
 1 

CogFormer: Aligned-attention Transformer-based Multi-physiological signals Fusion 1 
for Driver Cognitive Load Estimation in Conditional Automated Driving  2 
 3 
Ange Wang 4 
Intelligent Transportation Thrust, Systems Hub 5 
The Hong Kong University of Science and Technology (Guangzhou), China 6 
Email: awang324@connect.hkust-gz.edu.cn 7 
 8 
Haohan Yang 9 
School of Mechanical and Aerospace Engineering 10 
Nanyang Technological University, Singapore 11 
Email: haohan.yang@ntu.edu.sg 12 
 13 
Jiyao Wang 14 
Robotics and Autonomous Systems Thrust, Systems Hub 15 
The Hong Kong University of Science and Technology (Guangzhou), China 16 
Email: jwang297@connect.hkust-gz.edu.cn 17 
 18 
Hai Yang 19 
Chair Professor 20 
Department of Civil and Environmental Engineering 21 
The Hong Kong University of Science and Technology, Hong Kong SAR, China 22 
Email: cehyang@ust.hk 23 
  24 
Dengbo He 25 
Assistant Professor, Corresponding author 26 
Intelligent Transportation Thrust, Systems Hub 27 
The Hong Kong University of Science and Technology (Guangzhou), China 28 
HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 29 
Email: dengbohe@hkust-gz.edu.cn 30 
 31 
Word Count: 1,693 words + 4 tables/figures 32 
 33 
Submitted [November, 19, 2024] 34 
 35 
Statement of Significance (Relevance of Research) 36 
This research introduces CogFormer, a decision-level fusion model to accurately estimate 37 
driver cognitive load in conditional automated vehicles. By integrating physiological signals 38 
with an attention mechanism, CogFormer provides robust and real-time estimation of driver 39 
state, surpassing existing models in accuracy. The findings have implications for enhancing 40 
safety in SAE Level 3 and above by enabling cognitive load estimation for adaptive support 41 
systems, including but not limited to takeover assistance and fatigue monitoring. This research 42 
will be relevant to TRB attendees who are interested in driver monitoring, intelligent 43 
transportation systems, and smart cabins. 44 
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INTRODUCTION 1 
Human error is recognized as one of the dominating factors in road accidents (1). Compared to 2 
driving tasks that are visually and manually demanding, the cognitive demanding tasks can be 3 
more safety-critical, and thus drivers’ performance in these tasks has been widely adopted as 4 
key metrics differentiating novice and experienced drivers (2). The introduction of infotainment 5 
functions in the smart cabin and the prevalence of bring-in smart devices may also increase the 6 
task load of drivers. 7 

The high cognitive load in driving has been found to be closely related to driving 8 
safety. For example, a high cognitive load may lead to delayed responses to emergency events 9 
(3), visual tunnel effect (4), decreased ability to anticipate hazards (5). The introduction of 10 
driving automation may be a solution, as a lower overall task load has been observed in vehicles 11 
equipped with advanced driving automation systems (ADASs) (6). However, some studies 12 
found that ADAS can increase drivers’ cognitive load due to the additional responsibility to 13 
monitor automation (7). 14 

Most of the previous cognitive load estimation algorithms were developed for non-15 
automated vehicles, which may not apply to vehicles with ADAS. For example, the study by 16 
Wiediartini et al. (8) revealed significant differences in fixation duration and pupil diameter 17 
across the three task difficulty levels of memory and arithmetic tasks. This discrepancy in 18 
physiological measures has also been observed between manual and automated driving.   19 

To the best of our knowledge, we can only identify three studies that focused on high 20 
cognitive load estimation in vehicles with driving automation (9–11), and most of the existing 21 
driver cognitive estimation approaches (including the ones for non-automated vehicles and 22 
vehicles with driving automation) have two major limitations: 23 
• Most previous models relied on manual feature extraction of physiological features (3, 11, 24 

12), for example, heart rate (HR) extracted from electrocardiogram (ECG) (13), and 25 
respiratory rate extracted from respiratory signals (RESP) (14). While satisfactory accuracy 26 
has been achieved in previous research, the extraction of these handcrafted low-level features 27 
is computational costing and may lead to loss of information in the raw signals. 28 

