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Abstract 

Although driving automation is promised to improve driving safety, drivers are still required to take 

over the control of the vehicles in case of emergency. Estimating drivers’ takeover performance 

serves as the basis for adaptive driving automation and takeover request (TOR) to ensure driving 

safety. However, although algorithms have been proposed to estimate drivers’ takeover performance 

through physiological and eye-tracking measures, the complex interrelationships between these 

metrics and driver behavior, as well as the interactions among the metrics themselves, are not fully 

understood. To answer this question, a driving simulation experiment involving 42 participants was 

conducted. Drivers experienced three types of takeover scenarios requested by TOR while driving 

a conditionally automated vehicle. Drivers’ physiological, eye-tracking metrics and psychological 

states, as imposed by several non-driving-related tasks were collected. A structural equation model 

was used to explore the interactions among physiological metrics (i.e., cardiac activity, respiratory 

activity, electrodermal activity), eye-tracking metrics, psychological states (i.e., trust in driving 

automation and perceived workload), and variations in takeover time and takeover quality. The 

results showed that trust was positively associated with takeover quality, while workload was 

positively associated with takeover time. Additionally, physiological and eye-tracking metrics were 

indirectly associated with takeover quality via psychological states. This study reveals the 

hierarchical relationship among takeover performance-related variables and provides insights for 

designing driver monitoring systems aimed at estimating takeover performance in vehicles with 

driving automation and adaptive driving automation to improve driving safety. 
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1 Introduction 

 Although autonomous driving technology is promised to enhance traffic safety and driving 

comfort, current automated driving systems still require driver interventions (SAE Levels 2 or 

3). This brings critical challenges to driving safety, especially when drivers are asked to take 

over vehicle control by the driving automation systems in emergent situations, a scenario 

labeled as "system-initiated" control transitions. The system-initiated takeovers can occur when 

the environmental conditions are beyond the system’s capabilities.  

 Given the importance of takeover performance for driving safety, previous studies have 

explored machine-learning models to predict driver takeover performance, intending to provide 

adaptive strategies to support drivers in takeover scenarios. For example, in a simulator study, 

Du et al. (2020) found significant changes in drivers' heart rate (HR), galvanic skin response 

(GSR), and eye-tracking metrics across different takeover scenarios and they successfully 

predicted drivers’ takeover performance using these indicators (Du et al., 2020). Besides, Zhu 

et al. (2023) proposed an XGBoost learning method that considers risk potential fields, using 

eye movements, head movements, and Electroencephalography (EEG) to predict the quality of 

takeovers in conditionally automated driving under different levels of cognitive load. 

However, the machine learning models are black boxes and cannot inform why and how 

certain factors can influence takeover performance. Thus, researchers also explored the impact 

of driver states and scenario features on drivers’ takeover performance in system-initiated 

takeover scenarios. For example, previous research has found that high workload can delay 

drivers’ responses to the takeover request (TOR) (Du et al., 2020), and trust can also affect 

drivers’ performance in takeover scenarios (Payre et al., 2016). However, the association cannot 
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inform the causality; thus, it is still unclear why the features can be used to effectively estimate 

takeover performance. For example, the HR and skin conductance level (SCL) have been used 

for the estimation of takeover response time (Du et al., 2020). Still, it is unknown whether the 

HR and SCL are affected by the driver’s workload (He et al., 2022; Shi et al., 2024; Wang, et 

al., 2024), then the latter affects takeover performance, or the HR and SCL are directly 

associated with the takeover performance. Without this knowledge, the selection of features for 

takeover performance evaluation can only be based on trial and error. 

To answer this question, a driving simulator experiment was conducted, with the drivers’ 

physiological metrics that are commonly used for takeover performance estimation collected 

and drivers’ psychological states that were found to be associated with the takeover 

performance moderated. Given that linear regressions can hardly reveal the structural 

relationships among the variables, we adopted a structural equation model (SEM) to explore 

the inter-relationships among the variables of interest. Traditionally, the SEM has been widely 

adopted for the analysis of questionnaire data (Chen & Donmez, 2016; Wang et al., 2022). In 

recent years, research has started to use SEM to explore the structures among empirical data, 

for example, Jin et al. (2021)  used eye-tracking data as the measurement variables of latent 

variable. Thus, following these previous approaches, our study aims to explore the metrics 

potentially associated with takeover performance. The outcome of this research can guide the 

selection of features for takeover performance prediction, which serves as the basis for adaptive 

driving automation design. 
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2 Literature Review and Hypotheses Formation 

 We developed a theoretical framework for the model by formulating reasonable 

hypotheses (H1-H7) based on previous literature. 

