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INTRODUCTION

Driver drowsiness and high cognitive load can both negatively impact driving safety. While autonomous
technologies promise to reduce drivers’ cognitive workload and drowsiness by relieving drivers from
driving tasks (1), before fully autonomous vehicle comes, human drivers still must share control with
driving automation systems. Particularly, with the Society of Automotive Engineers (SAE) Level-3 (L3)
advanced driving systems (ADS) (2), the vehicle can control both steering and acceleration/deceleration
but still requires the driver to remain actively engaged and ready to take over at any moment. Given that
drivers are inclined to engage in non-driving-related tasks (NDRTs) with the assistance of driving
automation (3), understanding the impact of NDRTs on the drivers’ states is essential to the driving safety
of SAE Level-3 vehicles.

Since the cognitive resource is multi-dimensional (4), different dimensions of NDRT tasks can
bring disparities in the cognitive load states of drivers. However, during a drive, the effect of long-time
driving and the high cognitive load as a result of NDRTs may co-exist, leading to compounded effects on
drivers’ readiness in driving and driving safety. However, though previous research tried to understand
the relationships between NDRTs and specific driver states with specific variables controlled in
experiments, isolating the effects of specific factors on a state is challenging. Specifically, statistical
regression analysis is a classical method and has been widely used in previous works (3, 5, 6), but linear
regression cannot eliminate the effect of uncontrolled confounders on the dependent variables. Thus,
conclusions retrieved from previous studies may have been biased by these compound effects and
whether specific NDRT affects cognitive load directly or through driving fatigue is unknown. In addition,
past research has pointed out that individual heterogeneity (7) has a significant influence on a driver’s
cognitive state (8, 9) and fatigue development (10, /1) during driving. However, it is still difficult to tell
whether one demographic feature impacts cognitive load and drowsiness directly or through affecting
other states of drivers. Similarly, when measuring fatigue and cognitive workload through physiological
and eye-tracking measures (/2—14), linear correlation analyses may be insufficient to decouple the dual
effect of the states. Hence, new approaches to isolate the co-effects of driver states are needed.

Inspired by the research in economics, a double/debiased machine learning (DML) (15) approach
is introduced in our work. By specifying the confounding variable W, feature X, the treatment variable T,
and outcome Y, the DML is able to precisely pinpoint the direct causal effect of concern and eliminate the
spurious bias from confounders based on Neyman-orthogonal and K-fold cross-fitting (/6). We propose
four research questions: RQ1: How are states affected by NDRTs and the progress of the experiment (i.e.,
time) among the population? RQ2: Excluding the influence of NDRT and time, whether/how does
individual heterogeneity affect cognitive load and drowsiness? RQ3: Excluding the influence of
individual heterogeneity, what are the relationships between symbols and states? RQ4: Excluding the
influence of individual heterogeneity and cross-effect between states, what are the relationships between
symbols and a single state?

METHODS
A driving simulation experiment with a within-subject design was adopted. By varying the types and
difficulty levels of cognitive NDRTs, we aim to understand how these different demands can influence
drives’ physiological and eye movement responses. Table 1 presents an overview of the three types of
cognitive tasks (6 specific tasks) we adopted in this study plus a baseline without NDRT tasks. For each
NDRT, each participant went through 3 drives, leading to 21 drives in total. A Latin-square design was
adopted to minimize the effect of trail order, leading to 21 orders in total. In this study, a total of 42
drivers (24 males, and 18 females) were recruited.

All drives were on two-way six-lane highways with a speed limit of 120 kilometers per hour and
a traffic density of 6 vehicles per kilometer per lane. However, the top speed of the driving automation
was 110 kilometers per hour. In manual driving mode, drivers were required to drive in the middle lane.
Each drive was approximately 7 kilometers long.
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TABLE 1 Summary of Cognitive Load Tasks (NDRTSs) Used in Our Study

Task Type Description Task Level(s) Cognitive

Resource
N-back Task A series of stimuli numbers are 0-back (NBO0), 1-back (NB1), Memory
(17) presented with a pause between 2-back (NB2) tasks.

each. Participants recall and
verbally report the stimulus that is
n positions earlier.