• Most driver cognitive load estimation studies used classical machine learning models that 29 
ignored the temporal-spatial dependency of physiological signals. Only a few studies used 30 
Recurrent Neural Networks (RNNs) (12) and Long Short-Term Memory (LSTM) networks 31 
(15) that could consider temporal information for driver cognitive load estimation. However, 32 
RNN or LSTM may still neglect the long-distance temporal dependencies present in time 33 
series and previous studies did not fuse multiple physiological features, ignoring the spatial 34 
dependency among signals. 35 

To address the aforementioned challenges, in this study, we proposed an Attention-36 
Aligned Transformer algorithm for Cognitive (CogFormer) load estimation in vehicles with 37 
driving automation by integrating ECG, electrodermal activity (EDA), and RESP signals. 38 
 39 
METHODOLOGY 40 
The aligned attention mechanism is the most important component of CogFormer which 41 
integrates multiple physiological signals, i.e., ECG, RESP, and EDA signals, by utilizing self-42 
attention and aligned attention. Self-attention captures dependencies within each signal type, 43 
while aligned attention aligns and integrates information across different signals. This approach 44 
allows the model to weigh and combine the most relevant features from each signal, creating a 45 
cohesive and comprehensive representation. The ability of the mechanism to fuse diverse data 46 
sources can allow the model to understand and predict physiological patterns by capturing 47 
complex interdependencies. Cross-modal attention and self-attention mechanisms are 48 
expressed by equations (1) and (2), respectively. 49 
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 3 
         FIGURE 1 Overview of the proposed CogFormer for driver cognitive load detection. 4 
 5 
EXPERIMENT AND  DATASET 6 
   We tested our model on the mathematical and autonomous driving tasks dataset (MADT-D) 7 
published by the University of Applied Sciences and Arts of Western Switzerland (16). The 8 
MADT-D consists of driving data from 90 participants (with two participants deemed invalid). 9 
In the experiment, half of the participants were instructed to perform a cognitive task known as 10 
the oral digit span counting task, requiring them to verbally count backward from 3,645 in 11 
decrements of 2 (labeled as high cognitive load), while the rest half conducted a driving task 12 
only (labeled as low cognitive load). To ensure that both load levels appear in the leave-one-13 
out test, we combined one participant performing the non-driving-related tasks (NDRTs) with 14 
one participant not performing the NDRT to form a new subject. Consequently, there are a total 15 
of 44 new participants. Similarly, in the experiment, the physiological data, i.e., EDA, RESP, 16 
and ECG, were collected using sensors by BioPac at a frequency of 1,000Hz in the dataset. The 17 
differences in subjective ratings of cognitive load between tasks were validated in Meteier et al. 18 
(9). We extracted data spanning 10 minutes from the cognitive load phase in the MADT-D 19 
dataset. 20 

Apart from our own dataset, to better validate our proposed model, we also constructed 21 
a dataset, named CAM-CLD, which focuses on drivers’ cognitive states in simulated SAE 22 
Level-3 vehicles. The details of the experiment for CAM-CLD are provided below. This study 23 
was approved by the Hong Kong University of Science and Technology (HREP-2023-0199). 24 