2.1 Physiological Signals, Eye-tracking Behavior, Workload, and Takeover Performance 

 Physiological signals and eye-tracking metrics have been widely recognized as being 

associated with takeover performance. For example, Du et al. (2020) found that during the 

takeover, shorter TOR lead time led to a lower frequency of blinks and higher peak and average 

GSR activations. Du et al. (2020) also found that a combination of HR, GSR, and eye-tracking 

bahavior (ETB, including fixation, saccade, pupil dilation, and blink) can reliably predict 

takeover performance. In another study, Zhu et al. (2023) also found that the ET, EEG signals, 

and head movement indicators can be used to predict takeover quality. Therefore, we proposed 

our first hypothesis: 

 H1: Physiological signals and ETB can predict takeover performance, including takeover 

time and takeover quality. 

 Further, empirical studies have demonstrated that changes in respiration (RESP) patterns 

(Muth et al., 2012), electrodermal activity (EDA) (Mehler et al., 2012; Widyanti et al., 2017) , 

and electrocardiography (ECG), as indicated by HR and HR variability (HRV) (He et al., 2019; 

Wang et al., 2024) are associated with workload. Similarly, ETB, including blink rate and 

saccadic movements, have been used to assess workload during automated driving (Aygun et 

al., 2022; Bitkina et al., 2021; Das & Maiti, 2024; He et al., 2022). Besides, high workload 

levels are known to impair drivers’ ability to respond to TOR promptly, leading to increased 

takeover time and reduced takeover quality (Liu et al., 2024; Yoon & Ji, 2019). Therefore, we 
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proposed the following two hypotheses: 

 H2: Physiological signals and ETB metrics can predict drivers’ workload levels. 

 H3: Workload level can affect takeover performance. 

2.2 Physiological States, Eye-tracking Behavior, Trust, and Takeover Performance 

 Trust in automation is defined as the belief in the ability of a system to perform driving 

tasks reliably, safely, and as expected in various conditions (Hoff & Bashir, 2015). Similar to 

its role in interpersonal relationships, trust in technology plays a dominant role in determining 

one’s willingness to rely on automated systems under uncertainty (Zeeb et al., 2017) and use 

new technologies (Wang et al., 2021; Wang et al., 2024). Increased trust in automation, as 

measured by questionnaires has been found to be associated with longer takeover times (Payre 

et al., 2016) and shorter minimum time-to-collision (TTC) (Körber et al., 2018). Previous 

research also tried to measure trust objectively (e.g., using eye-tracking metrics, Körber et al., 

2018). For example, HR (Khalid et al., 2016) and GSR (Ayoub et al., 2023) have also been 

found to be associated with driver trust in vehicles with conditional automation and Yi et al. 

(2023) used HR and GSR to predict drivers’ trust in automation before and after takeover events. 

Thus, we propose the following hypotheses: 

 H4: Physiological signals and ETB metrics can predict trust in driving automation. 

 H5: Trust in driving automation can affect takeover performance. 

2.3 Correlations among Physiological Signals and ETB 

 Studies have shown that HR is negatively associated with the rate of breath, and lower 

breath rates generally produce larger HRV amplitude compared to higher breath rates (Song & 

Lehrer, 2003). At the same time, changes in respiratory rate can lead to variations in EDA, 
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which is particularly pronounced when there are emotional fluctuations (Li & Liu, 2011). 

Further, ET metrics, particularly pupil diameter, are influenced by the autonomic nervous 

system, and sympathetic activation can affect both pupil dilation and HR/HRV (Chen & Epps, 

2014). Therefore, we proposed the following hypothesis: 

 H6: Interrelationships among physiological and ET metrics exist. 

