
MULTI-SOURCE DOMAIN GENERALIZATION FOR ECG-BASED COGNITIVE LOAD
ESTIMATION: A PLUG-IN METHOD AND BENCHMARK

Jiyao Wang, Ange Wang, Haolong Hu, Kaishun Wu, Dengbo He

Hong Kong University of Science and Technology (Guangzhou), China

ABSTRACT

Electrocardiography (ECG) for objective cognitive load es-
timation gained increasing attention, and offers a more feasi-
ble and non-invasive alternative to traditional methods such as
electroencephalography (EEG). Despite the promise of ECG
signal, application in real-world scenarios is hampered by the
domain shift present in data collected in controlled environ-
ments versus real-world settings. We propose a novel plug-in
generalizable framework, CogDG-ECG, assessed on a first-
introduced multi-source domain generalization (MSDG) pro-
tocol for generalized cognitive load estimation. CogDG-ECG
bridges the domain gap by extracting domain-invariant fea-
tures through adversarial learning, and estimating instance-
specific unseen features by synthesizing plausible feature sta-
tistical variations. A new benchmark based on three public
datasets and MSDG protocol was established, which demon-
strates the superiority of our proposed method.

Index Terms— Cognitive load estimation, ECG, multi-
source domain generalization, deep learning

1. INTRODUCTION

Researchers have shown increased interest in objectively
assessing cognitive workload based on physiological mea-
surements. But, previous studies that used physiological in-
dicators for high cognitive load (e.g., electroencephalography
(EEG) [1], galvanic skin response (GSR) [2]) predominantly
rely on invasive devices. Presently, the acquisition of elec-
trocardiography (ECG) data through non-invasive wearable
devices, such as steering wheel-integrated sensors and smart-
watches, has gradually become more feasible [3]. Currently,
several hand-crafted cardiac indicators (e.g., heart rate, heart
rate variability) were affirmed to be significant to cognitive
load [4]. Thus, we try to make estimation based on ECG
signals in this work. Although some research leveraged
manual-processed indicators from ECG [5, 6], few tried to
utilize ECG signals for cognitive load estimation directly,
which saves time cost for feature preprocess and is closer to
real-world demand [7].
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Meanwhile, advanced methods [8, 9] have been proposed
to detect cognitive load, but their effectiveness is limited in
real-world scenarios. The reason is that most training data is
collected in controlled laboratory environments, which lack
the variations present in real-world settings. Seeing Table 1,
in three public datasets for academic purposes, there are still
notable differences such as individuals, acquisition devices,
and state-induced tasks. As a result, models might struggle
to generalize well to unseen testing domains due to domain
shift [10]. Recent attempts to address this issue with transfer
learning, aiming to achieve generalizability across different
subjects [11] or state-induce tasks [12, 13], which were also
believed as two sources of domain shifts [12]. However, there
are still obstacles to overcome. Existing methods primarily
focus on resolving a single generalization task, while real-
world scenarios often involve multiple types of domain shifts.
Additionally, current generalizable measures rely on domain
adaptation protocol (i.e., data from the target domain can be
assessed), which is not feasible in practical deployment.

To address these gaps, we propose a novel plug-in frame-
work called CogDG-ECG for generalized cognitive load
estimation evaluated on multi-source domain generaliza-
tion (MSDG) protocol. The principle of this framework
involves extracting domain-invariant features and estimating
instance-specific unseen features through two regularization
techniques. In cognitive load detection, domain-invariant
information refers to the correlations between physiological
attributes and load levels. We regularize the domain-invariant
feature extraction from domain variations using adversarial
learning. Additionally, by introducing uncertainty to domain
attribute-related features, we aim to synthesize plausible
feature statistical variations to enhance the network’s robust-
ness to out-of-distribution (OOD) attributes across domains.
Through these procedures, we effectively reduce the distance
between feature distributions from different datasets, thereby
improving accuracy in cross-domain cognitive load estima-
tion. In terms of training, CogDG-ECG is jointly optimized
using the two aforementioned regularizations and a classifi-
cation loss, which is more suitable for multi-dataset training.