Math Task (/8) Oral backward counting from Counting backward by 3 Calculation
3,000 by increments of 3 or 5. (MTT1) or 5 (MT2) from
3,000.
Spatial Task Participants listen to an audio clip ~ "What direction is this person Spatial
(19) describing a route and identify the ~ when he goes to the north Processing
direction faced at the end, station and moves two
simulating cognitive task in stations clockwise?"
navigation tasks. (Answer: East) (ST)

Individual Characteristics
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Figure 1 Brief illustration of constructed models. The green node indicates feature X; The orange
node means outcome Y; The grey node means confounders W; and the blue node means treatment
T. We are interested in the coefficients of the model of the black edge, and the treatment effect on
the outcome for red edges.

DML was first proposed in (/5) and widely used in econometrics (20, 21). It integrates machine
learning methods with traditional statistical inference to estimate causal effects. This approach ensures
that the estimation of the causal effect remains robust and unbiased. The term "double" comes from the
two-step process involved: 1) get residual from the outcome model predicting the relationship between
outcome Y and features X and W; 2) get residual from the treatment model which models the effect of
features X and W on the treatment T. Then, fit a new model targeting the residual of Y using X and
residual of T to obtain unbiased estimation and control impacts of uncontrollable confounders W.
Compared to statistical regression, DML also retains the explanatory power of statistical inference.
Except for the better performance on high-dimensional data and avoiding over-fitting (/5), DML can get
the effect of applying T (i.e., Average Treatment Effect, ATE) by simulating an experimental-control
group on the same batch of samples with X feature, and exclude the interference of W. Another
advantage of DML is that it can obtain the Conditional Average Treatment Effect (CATE) of T for X, i.e.,
the difference in the average effect of T when it is applied to a specific group of samples (22). We
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adopted the “LinearDML” function in the 0.15.0 version of “EconML ” package (23) in Python for
modeling. Compared to other DML methods, LinearDML in EconML adopts the linear parametric method
and enables the model to have interpretable model parameters. The two-step process was instantiated by
gradient boost machines following previous work (24), and a 5-fold cross-fitting was used to avoid over-
fitting. To better present the differences in the driver population due to individual heterogeneity, we used
“SingleTreeCatelnterpreter” function in EconML to interpret the model.

TABLE 2 Significant (p <.05) Coefficients of Models

Model X Y T Estimation  SE Z Stat  p- 95%CI- 95%CI-
value  lower upper
(a) Trust NASA Time 0.007 0.003 2.517 .01 0.002 0.011
DriveD  KSS Time  0.019 0.009 2.084 .04 0.004 0.035
(b) Trust NASA NBI1 0.182 0.063 2.884 .004 0.078 0.286
Age NASA ST 0.315 0.078 4.021 <.0001 0.186 0.444
Age KSS NB1 0.064 0.026 2.509 .01 0.022 0.107
Age KSS NB2  0.052 0.025 2.112 .04 0.012 0.093
(d) Trust NASA NBI1 0.154 0.064 2382 .02 0.048 0.260
Age NASA ST 0.176 0.077 2294 .02 0.050 0.303
(e) SCR NASA KSS -0.122 0.058 -2.098 .04 -0.218 -0.026
(f) SCR KSS NASA -0.015 0.007 -2.095 .04 -0.026 -0.003
RMSSD KSS NASA 0.029 0.009 3.068 .002 0.013 0.045
SDNN  KSS NASA -0.053 0.017 -3.073 .002 -0.081 -0.025
HF KSS NASA 0.169 0.079 2.134 .03 0.039 0.299

Note: In this table, for the effect of discrete treatment NDRT on the association between X and Y, the baseline is the
control group T0.

RESULTS

In total, 8 models were built to answer the four research questions. A brief illustration of models is
provided in Figure 1. Specifically, Model (a)(b) is for RQ1, (c)(d) is for RQ2, (e)(f) is for RQ3, and (g)(h)
is for RQ4. The coefficients between features (X) and the outcome (Y) of each model are presented in
Table 2. The ATE and CATE are summarized in Table 3, respectively.