2.4 Correlation between Takeover Time and Quality 

 Previous studies have found that a longer takeover time can be associated with worse 

takeover quality in terms of maximum lateral acceleration (Liu et al., 2024). Further, takeover 

reaction time primarily depends on the length of the takeover lead time. Within a certain range, 

a longer lead time results in a safer takeover; however, the increased workload caused by longer 

lead times is associated with shorter reaction times and lower safety (Wu et al., 2022). Therefore, 

we proposed the following hypothesis: 

 H7: Takeover time affects takeover quality. 

2.5 Correlation between Exogenous Variables and Latent Variables 

 Given the individual heterogeneity (IH) in physiological signals, psychological states, and 

takeover performance (Mehler et al., 2008), we further hypothesized that IH has a significant 

impact on these factors. Specifically, the IH variable was materialized as a unique identifier of 

each participant. Additionally, since takeover performance may vary across different takeover 

scenarios (Du et al., 2024), we proposed that takeover scenarios can influence both takeover 

quality and takeover time. Given that we aim to evaluate the variables that can potentially be 

used for takeover performance prediction, the physiological, eye-tracking and psychological 

variables were extracted from the period before TORs and thus are unaffected by the scenarios. 
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2.6 Framework of Structural Equation Model 

 Figure 1 summarizes the theoretical framework based on the hypotheses mentioned above. 

The paths from explicit variables (i.e., IH and takeover scenarios) to latent variables （i.e., 

RESP, EDA, ETB, ECG, TRU, WL, TOQ and TOT) are not included in the structural model 

diagram because these variables often serve as covariates variables influencing the latent 

constructs indirectly, and are typically accounted for outside the hypothesized structural 

relationships among the latent variables. 

 

Figure 1. The final theoretical framework of the model. RESP: respiration; EDA electrodermal 

activity; ECG: electrocardiography; ETB: eye-tracking behavior; TRU: trust; WL: Workload; 

TOQ: takeover quality; and TOT: takeover time. The abbreviations in the figure are listed in 

Table 2. 
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3 Experiment 

3.1 Participants       

In total, 42 drivers participated in our experiment (25 males and 17 females), with an 

average age of 35.3 years (Standard deviation [SD]: 9.10, min: 23, max: 53). All participants 

were required to have a valid driver's license for a minimum of one year, no advanced driving 

assistant system (ADAS) usage experience and a minimum driving mileage of 5,000 km in the 

past year. They were told to be compensated at 70 RMB per hour plus a performance-based 

bonus of up to 30 RMB for cognitive tasks provided in the experiment. This study was approved 

by the Hong Kong University of Science and Technology (HREP-2023-0199). 

3.2 Equipment       

The experiment was conducted in a fixed-base driving simulator (Figure 2a), which has 

three 43-inch displays, showing a horizontal view angle of 150° and a vertical viewing angle 

of 47°. Participants could engage the driving automation by pressing the virtual buttons on the 

15-inch screen next to the steering wheel. To disengage the automation, they could press another 

virtual button, turn the steering wheel, or press the braking pedal. The driving data was logged 

at a frequency of 60 Hz by the simulation software, i.e., the Silab 7.1 by WIVW GmbH. The 

ECG, RESP, and EDA data were collected using the sensors by Ergoneers GmbH at a sampling 

frequency of 100 Hz (see Figure 2b). The ET measures were collected using the Dikablis and 

D-Lab software with a sampling frequency of 60 Hz. All data was synchronized in the Human 

Research Tool (HRT) software by Info Instrument. 
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                                            (a)                                                                 (b)   

Figure 2. Equipment: (a) driving simulator and eye-tracker; b) physiological sensor placements. 

3.3 Driving Task 

 Each participant completed one drive on a dual carriageway with six lanes, which has 21 

straight sections, each stretching around 7 km. The speed limit was 110 km/h and the traffic 

was free-flowing, with a vehicle density of 6 passenger cars per km per lane. All participants 

were informed that the vehicle was equipped with SAE Level 3 driving. Thus, they were 

required to engage the driving automation when possible and only take over the control of the 

vehicle when they felt necessary or prompted by TOR. In other words, if a TOR was triggered, 

they should take over the control of the vehicle. Nevertheless, it turns out that, in the experiment, 

no participants took control of the vehicle before TOR and all takeover actions were triggered 

by the TOR. As shown in Figure 3, three types of takeover events were used in the drive, i.e., 

exiting the ramp, traffic accidents, and foggy areas.  In the scenario of exiting the ramp, drivers 

must change lanes to the right lane, then enter the right-hand exit ramp, and control the speed 

to be below 60 km/h while on the ramp. In the scenario of a traffic accident, after taking over 

the vehicle, drivers needed to change lanes to avoid an accident area. In the scenario of foggy 

areas, drivers only needed to reduce speed and proceed through the fog zone after taking over. 
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Before each takeover event, a TOR was provided, with a lead time (from the TOR initiation to 

automation disengagement) of 10 seconds following previous research (Chen et al., 2023). 