The main contributions are summarized as follows: (1)
We proposed an end-to-end plug-in method CogDG-ECG, for
resolving the domain shift of large-scale training in cognitive
load estimation with ECG. To the best of our knowledge, it is



Table 1. Dataset statistics.
Datasets Age range Cognitive load task Scenario ECG Device Sampling frequency

DMTD [14] 24.5±5.95 Counting back Driving Biopac 1000Hz
CLAS [15] 20 to 27 Mathematical calculation Interactive activity Shimmer3 256Hz
MNBD [16] 27.6±4.45 Modified 2-back Driving Becker Meditec 240Hz

the first time MSDG in cognitive load estimation was intro-
duced as a new challenge; (2) To align domain-agnostic fea-
tures and stimulate unseen instance-level variations, we incor-
porate adversarial loss and contrastive loss to regularize the
network and enhance the generalizability when facing OOD
samples; (3) We establish a benchmark for cognitive load es-
timation with ECG under MSDG protocol, which shows the
competitive performance of our proposal.

2. METHOD AND MATERIALS

2.1. Overall Framework

We formally introduce a plug-in domain generalization
(DG) framework for ECG-based cognitive load estima-
tion, CogDG-ECG. In brief, given in total N ECG signals
XS = {xi}Ni=1, xi ∈ RW from M source domains. Each do-
main is labeled with one distinct domain signal {di}Mi=1. To
stimulate the application scenario, we directly input signals
into CogDG-ECG, which is formulated as f(XS ; θ). The W
is the time window size of the signal, and the θ is the param-
eter to optimize. The MSDG protocol assumes that f(X; θ)
can only be trained in source domains, but tested without
assessing data XT in the target domain. Our goal is to op-
timize θ to narrow the shifted feature space from multiple
source domains to the target domain, and learn the mapping
f(XT ; θ) to target cognitive workload level Y = {yi}Ni=1.

The overall architecture of CogDG-ECG is illustrated in
Figure 1. Firstly, a substitutable backbone network Enc(∗)
is initialized to obtain under-optimized representations O =
{oi}Ni=1 ∈ RN×D from source ECG signals XS , where D
is the dimension of representation. Secondly, to enhance the
capacity of precise estimation and robustness to unseen do-
main shifts, we parallelly fed feature O into and trained the
model with several key components: (1) Adversarial Do-
main Alignment block is introduced to align multi-domain
representation spaces to united domain-agnostic distribution;
(2) Uncertainty Variation Estimation block to obtain the
insight to OOD space while ensuring that the augmented fea-
tures maintain plausibility; (3) an estimation head with fully
connected (FC) layers to output cognitive load label Y .

2.2. Adversarial Domain Alignment

To improve the generalization of the network, we force the
network to align representations from different domains with
an adversarial process. The key idea is a game between two
components - a feature extractor and a domain discriminator.

The feature extractor aims to learn invariant representations
across M source domains. Meanwhile, the discriminator tries
to identify which particular source domain the sample comes
from. This adversarial process makes the feature extractor
learn representations with minimal differences between do-
mains, such that the discriminator cannot reliably tell them
apart. Specifically, after inputting representation O into the
domain classifier, we optimize the parameters θ for distin-
guishing domain by maximizing LADA and optimizing the
parameters of the domain discriminator to the opposite.

LADA = −
M∑
i=1

I[i=d] log pi. (1)

In equation (1), I is the binary indicator, and pi indicates
the predicted probability of domain i outputted by the domain
classifier. Besides, considering the training instability of ad-
versarial paradigm [17], we apply the gradient reversal layer
(GRL) [10]. During backpropagation, the GRL reverses the
gradients flowing from the discriminator to the feature extrac-
tor. As a result, the feature extractor is optimized to fool the
discriminator and extract domain-agnostic features.

2.3. Uncertainty Variation Estimation

In our approach, we address the challenge of target domain
shift by estimating the variation of features. However, deter-
mining an appropriate range of variations is difficult when the
target domain is unknown. To overcome this issue, we want
the generated auxiliary features not seen in previous iterations
to fulfill two important criteria: diversity and plausibility [18].
Therefore, we present an adaptive and straightforward non-
parametric method to constrain the model to avoid straying
too far from the characteristics of existing source domains,
striking a balance between novelty and plausibility.

