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Range anxiety is a major concern of battery electric vehicles (BEVs) users or potential users. Previous work 
has explored the influential factors of distance-related range anxiety. However, time-related range anxiety 
has rarely been explored. The time cost when charging or waiting to charge the BEVs can negatively impact 
BEV users’ experience. As a preliminary attempt, this survey study investigated time-related anxiety by 
observing BEV users’ charging decisions in scenarios when both battery level and time cost are of concern. 
We collected and analyzed responses from 217 BEV users in mainland China. The results revealed that time-
related anxiety exists and could affect users’ charging decisions. Further, users’ charging decisions can be a 
result of the trade-off between distance-related and time-related anxiety, and can be moderated by several 
external factors (e.g., regions and individual differences). The findings can support the optimization of charge 
station distribution and EV charge recommendation algorithms. 
 
 

INTRODUCTION 
 
 With the rapid development of battery technology, 
battery electric vehicles (BEVs) are considered a promising 
solution for vehicle fuel shortage and emission issues (Hannan 
et al., 2017). In the year 2019, the sales of electric vehicles 
reached a total of 2.1 million, exhibiting a yearly growth rate 
of 40% (Shibl et al., 2021). According to the sales report 
published by the Chinese government (Phyllis et al., 2022) in 
2020, new energy vehicles are expected to occupy more than 
50% of total vehicle sales in 2035, and BEVs will account for 
over 95% of it. However, to date, range anxiety is still one of 
the major obstacles to the popularization of BEVs with the 
current level of the battery and charging technologies (Franke 
et al., 2016). According to Rauh et al. (2015), range anxiety 
manifests as the driver's uncertainty about reaching the 
destination with the remaining battery capacity. 
 In order to alleviate range anxiety, previous research 
tried to optimize the charging station distribution (Bulut & 
Kisacikoglu, 2017; Hafez & Bhattacharya, 2017; L. Pan et al., 
2020). However, upgrading or relocating infrastructure is 
costly. Thus, researchers also tried to investigate the socio-
psychological factors leading to range anxiety. For example, 
researchers found that drivers’ trust in the range estimation 
systems (RESs) (Hariharan et al., 2022; Wang et al., 2021) 
and their comfort range (i.e., the users’ range comfort zone or 
range safety buffer) (Yuan et al., 2018) are dominating 
predictors of range anxiety. Rauh et al. (2015) found that the 
experience of using BEV is negatively associated with range 
anxiety level. The authors further explained that the 
experience with similar situations in BEVs allows drivers to 
come up with more potential solutions to the current situation, 
thus alleviating their anxiety about range uncertainty. 
 However, the research so far mostly focused on the range 
anxiety caused by “distance uncertainty”; while the “time 
uncertainty” might be of greater concern for BEV users at this 
stage. Time uncertainty can lead to time-related range anxiety. 

Following the definition of distance-related anxiety in Rauh et 
al. (2015), we define time-related range anxiety as the driver's 
uncertainty about reaching the destination in time. For 
example, most of the rest areas in the east part of China along 
the highway have been equipped with charging stations (The 
Beijing News, 2022). However, the time cost for recharging a 
BEV can be frustrating – in holidays, the queuing time can be 
as long as four hours (News China, 2022). Further, in China, 
the average range of BEVs sold in 2022 was 359 km (Phyllis 
et al., 2022); In contrast, in 2021, for 24 major cities in China, 
the average density of charging facilities exceeded 21.5 
stations/km2 (Chen Zhang, 2022), or 0.22 km between two 
stations in average, which is far less than the range of BEVs. 
However, range anxiety still troubles BEV users, potentially 
because of the increasingly fast growth of BEV user 
population and as a result, the long waiting time at the 
stations. Therefore, the benefits of increasing the density of 
charging stations in order to reduce distance-related anxiety 
might be limited at this stage, and time-cost-related factors 
may contribute more to BEV users’ range anxiety. Actually, 
researchers have found that the time cost of charging BEVs 
can reduce potential users’ intention to purchase BEVs (Zhang 
et al., 2021).  