In response to RQ1, based on the results of Model (a) in Table 2, we found that considering the
influence of Time on the variation of NASA and KSS, Trust and DriveD were still positively associated
with NASA and KSS, respectively. At the same time, a significant effect of Time on KSS was identified,
but not on NASA. We noticed that, for those with high Trust (Trust>38.5), with the increase of Time,
their NASA and KSS scores all increased in general. Particularly, those who have low trust and longer
driving distances (DriveD), and females with high trust present higher sensitivity to Time (i.e., larger
CATE).

For Model (b), as shown in Table 3, we first found that when drivers were conducting specific
NDRTs, their Age and Trust were positively correlated with NASA and KSS in most cases. Moreover,
seeing Table 3, compared to Base, all NDRTs contributed to higher NASA and lower drowsiness scores.
We found that conducting any NDRTs can significantly reduce the KSS score. This effect also varies
across tasks: overall, those tasks that lead to higher NASA led to lower KSS, although there were some
comparisons that failed to reach significance level (p > .05). It is worth noting that as there are
interactions between KSS and NASA, the accuracy of current differences in ATE comparisons between
tasks cannot be ensured.

Therefore, we next refer to the results of Model (c)(d). According to Table 3, after the impact
from NASA was removed, we noticed there is no significant correlation between Individual
Characteristics and KSS score in Model (c). Besides, there is also no significant ATE of Time on the KSS
score. To further verify it, we constructed another model (X= Individual Characteristics; Y=KSS; T=Time;
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W=NASA and NDRT) and we still found no significant ATE of NDRT on KSS, which is opposite to the
results of Model (b). For Model (d), we excluded the effect from KSS to NASA. Then, we identified that,
with the increase in Trust and Age, drivers who were conducting NB1 and ST would perceive a higher
cognitive workload. This finding is close to Model (b). These results indicate the necessity to detangle the
mutual influence of multiple driver states using the DML approach in order to better reveal the influential
factors of drivers’ states.

TABLE 3 Significant (p <.05) ATE of Discrete Treatment NDRT Analysis of Models

Model Y 70 T1 Estimation SE Z Stat p-value  95%CI- 95%CI-
lower upper
b) NASA Base  NBO  2.150 0.389 5.519 <.0001  1.509 2.790
NBI  4.891 0.401 12.182 <.0001  4.230 5.551
NB2 9342 0.427 21.870 <.0001  8.639 10.044
MTI  6.910 0.438 15.775 <.0001  6.190 7.631
MT2  4.106 0.410 10.017 <.0001  3.431 4.780
ST 8.487 0.456 8.615 <.0001  7.737 9.237
NBO NB1  2.741 0.386 7.093 <.0001  2.105 3.377
NB2  7.192 0.413 17410 <.0001  6.512 7.871
MT1  4.760 0.424 11.225 <.0001  4.063 5.458
MT2  1.956 0.395 4.946 <.0001  1.305 2.606
ST 6.338 0.443 14.297 <.0001  5.608 7.067
NBI NB2 4451 0.424 10.491 <.0001  3.753 5.149
MTI  2.019 0.439  4.605 <.0001  1.298 2.741
ST 3.597 0.456  7.893 <.0001  2.847 4.346
NB2 MTI  -2.431 0.460 -5.288 <.0001  -3.188 -1.675
MT2  -5.236 0.434 -12.074  <.0001  -5.949 -4.523
MT1 MT2  -2.804 0.446 -6.288 <.0001  -3.538 -2.071
ST 1.577 0.488 3.229 .001 0.774 2.381
MT2 ST 4.382 0.463 9.456 <.0001  3.620 5.144
KSS Base  NBO -0.334 0.140 -2.380 .02 -0.565 -0.103
NBI  -0.410 0.147 -2.782 .005 -0.653 -0.168
NB2 -0.713 0.149 -4.793 <.0001  -0.958 -0.469
MTI  -0.625 0.140 -4.477 <.0001  -0.855 -0.396
MT2  -0.344 0.146 -2.358 .02 -0.585 -0.104
ST -0.710 0.133 -5.354 <.0001  -0.928 -0.492
NBO NB2  -0.379 0.148 -2.563 .01 -0.622 -0.136
MTI  -0.291 0.139 -2.091 .04 -0.520 -0.062
ST -0.376 0.132  -2.845 .004 -0.593 -0.159
NB1 ST -0.300 0.139 -2.152 .03 -0.529 -0.071
NB2 MT2  0.369 0.154 2.404 .02 0.117 0.622
MT2 ST -0.366 0.138 -2.652 .008 -0.592 -0.139
(d) NASA Base  NBO 1416 0.394 3.597 <.0001  0.768 2.063
NBI  4.037 0.395 10.216 <.0001  3.387 4.687
NB2 8333 0.450 18519 <.0001  7.593 9.073
MT1  6.238 0.438 14.236 <.0001 5517 6.958
MT2  3.645 0.384 9.484 <.0001  3.013 4.278
ST 7.310 0.445 16418 <.0001  6.578 8.043
NBO NBI  2.622 0.377 6.952 <.0001  2.001 3.242
NB2 6917 0.429 16.136 <.0001  6.212 7.622
MTI  4.822 0.417 11.564 <.0001  4.136 5.508
MT2 2230 0.364 6.120 <.0001  1.631 2.829
ST 5.895 0.424 13.905 <.0001  5.197 6.592
NBI NB2  4.296 0.434  9.909 <.0001  3.583 5.009
MT1  2.200 0.426 5.170 <.0001  1.500 2.901