O
′
= µ(O) + ϵσ(O), where ϵ ∼ N (0, 1). (2)

The variances of feature space (σ(∗)) were leveraged to
determine the plausible variation range. To control the direc-
tion of attribute shift, we assume that the statistical discrep-
ancies follow a standard normal distribution [19]. Therefore,
we sample K noise (ϵ) from the Gaussian distribution. This
process stimulates uncertain domain shifts in the target do-
main and produces novel and plausible estimates of uncer-
tain features (O

′
= {o′

i}Ki=1) from extended O distribution,
as described in Equation (2). This approach facilitates the



Fig. 1. The overall architecture of proposed CogDG-ECG framework. (A) Feature space O is optimized by cross-entropy loss,
while domain shift still exists; (B) LADA narrows the distance between samples with same label but from different domains;
(C) LUV E augments feature space and further pushes close to the potential OOD sample.

exploration of various combinations of directions and inten-
sities that adhere to the two criteria, capitalizing on the inher-
ent characteristics of the Gaussian distribution. To suppress
unpredictable features, we propose a loss function based on
contrastive learning [20], statistic-guided Uncertainty Varia-
tion Estimation (UVE) loss as follows:

LUV E(O,O
′
) =

−
∑
k∈K

log(
exp(sim(oi, o

′

k)/τ)∑
j∈N I[yj ̸=yi] exp(sim(oi, oj)/τ)

)].
(3)

Where sim(∗) is the similarity measurement, which is in-
stantiated as cosine similarity. And τ is the temperature con-
trol factor. and In Eq.(3), given one sample’s representation
oi as the anchor, we generate K auxiliary features O

′
based

on anchor oi as positive samples to pull close, and the rest in
the batch with different cognitive workload level to push far.

Finally, we incorporate LCog to classify the cognitive
workload level based on O. Specifically, we use the cross-
entropy loss LCog to maximize the probability of the correct
cognitive load level. To prevent irrelevant regularizations in
the early iterations, we introduce an adaptation factor λ [21].
The network is jointly trained using the overall loss, which
includes two trade-off parameters (w1 and w2).

L(XS , YS) = LCog + λ(w1LADA + w2LUV E). (4)

2.4. Datasets and Evaluation Protocol

Dataset Two public datasets, namely DMTD [14] and CLAS
[15], along with our proprietary dataset MNBD [16], were
employed for our benchmark. The basic statistical informa-
tion is in Table 1. The DMTD dataset encompasses 40 males,

49 females, and 1 other. During a 20-minute conditional au-
tomated driving, cognitive load was induced in half of the
participants, while the other half was not. The CLAS dataset
comprises 62 volunteers with no gender balance. Cognitive
load was induced through a series of mathematical tasks (4
seconds for each). The MNBD dataset consists of 33 drivers
comprising 18 male and 15 female drivers. Cognitive load
states were induced through three levels of modified n-back
tasks in manual driving. In order to maintain task consistency,
we used the state induced by no-task and 2-back tasks as the
low and high load levels, respectively. We performed a sim-
ple pre-processing on the ECG signals. First, we downsam-
pled the DMTD and CLAS to 240Hz. And we de-noised all
ECG signals using a bandpass filter with cutoff frequencies
between 3Hz and 45Hz. The time window is 5 seconds with
a step size of 1/60 seconds [16].
Evaluation Protocol Our MSDG protocol is implemented by
dividing the above three datasets into two piles: source do-
mains and the target domain. Two datasets were combined
and shuffled for source domains, and the left dataset con-
structed the target domain. Besides, we selected three wide-
used metrics for performance evaluation: Accuracy (ACC),
F1-score (F1), and Sensitivity (SEN). We presented the av-
erage of 5-time tests with different random seeds for each
model. Meanwhile, the paired t-test is applied to check the
significance of the performance difference.

3. EXPERIMENTS AND RESULTS

Several typical methods were chosen for comparison, includ-
ing machine learning (ML) methods (i.e., SVM, KNN, LDA
[12], and LightGBM [22]) and deep learning (DL) methods
(i.e., ANN, LSTM, and TCN [23]). Furthermore, there were
various DG methods (i.e., AD [10], DSU [19], IFL [24]) from



Table 2. Cognitive load estimation results on MSDG protocol. In this and following tables, + means it is based on the best DL
baseline on each target domain, and ∗ indicates the significant difference (p<0.05) between our method and the best baseline.

