality of n-15 

back tasks, the level of automation, and the percentage of male participants could 16 

moderate the associations between metrics and cognitive load. 17 

This study, through a meta-analysis, offers a new perspective in understanding the 18 

relationship between physiological and eye-tracking metrics and different cognitive 19 

load levels and provides new insights into resolving the debates in this area. The 20 

findings highlight the importance of considering individual heterogeneity, driving 21 
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automation, data collection environment, and metric characteristics when developing 1 

algorithms for driver cognitive load estimation. Future research should further validate 2 

our findings when more data and research become available. 3 
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