Although more advanced technologies (Chakraborty et 
al., 2022) have been utilized to speed up the charging time of 
BEVs, restricted by the infrastructure development and battery 
technology, BEVs in the market usually take from 0.5 to 1 
hour to be fully recharged on average (Pod Point, 2021). 
Further, as the progress of technology is usually at a gradual 
and uncertain pace, and the costs for upgrading BEV hardware 
and charging infrastructure are high (Madina et al., 2016), the 
charging speed for BEVs may not improve significantly 
shortly. Thus, to better model drivers’ energy replenishment 
decisions, and explore influential factors of heterogeneous 
range anxiety among BEV users, a new model that takes both 
distance anxiety and time anxiety into consideration is needed.  



 Hence, in this current study, as a preliminary work to 
model both distance-related and time-related range anxiety, an 
online questionnaire was designed and issued in mainland 
China to investigate factors influencing range anxiety. Being 
different from previous range anxiety studies, the 

questionnaire targeted scenarios where both “distance anxiety” 
and “time anxiety” may affect users’ charging decisions. 
Factors affecting users’ decisions in these scenarios were also 
assessed. The findings can guide customized charging 
recommendations and optimize charging station planning.

 
Table 1. Questionnaire Design and Variable Extraction 

Questions Variables  Distribution of extracted variables 
Q1: [FI] Date of birth. Age - Mean: 26.9 years old (SD: 5.4, min: 18, max: 48) 
Q2: [SC] How frequently do your drive BEVs? Driving Frequency - Frequently (over once a week, n=187, 86.2%) 

- Infrequently (n=30, 13.8%) 
Q3: [FI] Please indicate the province you drive the most. 
- Further categorized into three levels based on EV infrastructure development 
(Cheng et al., 2021). 

Infrastructure - Well developed (n=96, 44.2%) 
- Average (n=86, 39.6%) 
- Less developed (n=35, 16.2%) 

Q4: [LS] Trustworthiness scale (FIFT) (Franke et al., 2015) regarding users’ trust in 
RES of the BEV they drive the most. 
- 1 (“not at all”) to 7 (“extremely”) 

BEV Trust - Mean: 5.87 (SD: 1.1, min: 2, max: 7) 

Q5: [SC] What is the maximum DISPLAY mileage (km) of your BEVs when fully 
charged? 

Display Mileage - [250, 350) (n= 45, 20.7%) 
- [350, 450) (n=119, 54.8%) 
- [350, 450) (n=37, 17.1%) 
- Over 550 (n=16, 7.4%) 

Q6: [SC] What is the maximum REAL mileage (km) of your BEVs when fully 
charged? 

Real Mileage - [250, 350) (n= 48, 22.1%) 
- [350, 450) (n=120, 55.3%) 
- [350, 450) (n=39, 18%) 
- Over 550 (n=10, 4.6%) 

Q7: [SSC] For a highway trip that is beyond the real mileage of a BEV (i.e., you will 
need to recharge once in the middle of the trip). If the waiting time before charging is 
t minutes, would you choose a BEV or a fuel car? 
- t = [0, 15, 30, 60]  
- The Comfort Time is defined as the minimum t when a participant chooses fuel car. 
If s/he never chooses a fuel car, Comfort Time is set as above 60 minutes. 

Comfort Time 
 
 

- 0 min (n= 30, 13.8%) 
- 15 min (n=23, 10.6%) 
- 30 min (n=41, 18.9%) 
- 60 min (n=28, 12.9%) 
- Above 60 min (n=95, 43.8%) 

Q8: [SSC] If the trip is m km and there are no charging stations along the way, what 
is your minimum comfortable percent of display mileage before the trip starts? 
- m = [25%, 50%, 75%] * Display Mileage 

Comfort Mileage 25% - mean: 39.7% (SD: 9.4, min: 27.5, max: 80) 
Comfort Mileage 50% - mean: 64.8% (SD: 9.5, min: 52.5, max: 100) 
Comfort Mileage 75% - mean: 85.7% (SD: 6.2, min: 77.5, max: 100) 