Machine Learning Deep Learning Domain Generalization

Target Metric(%) LDA KNN SVM LightGBM LSTM ANN TCN AD+ DSU+ IFL+ Ours+

CLAS
ACC 51.75 62.93 67.88 57.23 67.98 69.31 68.23 68.30 72.28 70.31 74.06∗

F1 61.69 75.95 80.53 70.81 79.92 81.57 79.02 80.22 83.72 82.23 84.99∗

SEN 51.16 76.47 87.38 66.92 89.97 90.12 88.95 90.86 96.32 92.90 99.30∗

DMTD
ACC 50.75 52.75 51.88 54.18 56.11 56.83 58.12 59.22 60.03 58.16 61.21∗

F1 49.90 59.82 53.72 62.15 62.99 68.33 69.77 69.90 69.24 67.52 70.07
SEN 42.77 65.55 46.15 68.47 69.01 70.75 74.01 74.78 75.52 71.38 76.14

MNBD
ACC 59.25 60.80 55.61 64.74 62.41 65.08 60.37 66.40 68.63 67.11 69.33∗

F1 63.21 69.75 66.18 73.55 73.26 72.80 70.12 72.29 74.59 73.45 75.81∗

SEN 71.79 77.55 73.80 85.92 85.71 87.35 80.04 87.79 90.02 89.83 91.24∗

Table 3. Accuracy (%) in ablation test. Base means the back-
bone network without LADA and LUV E . ∗ indicates if there
is a significant difference with the complete method.

Target Base w/o LADA w/o LUV E Ours +

CLAS 69.31∗ 73.37∗ 70.22∗ 74.06
DMTD 58.12∗ 60.34∗ 58.84∗ 61.21
MNBD 65.08∗ 67.96∗ 67.10∗ 69.33

other fields taken into comparison. Note that, as there was
no standard format for ANN, we independently implemented
ANN, which consists of one up-sample linear layer with Relu
activation, a layer-normalization layer, and one down-sample
linear layer. Furthermore, we set D, τ, w1, w2 to 256, 0.1,
0.1, 0.0001 according to the experimental results.
Cognitive load estimation The comparison results presented
in Table 2 show that DG methods usually achieved more com-
petitive performance than classic DL and ML models. Nev-
ertheless, CogDG-ECG can significantly outperform the best
baseline at most target domains. Moreover, we obtain some
other interesting findings. For DL methods, although TCN
is more advanced and complex than ANN, its performance
is worse on CLAS and MNBD. We assume that is because
the DMTD with far more samples contains redundant infor-
mation than the target domain. Excessive model complexity
causes the model to overfit on the source domains. Besides,
insignificant improvement of our method on DMTD reflects
the issue of the data volume gap between the source domain
and target domain. Parameter space optimized from limited
data seems to be underfitted, which is worth further study.
Ablation test In this part, we provide the results of ablation
tests in Table 3. Particularly, the variants without LADA or
LUV E show significant performance degradation compared
to the complete CogDG-ECG. It proves that only one regu-
larization cannot transfer the under-optimized feature space
to the ideal space. Extracting domain-invariant or augment-
ing instance-specific features solely might make the model
unprepared for OOD samples in the target domain, or the fea-
ture space of the same label is still separated into different

Fig. 2. Impacts of the hyperparameter K tested on two target
domains CLAS and DMTD. Accuracy is used for evaluation
and in the y-axis.

domains, respectively. Therefore, jointly applying regulariza-
tions based on aligning domain-agnostic and generating aux-
iliary features from uncertainty is necessary for this task.
Hyper-parameter sensitive study As mentioned above, we
notice the influence of data-volume differences in domains.
Therefore, we tested our proposed model with different K on
CLAS and DMTD. The hyperparameter K determines how
many auxiliary features are estimated from the extended fea-
ture distribution with the same cognitive level and are chosen
as positive samples in LUV E . Seeing Figure 2, we can find
the best performance on CLAS belongs to the model with 20
novel features, while DMTD requires 40. It indicates that the
underfit issue over DMTD can be alleviated. On the other
hand, it also elaborates that the generated auxiliary features
belong to invisible target domain space to some extent. Be-
sides, the convex curves in both two figures show that too
many or few positive samples will cause improper activations
or insufficient training of the network, respectively.