Jivao Wang, Ange Wang, Song Yan, Dengbo He, and Kaishun Wu

ST 3.273 0.431 7.586 <.0001  2.563 3.983
NB2 MTI  -2.095 0.471 0.471 <.0001  -2.869 -1.321
MT2  -4.687 0.427 -10.990  <.0001  -5.389 -3.986
ST -1.023 0.477 -2.144 .03 -1.807 -0.238
MTI MT2  -2.592 0.418 -6.206 <.0001  -3.279 -1.905
ST 1.073 0.467 2.298 .02 0.305 1.840
MT2 ST 3.665 0.423  8.656 <.0001  2.968 4.361

Note: In this table, for the effect of discrete treatment NDRT on the association between X and Y, the baseline is the
control group TO0.

CONCLUSIONS

In a real-world driving environment, multiple states often occur simultaneously, subject to individual
differences and environmental factors. Although previous studies have noted a correlation between
drowsiness and cognitive load, drowsiness has been categorized into several types depending on the
inducing cause, the experimental design and method of analysis were limited. However, due to limitations
in experimental design and analytical methods, the results reported in previous studies focusing on a
single state were actually biased, as the effects from other states were not completely eliminated.
Relationships between states have also been limited to correlations or theoretically derived causal
relationships.

To address these problems, this paper first introduced the DML analysis method in the field of
driver state analysis. Based on an L3 autonomous driving simulator experiment with 48 participants and
eight DML models, we first analyzed the key individual and environmental factors (including
multidimensional NDRTs and driving time) that affect the variation of driver states. Subsequently, by
setting confounding factors, we separately investigated the changes in the influence of individual and
environmental factors on drowsiness and cognitive workload, when the effects of other states were
eliminated. Further, the complex causal relationship between multiple types of drowsiness and cognitive
load was successfully decoupled and inferred to a specific pattern. In addition, we investigated key
physiological and eye-tracking indicators in the presence of cross-effects between states, as well as under
the influence of a single state.

In general, our findings not only empirically demonstrate the co-occurrence of multiple types of
fatigue with cognitive load. Moreover, the causal relationship between states provides evidence for
further theoretical studies of driver psychological and physiological states. The causal inference analytical
framework introduced in this paper also provides insights for subsequent analytical work. At the same
time, the state-related metrics identified in this paper will further assist in the development of objective
measures of state and driver state monitoring systems.
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