                       25 
Participants    26 
In total, 42 drivers (25 males, 17 females, aged 23-53) were recruited, ensuring a balanced age 27 
distribution to improve generalizability. All had at least one year of licensed driving experience 28 
and were compensated at a rate of 70 RMB per hour. 29 
 30 
Cognitive Load Tasks 31 
Three kinds of NDRTs used in CAM-CLD, i.e., the n-back task in which participants needed 32 
to recall stimuli presented n positions earlier (0-, 1-, 2-back) (17); math calculation task, in 33 
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which the participants needed to verbally count backward from 3000 by a step of 3 or 5 (9); 1 
and spatial memory, in which participants needed to recall the final direction after listening to 2 
an audio description of a route (18). 3 
 4 
Experiment Design 5 
A 3 (Takeover Scenarios) by 7 (NDRTs) within-subject design was used. Each combination of 6 
NDRT type and scenario type happened in one drive, leading to a total of 21 drives. Each drive 7 
was around 7 minutes long, and the takeover scenarios happened near the end of the drive. The 8 
3 takeover scenarios were counterbalanced using a Latin squared design. For each kind of 9 
takeover scenario, the 7 NDRT types were also counterbalanced using a Latin squared design, 10 
leading to 21 unique experimental orders. Each order was experienced by two participants. 11 
Further, after completing all 7 drives for one kind of takeover scenario, participants took a 10-12 
minute break before proceeding to the next 7 drives. 13 
 14 
Procedure 15 
Participants followed pre-experiment instructions and completed a 30-minute orientation. Then, 16 
physiological sensors (ECG, RESP, EDA) and eye-tracking devices were put on and calibrated 17 
before the formal drives. All the physiological data was collected at 100 Hz. 18 
 19 
Signal Preprocessing 20 
Given that we used the raw data as inputs in the model, only noise elimination was conducted 21 
to enhance the quality of the data. Specifically, all signals underwent down-sampling to a 22 
frequency of 100 Hz (from 1000Hz in MADT-D) to optimize computational efficiency and 23 
ensure the consistency between two datasets. For EDA, a low-pass filter with a cutoff frequency 24 
of 5 Hz was employed; while for ECG and RESP, band-pass filters were applied within the 25 
frequency ranges of 3 Hz to 45 Hz and 0.1 Hz to 0.35 Hz, respectively (9). The preprocessing 26 
was executed using Python 3.8. 27 
 28 
RESULTS   29 
Experimental Results and Analysis 30 
              We compared our model to selected learning-based approaches from prior studies for 31 
cognitive load estimation in driving, including MTS-CNN (19), DecNet (20), CNN-LSTM (21), 32 
m-HyperLSTM (22) and ARecNet (23). As shown in Table 1, the model comparison 33 
encompassed various cognitive load tasks, and classification categories, showcasing the model 34 
performance across different time horizons (i.e., the length of physiological signal time series, 35 
represented by 𝑡&).  36 

It can be found that m-HyperLSTM consistently outperformed MTS-CNN and DecNet. 37 
Nevertheless, our proposed CogFormer consistently achieved the highest accuracy in all models. 38 
Furthermore, we observed that for some tasks, increasing the time horizon did not necessarily 39 
lead to an increase in recognition accuracy. The increased time horizon may have introduced 40 
some noise in the inputs for some tasks. Although the CogFormer can capture long-term 41 
temporal information, it may still not be capable enough to automatically pay attention to high-42 
value information in the data. An improved attention mechanism may be needed to improve the 43 
capability of the model in filtering noise information in long-term temporal sequences.  44 
 45 
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 1 
TABLE 1 Comparison within-subject cognitive load estimation.  2 

Model 𝑡! = 1	𝑠 𝑡! = 3	𝑠 𝑡! = 5	𝑠 
Accuracy (%) F1-score AUC Accuracy (%) F1-score AUC Accuracy (%) F1-scores AUC 

MADT-D: Math task (two classes) 
MTS-CNNΔ 87.71 ± 4.86 0.876 ± 0.044 0.877 ± 0.046 88.83 ± 4.14 0.884 ± 0.042 0.882 ± 0.049 88.29 ± 4.03 0.887 ± 0.042 0.885 ± 0.046 

DecNetΔ 86.76 ± 3.29 0.866 ± 0.035 0.863 ± 0.033 87.27 ± 4.47 0.877 ± 0.046 0.876 ± 0.041 87.45 ± 4.34 0.876 ± 0.043 0.872 ± 0.049 
CNN-LSTMΔ 87.51 ± 4.14 0.871 ± 0.043 0.879 ± 0.042 87.87 ± 5.63 0.876 ± 0.053 0.874 ± 0.048 88.38 ± 3.59 0.888 ± 0.033 0.881 ± 0.036 

m-HyperLSTMΔ 89.68 ± 5.26 0.898 ± 0.055 0.896 ± 0.053 89.32 ± 5.19 0.894 ± 0.053 0.881 ± 0.051 89.14 ± 4.72 0.892 ± 0.045 0.893 ± 0.046 
ARecNetΦ 92.46 ± 4.22 0.921 ± 0.045 0.919 ± 0.040 91.93 ± 3.12 0.913 ± 0.031 0.911 ± 0.033 92.56 ± 3.38 0.921 ± 0.031 0.922 ± 0.032 

CogFormer (ours)Φ 95.28 ± 3.98 0.952 ± 0.039 0.955 ± 0.037 93.79 ± 4.25 0.938 ± 0.047 0.936 ± 0.044 94.03 ± 3.81 0.944 ± 0.039 0.947 ± 0.035 
CAM-CLD: Spacial task (two classes) 