Q9: [SSC] You are driving on highway. When approaching an upcoming rest area, 
the navigation informs you that the waiting time before charging at the area is t 
minutes, the remaining battery range of the BEV is r km and you are d km away 
from destination (where you have plenty of time to recharge), would you choose to 
charge at this area or charge at the destination? 
- t = [0, 15, 30, 45, 60] 
- r = [25%, 50%, 75%] * Display Mileage 
- d = [30%, 45%, 60%, 75%, 90%] * r 

Waiting Time (t) - [0, 15, 30, 45, 60] min 
Rest Battery (r) - [25%, 50%, 75%] 
Rest Trip (d) - [30%, 45%, 60%, 75%, 90%] 
Charge Decision - Charge at the upcoming rest area (51.3%) 

- Charge at the destination (48.7%) 

Note: Abbreviations of question types are as follow: FI: Fill-in-text; SC: Single-choice; MC: Multiple-choice; LS: Likert scale, SSC: Scenario 
Single-choice; TF: True or false. SD standards for standard deviation.  
 

METHOD 
 
Questionnaire Design 
 
 The designed questionnaire is illustrated in Table 1. Q1 
to Q6 collect demographic and driving/vehicle-related 
information as they may affect drivers’ decisions. In Q7, we 
defined Comfort Time to reveal the individual differences in 
tolerating waiting time before charging, as different BEV 
users may exhibit different levels of time-related anxiety. Q8 
assessed distance-related anxiety. In Q9, we designed 
scenarios with three within-subjects factors (i.e., Waiting 
Time, Rest Battery, and Rest Trip) to reveal the tradeoff 
between distance-based and time-based anxiety. A Chinese 
version of the questionnaire was used, as this study was 
targeted toward BEV users in mainland China. 
 
Participants  
 
 All participants were recruited via social media on the 
Internet (e.g., Wechat and Weibo). A total of 344 participants 

completed the questionnaire. We then screened the answers 
based on two quality-checking questions (i.e., “please select 
the first/second option if you are reading the questionnaire”) 
and removed answers from the drivers who drive BEV for 
commercial purposes (e.g., taxi drivers) as they may have 
developed different strategies when using BEVs. Finally, 217 
samples were kept for analysis (Male: 159; Female: 58). These 
217 drivers received a compensation of 5 RMB for their 
completion of the 15-minute-long questionnaire. This study 
was approved by the Human and Artefacts Research Ethics  
Committee at the Hong Kong University of Science and 
Technology (protocol number: HREP-2022-0051).    
 
Statistics Models 
 

Two statistical models were built, in order to investigate: 
1) influential factors of drivers’ Comfort Time (i.e., Time 
Model); 2) how driver makes Charge Decision in the 
scenarios (i.e., Decision Model) when both distance-based and 
time-based factors matter. Both models were built in “SAS 
OnDemand for Academics”. All other variables other than the 



dependent variables, as well as their two-way interactions 
were used as independent variables.  

The Time Model was an ordered logistic regression 
model. We modeled the odds that a participant tolerates a 
longer waiting time versus a shorter waiting time before 
charging. For Decision Model, significant factors in Time 
Model were abandoned, and the rest variables were used as 
predictors in a binary logistic regression model. We modeled 
the odds of participants choosing to “charge at the 
destination” as compared to “charging at the upcoming rest 
area”. Both Time Model and Decision Model were built with 
GENMOD procedure, and repeated measures were accounted 
for through a generalized estimating equation, which can be 
used to model multiple responses from a single subject. 