4. CONCLUSION

This paper introduces CogDG-ECG, a novel plug-in frame-
work for cognitive load estimation using ECG data, which
demonstrates superior performance compared to baseline
models and previous DG methods. The properties of our
method such as end-to-end training and plug-ins, are bene-
ficial for large-scale training in industrial applications. Fur-
thermore, the new proposed protocol and benchmark bring a
new challenge, and facilitate future studies as well.
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berry, K. Blay, D. Wood, C. Mulvihill, and C. Truche,
“The impacts of temporal variation and individual dif-
ferences in driver cognitive workload on ecg-based de-
tection,” Human factors, vol. 63, no. 5, pp. 772–787,
2021.

[10] Y. Ganin and V. Lempitsky, “Unsupervised domain
adaptation by backpropagation,” in International con-
ference on machine learning. PMLR, 2015, pp. 1180–
1189.

[11] Y. Zhou, P. Wang, P. Gong, F. Wei, X. Wen, X. Wu,
and D. Zhang, “Cross-subject cognitive workload
recognition based on eeg and deep domain adaptation,”
IEEE Transactions on Instrumentation and Measure-
ment, 2023.

[12] Y. Zhou, Z. Xu, Y. Niu, P. Wang, X. Wen, X. Wu, and
D. Zhang, “Cross-task cognitive workload recognition

based on eeg and domain adaptation,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineer-
ing, vol. 30, pp. 50–60, 2022.

[13] K. Guan, Z. Zhang, T. Liu, and H. Niu, “Cross-task
mental workload recognition based on eeg tensor repre-
sentation and transfer learning,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 2023.

[14] Q. Meteier, M. Capallera, E. De Salis, L. Angelini,
S. Carrino, M. Widmer, O. Abou Khaled, E. Mugellini,
and A. Sonderegger, “A dataset on the physiological
state and behavior of drivers in conditionally automated
driving,” Data in brief, vol. 47, pp. 109027, 2023.

[15] V. Markova, T. Ganchev, and K. Kalinkov, “Clas: A
database for cognitive load, affect and stress recogni-
tion,” in 2019 International Conference on Biomedical
Innovations and Applications (BIA). IEEE, 2019, pp. 1–
4.

[16] D. He, B. Donmez, C.C. Liu, and K.N. Plataniotis,
“High cognitive load assessment in drivers through
wireless electroencephalography and the validation of a
modified n-back task,” IEEE Transactions on Human-
Machine Systems, vol. 49, no. 4, pp. 362–371, 2019.

[17] M.Z. Zaheer, J.h. Lee, M. Astrid, and S.I. Lee, “Old
is gold: Redefining the adversarially learned one-class
classifier training paradigm,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 14183–14193.

[18] J. Kang, S. Lee, N. Kim, and S. Kwak, “Style neophile:
Constantly seeking novel styles for domain generaliza-
tion,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp.
7130–7140.

[19] X. Li, Y. Dai, Y. Ge, J. Liu, Y. Shan, and L.Y. Duan,
“Uncertainty modeling for out-of-distribution general-
ization,” arXiv preprint arXiv:2202.03958, 2022.

[20] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Mo-
mentum contrast for unsupervised visual representation
learning,” arXiv preprint arXiv:1911.05722, 2019.

[21] H. Lu, Z. Yu, X. Niu, and Y. Chen, “Neuron structure
modeling for generalizable remote physiological mea-
surement,” arXiv preprint arXiv:2303.05955, 2023.

[22] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.Y. Liu, “Lightgbm: A highly efficient gra-
dient boosting decision tree,” Advances in neural infor-
mation processing systems, vol. 30, 2017.

[23] S. Bai, J.Z. Kolter, and V. Koltun, “An empirical evalua-
tion of generic convolutional and recurrent networks for
sequence modeling,” arXiv preprint arXiv:1803.01271,
2018.

[24] K. Tang, M. Tao, J. Qi, Z. Liu, and H. Zhang, “Invari-
ant feature learning for generalized long-tailed classifi-
cation,” in European Conference on Computer Vision.
Springer, 2022, pp. 709–726.