MTS-CNNΔ 86.08 ± 2.85 0.863 ± 0.026 0.865 ± 0.027 87.34 ± 2.39 0.874 ± 0.022 0.879 ± 0.021 88.57 ± 1.97 0.882 ± 0.022 0.885 ± 0.021 
DecNetΔ 86.91 ± 2.43 0.867 ± 0.028 0.863 ± 0.023 86.23 ± 1.47 0.867 ± 0.017 0.866 ± 0.016 88.06 ± 2.44 0.888 ± 0.024 0.882 ± 0.025 

CNN-LSTMΔ 89.46 ± 2.32 0.899 ± 0.027 0.898 ± 0.026 88.41 ± 2.52 0.887 ± 0.027 0.884 ± 0.023 89.46 ± 2.37 0.892 ± 0.026 0.894 ± 0.023 
m-HyperLSTMΔ 88.64 ± 3.76 0.884 ± 0.034 0.889 ± 0.036 88.96 ± 1.29 0.886 ± 0.016 0.884 ± 0.014 89.32 ± 3.45 0.898 ± 0.032 0.893 ± 0.036 

ARecNetΦ 91.92 ± 2.46 0.912 ± 0.027 0.909 ± 0.028 90.09 ± 1.33 0.897 ± 0.015 0.890 ± 0.013 91.49 ± 2.96 0.916 ± 0.029 0.918 ± 0.027 
CogFormer (ours)Φ 93.05 ± 2.39 0.932 ± 0.026 0.931 ± 0.023 91.68 ± 1.68 0.918 ± 0.013 0.921 ± 0.018 93.63 ± 2.12 0.934 ± 0.023 0.931 ± 0.022 

CAM-CLD: Math task (three classes) 
MTS-CNNΔ 85.16 ± 3.18 0.854 ± 0.035 0.852 ± 0.036 86.28 ± 3.13 0.867 ± 0.034 0.864 ± 0.032 86.99 ± 2.35 0.868 ± 0.021 0.865 ± 0.026 

DecNetΔ 85.59 ± 2.75 0.858 ± 0.025 0.853 ± 0.026 86.64 ± 2.92 0.863 ± 0.027 0.863 ± 0.029 87.37 ± 2.51 0.870 ± 0.025 0.872 ± 0.024 
CNN-LSTMΔ 86.86 ± 2.27 0.864 ± 0.022 0.862 ± 0.021 87.59 ± 2.23 0.879 ± 0.021 0.877 ± 0.023 87.98 ± 3.12 0.879 ± 0.034 0.872 ± 0.037 

m-HyperLSTMΔ 87.99 ± 2.36 0.872 ± 0.025 0.876 ± 0.023 87.87 ± 2.13 0.875 ± 0.023 0.879 ± 0.019 88.25 ± 2.55 0.888 ± 0.022 0.885 ± 0.027 
ARecNetΦ 88.28 ± 2.16 0.889 ± 0.020 0.884 ± 0.022 88.17 ± 3.37 0.883 ± 0.039 0.882 ± 0.032 89.23 ± 2.13 0.894 ± 0.025 0.901 ± 0.022 

CogFormer (ours)Φ 91.13 ± 1.31 0.909 ± 0.012 0.910 ± 0.015 90.64 ± 2.43 0.902 ± 0.023 0.904 ± 0.022 91.92 ± 2.36 0.920 ± 0.022 0.921 ± 0.026 
CAM-CLD: n-back task (four classes) 

MTS-CNNΔ 84.35 ± 3.08 0.841 ± 0.032 0.842 ± 0.031 84.93 ± 2.55 0.846 ± 0.026 0.845 ± 0.023 85.33 ± 2.14 0.856 ± 0.023 0.852 ± 0.021 
DecNetΔ 84.26 ± 2.09 0.848 ± 0.021 0.845 ± 0.019 85.01 ± 2.58 0.855 ± 0.025 0.851 ± 0.026 85.43 ± 2.33 0.851 ± 0.024 0.856 ± 0.024 