In the models, the Comfort Mileage, Waiting Time, Rest 
Battery, Rest Trip were treated as continuous variables in the 
model as we care about the trends of their influence instead of 
the influence of specific factor levels. Before fitting the 
models, the correlations between all independent variables 
were assessed. The correlated independent variables were 
aggregated or abandoned, if possible, based on Quasi-
likelihood under the Independence model Criterion (QIC) (W. 
Pan, 2001) of the models fitted with the variables. Thus, the 
variables in the full Time Model included Age, Driving 
Frequency, Infrastructure, BEV Trust, Display Mileage, Real 
Mileage, and Comfort Mileage 50%; and the variables in the 
full Decision Model included Comfort Time, the scenario 
variables in Q9 (i.e., Waiting Time, Rest Battery, Rest Trip), as 
well as all variables that were excluded in the Time Model. A 
backward model selection method was adopted based on QIC 
to select variables in both models. It should be noted that in 
the Decision Model, the scenario variables in Q9 were always 
kept in the model as we aim to model their influence on 
drivers’ charging decisions. Post-hoc comparisons were made 
if the main effects or the two-way interactions of the 
independent variables were significant (p < .05). 

 
RESULTS 

 
 We report all significant effects (p < .05) in the fitted 
models after model selection, as well as the significant post-
hoc contrasts. It should be noted that in the model selection 
process, all dropped variables were not significant (p > .05).  
 
Time Model 
 

Table 2 summarizes the results of Time Model, in which, 
the users’ trust in RES of BEVs (BEV Trust) and users’ 
Comfort Mileage were found to be significant predictors of 
users’ Comfort Time.  

Specifcially, it was found that with every 1-unit increase 
in BEV Trust, the odds of drivers tolerating longer waiting 
time increases by 40.6% (95%CI: 10.8%, 78.4%). At the same 
time, with every 10% increase in the Comfort Mileage 50% 
(i.e., the variable extracted from Q8), drivers are more likely 
to tolerate shorter waiting time, with an OR of 0.73, 95%CI: 
[0.57, 0.93]. It should be noted that Comfort Mileage 50% is 
correlated with Comfort Mileage 25% (r = 0.72, p = <.0001) 

and Comfort Mileage 75% (r = 0.77, p = <.0001); thus, only 
Comfort Mileage 50% was kept in the model. 
 

Table 2. Summary of Time Model Results 
Independent Variable c2-value p-value 
BEV Trust c2(1) = 7.86 .005** 
Driving Frequency c2(1) = 3.61 .06* 
Comfort Mileage 50% c2(1) = 6.74 .01** 

Notes: In this table and the following tables, * marks marginal significant 
predictors (.05<p<.1), ** marks significant predictors (p<.05); IV stands for 
Independent Variable. 
 
Decision Model 
 

As shown in Table 3, five significant two-way 
interaction effects for Charge Decision have been observed.  

Interaction between Comfort Time and Waiting Time. As 
shown in Figure 1a, in general, with the increase of the 
Waiting Time at the upcoming rest area, drivers become more 
likely to charge at the destination, but to different extents 
among drivers who reported different lengths of Comfort 
Time. Specifically, for every 10-minute increase in waiting 
time at the upcoming rest area, the ORs of drivers who 
reported 30-minute and 60-minute Comfort Time to charge at 
the destinations are 1.15 (95%CI: [1.05, 1.26], c2(1) = 8.84, 
p=.003) and 1.11 (95%CI: [1.02, 1.21], c2(1) = 5.23, p=.02). 
  

Table 3. Summary of Decision Model Results 
Independent Variable c2-value p-value 
Real Mileage c2(3) = 4.97 .2 
Infrastructure c2(2) = 1.15 .6 
Comfort Time c2(4) = 7.27 .12  
Rest Battery c2(1) = 56.38 <.0001** 
Rest Trip c2(1) = 71.20 <.0001** 
Waiting Time c2(1) = 2.83 .09* 
Comfort Time * Waiting Time c2(4) = 18.54 .001** 
Infrastructure* Rest Trip c2(2) = 6.67 .04** 
Infrastructure * Rest Battery c2(2) = 8.60 .014** 
Rest Battery * Waiting Time c2(1) = 5.21 .02** 
Rest Trip * Waiting Time c2(1) = 20.04 <.0001** 