CNN-LSTMΔ 85.88 ± 2.94 0.859 ± 0.029 0.850 ± 0.030 85.12 ± 2.64 0.858 ± 0.024 0.852 ± 0.025 85.36 ± 2.19 0.858 ± 0.023 0.851 ± 0.021 
m-HyperLSTMΔ 85.85 ± 2.57 0.854 ± 0.025 0.857 ± 0.026 84.47 ± 2.26 0.845 ± 0.023 0.841 ± 0.021 86.17 ± 2.21 0.864 ± 0.024 0.867 ± 0.026 

ARecNetΦ 86.17 ± 1.52 0.862 ± 0.016 0.869 ± 0.014 85.13 ± 1.54 0.858 ± 0.016 0.852 ± 0.018 87.42 ± 1.74 0.872 ± 0.017 0.870 ± 0.016 
CogFormer (ours)Φ 88.72 ± 1.78 0.890 ± 0.019 0.892 ± 0.018 87.67 ± 1.44 0.878 ± 0.014 0.872 ± 0.015 88.14 ± 1.88 0.882 ± 0.018 0.885 ± 0.017 

Notes: Δ means feature-level fusion model, Φ means decision-level fusion model. 3 
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Ablation Experiment 1 
Ablation experiments revealed that the Aligned Attention module consistently enhances spatial 2 
feature capture, outperforming traditional transformers. Multi-stream Encoding excels with shorter 3 
historical horizons, while concatenated encoding improves with longer horizons. Results indicate 4 
that Aligned Attention strengthens multimodal information representation in extended sequences 5 
(see Table 2). 6 
 7 
TABLE 2 Ablation study with different historical horizons on recognition accuracy with various 8 
cognitive tasks. 9 

 Variants CogFormer 
Multi-stream Encoding × √ √ 

Aligned Attention × × √ 
MADT-D: Math task 

𝑡" = 1	𝑠 91.41 (↓3.87%) 91.85 (↓3.43%) 95.28 
𝑡" = 3	𝑠 90.47 (↓3.32%) 90.64 (↓3.55%) 93.79 
𝑡" = 5	𝑠 91.58 (↓2.45%) 91.06 (↓2.97%) 94.03 

CAM-CLD: Spacial task 
𝑡" = 1	𝑠 88.51 (↓4.54%) 89.23 (↓3.82%) 93.05 
𝑡" = 3	𝑠 88.03 (↓3.65%) 88.34 (↓3.34%) 91.68 
𝑡" = 5	𝑠 90.61 (↓3.02%) 90.50 (↓3.13%) 93.63 

CAM-CLD: Math task 
𝑡" = 1	𝑠 87.70 (↓3.43%) 87.87 (↓3.26%) 91.13 
𝑡" = 3	𝑠 85.99 (↓4.65%) 86.99 (↓3.65%) 90.64 
𝑡" = 5	𝑠 88.10 (↓3.82%) 88.21 (↓3.71%) 91.92 

CAM-CLD: n-back task 
𝑡" = 1	𝑠 82.96 (↓5.76%) 84.18 (↓4.54%) 88.72 
𝑡" = 3	𝑠 82.96 (↓4.71%) 83.66 (↓4.01%) 87.67 
𝑡" = 5	𝑠 84.91 (↓3.23%) 84.93 (↓3.59%) 88.14 

 10 
Robustness Testing 11 
In practical applications, time series signals are affected by missing values and Gaussian White 12 
Noise (GWN). Robustness tests showed that CogFormer consistently outperforms ARecNet in 13 
handling these distortions, except slightly in the math task under mixed conditions. This highlights 14 
CogFormer’s superior robustness with its parallel transformer and coherent attention mechanism, 15 
see Table 3. 16 
 17 
  18 
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TABLE 3 Comparison of recognition accuracy in the decision-fusion models with varied information 1 
distortions when tw=5s. 2 

Model Normal 
(%) 

Missing 
10% 
(ℳ) 

Missing 
20% 
(ℳ) 

Missing 
30% 
(𝛼) 

Missing 
30% 
(𝛽) 

Missing 
30% 
(𝛾) 

GWN 
𝜎=0.1 

GWN 
𝜎=0.2 

Mixed 
distortion 

MADT-D: Math task 

CogFormer 
(Proposed) 94.03 92.80 

(↓1.23) 
91.36 

(↓2.67) 
92.39 

(↓1.64) 
92.70 

(↓1.33) 
92.74 

(↓1.29) 
93.61 

(↓0.42) 
92.30 

(↓1.73) 
90.80 

(↓3.23) 
ARecNet 

(Contrastive) 92.56 90.81 
(↓1.75) 