 
Interaction between Infrastructure and Rest Trip. As 

shown in Figure 1b, in general, with the increase of the Rest 
Trip, drivers become less likely to charge at the destination, 
but to different extents in regions with different levels of EV 
infrastructure. Specifically, with every 10% increase in Rest 
Trip, for drivers from the regions with less-developed EV 
infrastructure, average EV infrastructure, and well-developed 
EV infrastructure, their odds to charge at the destinations are 
estimated to decrease by 9.5% (95%CI: [4.1%, 14.6%], c2(1) 
= 11.54, p = .0007), 17.1% (95%CI: [12.3%, 21.5%], c2(1) = 
43.85, p < .0001), and 16.4% (95%CI: [12.2%, 20.4%], c2(1) 
= 51.24, p < .0001). 

Interaction between Infrastructure and Rest Battery. As 
shown in Figure 1c, EV infrastructure development also 
interacts with Rest Battery of the BEVs, i.e., with the increase 
of Rest Battery, drivers are more likely to charge at the 
destination, but again, to different extents in regions with 
different levels of the EV infrastructure (less-developed: 
OR=1.09, 95%CI: [1.03, 1.14], c2(1) = 10.54, p = .001; 
average: OR=1.14, 95%CI: [1.08, 1.20], c2(1) = 23.20, p < 



.0001; developed: OR=1.22, 95%CI: [1.14, 1.30], c2(1) = 
37.94, p < .0001). 

 

            
                                      (a) 

  
 

                            (b)                                          (c) 

  
 

                    (d)                                         (e) 
Figure 1. Visualization of significant interaction effects in Decision 
Model. The vertical axis indicates the predicted probability (from 0% 
to 100%) of choosing to charge at the destination.  
 

Interaction between Rest Battery and Waiting Time. As 
shown in Figure 1d. It seems that with the increase in the 
Waiting Time, drivers become less sensitive to the increase of 
the Rest Battery. In general, with the increase of the Rest 
Battery, drivers become more likely to charge at the 
destination, but to different extents with different lengths of 
waiting time. For example, when the Waiting Time is 0, 15, 
30, and 60 minutes, for every 10% increase of the Rest 
Battery, the ORs of charging at the destination is 1.15 
(95%CI: [1.11, 1.19], c2(1) = 56.38, p < .0001), 1.13 (95%CI: 
[1.10, 1.17], c2(1) = 60.47, p < .0001), 1.12 (95%CI: [1.09, 
1.15], c2(1) = 55.03, p < .0001) and 1.10 (95%CI: [1.06, 1.14], 
c2(1) = 25.23, p < .0001).  

Interaction between Rest Trip and Waiting Time. As 
shown in Figure 1e, with the increase in the Waiting Time, 
drivers also become less sensitive to the increase in the Rest 
Trip. When the Waiting Time is 0, 15, 30, and 60 minutes, for 
every 10% increase in the Rest Trip, the ORs of charging at 
the destination is 0.86 (95%CI: [0.83, 0.89], c2(1) = 71.20, p < 
.0001), 0.87 (95%CI: [0.85, 0.90], c2(1) = 70.95, p < .0001), 
0.89 (95%CI: [0.87, 0.92], c2(1) = 60.31, p < .0001) and 0.93 
(95%CI: [0.90, 0.96], c2(1) = 19.82, p < .0001). 
 

DISCUSSION 
 

In this study, through an online questionnaire, we 
conducted a preliminary investigation on BEV users’ 
acceptance of waiting time at the charging stations (i.e., 
Comfort Time) and how waiting time at the charging station 
can impact BEV users’ charging decisions when both the time 
cost and distance-related range anxiety are of concern.  

Through Time Model, we modeled individual differences 
in tolerating waiting time when charging (i.e., Comfort Time). 
It was found that those who trust more in the range estimation 
system of BEVs (BEV Trust) and those who can accept a 
lower battery level before a trip (Comfort Mileage 50%) can 
tolerate longer waiting time. It is not difficult to understand 
the association between Comfort Mileage and Comfort Time: 
those who prefer a higher battery level at the beginning of the 
trip might be those who wish to avoid charging in the middle 
of a trip to save time. As for the relationship between the BEV 
Trust and Comfort Time, we assume there might be covariates 
influencing both of them (e.g., personalities, Yuan et al., 
2018), and it deserves further investigation, but it is beyond 
the scope of this survey.  

At the same time, as a major contribution of this study, 
we observed that BEV users’ charging decisions could be 
affected by time-related factors, and this influence can be 
moderated by a number of other factors. In general, as 
expected, we have observed that with the increase in the 
Waiting Time at the upcoming rest area, drivers tended to skip 
this rest area and charge at the destination. This trend indicates 
that the “range anxiety” as well as drivers’ charging decisions 
are not solely affected by “whether I can reach the 
destination” but also “how much time it will take for me to 
arrive.” Future research should take “time” into consideration 
when optimizing the distributions of charging infrastructures 
in addition to “distance” (e.g., Hafez & Bhattacharya, 2017; L. 
Pan et al., 2020) in order to optimize BEV users’ experience. 
However, it should be noted that our study only collected 
users’ responses in imagined scenarios. Future research may 
need to further validate the relationship we have observed in 
more realistic experiment setups (e.g., naturalistic driving 
studies or observational studies). 

Further, the influence of Waiting Time on users’ charging 
decisions can also be moderated by Rest Battery and Rest Trip. 
Especially, these interaction effects revealed how drivers 
traded off between distance-related anxiety (as materialized by 
Rest Battery and Rest Trip) and time-related anxiety (i.e., 
Waiting Time). For example, as expected, with the decrease of 
the Rest Battery, drivers are more inclined to charge at the 
upcoming rest area to reduce the risk of running out of battery 

Comfort Time

0 min
15 min
30 min
60 min
Above 60 min

Infrastructure

Less developed

Average
Well developed

Well developedInfrastructure : Well developed Well developed

Comfort Time

0 min
15 min
30 min
60 min
Above 60 min

Above 60 minComfort Time : 60 min 30 min 15 min 0 min



before arrival. However, when the waiting time at the 
upcoming rest area becomes longer, drivers become less 
sensitive to the battery level. Similar trends have also been 
observed for Rest Trip – without considering the waiting time, 
with the increase of the Rest Trip, drivers prefer to charge at 
the upcoming rest area to reduce the uncertainty in the rest of 
the trip. However, a longer waiting time leads to less 
sensitivity in the Rest Trip (i.e., drivers would still decide to 
“take risk” and finish the trip if the waiting time is long). For 
future work, we should be able to identify decision margins 
considering distance-related and time-related range anxiety, 
which can support the charging network optimization and 
charging recommendation systems. 

Lastly, we also observed regional differences when BEV 
drivers made decisions. The influence of both Rest Trip and 
Rest Battery becomes less obvious in regions with less 
developed EV infrastructure compared to those regions with 
more developed EV infrastructure. Drivers also tend to be 
more inclined to charge at the upcoming rest areas in less 
developed regions. This is a novel finding, but it is not 
surprising – drivers from regions with less developed EV 
infrastructure may have higher anxiety about running out of 
battery, and charging their car whenever possible can be a less 
risky decision. Further, it should be noted that the natural 
environment (e.g., temperature, Wang et al., 2023) may also 
have affected BEV users’ charging habits and should be 
considered in future studies.  

 
CONCLUSIONS 

 
In this work, through a scenario-based survey study, we 

disentangled range anxiety into the distance- and time-related 
part. Based on the results, we found that users’ trust in RES of 
BEVs can influence users’ acceptable waiting time. Further, 
our results showed that users’ charging decisions can be 
affected by both time-related and distance-related range 
anxiety, which can be further moderated by several scenario-
related factors. These findings suggest that to improve user 
experience, the charging recommend systems and the 
optimization of the charging stations should take charging 
time and users’ characteristics into consideration. Future 
studies should explore a hierarchy influence structure of more 
social-psychological factors on charging decisions and extract 
computable models based on a larger dataset. 
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