88.75 
(↓3.81) 

90.20 
(↓2.36) 

90.35 
(↓2.21) 

91.18 
(↓1.38) 

91.85 
(↓0.71) 

90.00 
(↓2.56) 

87.14 
(↓5.42) 

CAM-CLD: Spacial task  

CogFormer 
(Proposed) 93.63 91.87 

(↓1.76) 
91.51 

(↓2.12) 
91.86 

(↓1.77) 
92.39 

(↓1.24) 
91.60 

(↓2.03) 
93.27 

(↓0.36) 
91.18 

(↓2.45) 
89.61 

(↓4.02) 
ARecNet 

(Contrastive) 91.49 89.36 
(↓2.13) 

87.98 
(↓3.51) 

89.52 
(↓1.97) 

89.46 
(↓1.03) 

88.94 
(↓2.55) 

90.82 
(↓0.67) 

88.33 
(↓3.16) 

86.87 
(↓4.62) 

CAM-CLD: Math task 

CogFormer 
(Proposed) 91.92 90.29 

(↓1.63) 
88.81 

(↓3.11) 
90.18 

(↓1.74) 
90.79 

(↓1.13) 
89.77 

(↓2.15) 
91.29 

(↓0.63) 
89.76 

(↓2.16) 
86.39 

(↓5.53) 
ARecNet 

(Contrastive) 89.23 87.71 
(↓1.52) 

86.21 
(↓3.02) 

86.78 
(↓1.45) 

87.31 
(↓1.92) 

86.77 
(↓2.46) 

88.88 
(↓0.35) 

86.47 
(↓1.76) 

83.99 
(↓5.24) 

CAM-CLD: n-back task 

CogFormer 
(Proposed) 88.14 85.50 

(↓2.64) 
83.71 

(↓4.43) 
85.83 

(↓2.31) 
86.12 

(↓2.02) 
86.00 

(↓2.14) 
87.22 

(↓0.92) 
84.80 

(↓3.34) 
81.73 

(↓6.41) 
ARecNet 

(Contrastive) 87.42 83.89 
(↓3.53) 

82.67 
(↓4.75) 

85.25 
(↓2.17) 

85.89 
(↓1.53) 

85.22 
(↓2.20) 

86.09 
(↓1.33) 

83.41 
(↓4.01) 

80.20 
(↓7.22) 

Note: ECG, RESP, EDA - ℳ, ECG -𝛼, RESP -𝛽, and EDA -𝛾, GWN -𝜎. 3 
 4 
DISCUSSION AND CONCLUSION 5 
Being different from previous approaches that utilized traditional machine/deep learning models, 6 
we developed a decision-level multi-physiological information fusion architecture to extract 7 
temporal and spatial information from multiple physiological signals. Experimental results 8 
demonstrate that the proposed CogFormer surpassed other baseline models in terms of estimation 9 
accuracy and robustness. In addition, based on the model ablation study and robustness test, we 10 
find that: 11 

The preferred feature combinations for driver state estimation may depend on the type of 12 
targeted tasks, data collection quality, and driving context. Thus, the performance of models based 13 
on handcrafted features and manual feature selection may not be guaranteed in real-world 14 
applications.  15 
• A longer time horizon, though can provide richer information, may not necessarily increase 16 

the model performance, potentially because the models may not be able to capture the complex 17 
features in the data. Thus, the degree of matching between the models and the characteristics 18 
of data should be considered when designing driver state-monitoring algorithms. 19 
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• All models, including our proposed model, were highly susceptible to individual differences 1 
- the performance of all models dropped significantly when across-subjects data partition was 2 
applied, indicating that the models, even with the attention mechanism, may still not be able 3 
to capture the individual-invariant features of high cognitive load states. Future research 4 
should design specific algorithms and structures to handle this issue. 5 

• Though our algorithm was not designed specifically to handle the noise and data distortion, 6 
our model showed better robustness compared to the best baseline model. The noise and 7 
missing data are common in real-world applications. Thus, future research should consider a 8 
more specific algorithm design and validate the proposed model based on real-world datasets. 9 

 10 
 11 
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