 

Figure 3. Scenario design. In the takeover event timeline, 1, 2, 3, 4, and 5 marks the moments 

of event start, TOR, ADAS disengagement, vehicle operation stabilization and the end of the 

event, respectively. Further, NDRT is Non-Driving Related Task, TOR is Takeover Request, 

TOT is Takeover Time, LD is Lateral Deviation, PhyS is Physiological Signal, and ET is Eye-

Tracking. The red section indicates the point at which the vehicle achieves lateral stability after 

the takeover, defined as the moment when the LD remained within 10% of the maximum lateral 

deviation after ADAS disengagement for at least 2.5 seconds (Chen et al., 2023). 

3.4 Non-Driving-Related Tasks (NDRTs) 

The workload is not unidimensional and may occupy different types of cognitive resources 

(Wang et al., 2024). To evaluate how each dimension can affect takeover performance, as shown 

in Table 1 and Figure 4, three types of cognitive tasks were adopted for this study, i.e., 

calculation, memory, and spatial processing, which are directly related to the cognitive 

functions for safe driving. Specifically, calculation can be used for estimating the remaining 

range of electric vehicles, memory is involved in processing and recalling traffic scenarios, and 

spatial processing is used for navigation. We further controlled the level of distraction tasks to 
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impose different levels of workload, simulating different traffic complexities. As a result, we 

have in total seven NDRT conditions (3 memory task levels, 2 calculation task levels, one 

spatial processing task and the baseline without NDRT) in the experiment. 

 

Table 1. Summary of NDRTs. 

Task  Descriptions Levels 
Cognitive 

Resource 

n-back 

Task 

(Jaeggi et 

al., 2010) 

A series of stimuli 

(numbers/letters) are presented 

with a pause between each. 

Participants say out the stimulus 

that is n positions earlier. 

Three levels: 0-back (0-

B), 1-back (1-B), 2-back 

(2-B) tasks. 

Memory 

Math Task 

(Meteier et 

al., 2021) 

Oral backward counting from 

3,000 by increments of 3 (non-

integer) or 5 (integer). 

Two levels: Counting 

backward by 3 (MT1) or 

5 (MT2) from 3,000. 

Calculation 

Spatial 

Task 

(Liang & 

Lee, 2010) 

Participants listen to an audio 

clip describing a route and say 

out the main direction faced at 

the end, simulating high 

cognitive demands similar to 

those in navigation systems. 

One level: "What 

direction is this person 

facing when she goes to 

the north station and 

moves two stations 

clockwise?" (Answer: 

East) (ST) 

Spatial 

processing 
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(a) 

 

(b) 

 

(c) 

Figure 4. Cognitive tasks: (a) n-back task, (b) math task, and (c) spatial task. 

 

 It turns out that the accuracies of the responses to the six tasks were 98.5% (SD: 2.4%), 

85.2% (SD: 8.0%), 76.3 (SD: 8.0%), 79.1% (SD: 5.9%), 82.67% (5.3%) and 80.1% (SD: 9.7%) 

for the 0-back, 1-back, 2-back, MT1, MT2 and ST tasks, respectively. These accuracies were 

comparable to previous studies that used the n-back tasks (Miller et al., 2009), indicating that 

our participants were fully engaged in these tasks. 

3.5 Experiment Design 

A within-subject experiment design was adopted. The experiment employed a 3 (takeover 

scenarios) by 7 (NDRT conditions) within-subject design, leading to 21 drives for all 

combinations of experiment conditions. The takeover scenario happened near the end of each 

3-minute drive. We used a Latin square design to balance the sequence and reduce learning 

effects, leading to 21 unique drives and 21 experimental orders. Each order involved two 

participants, who were required to complete all experimental conditions. After completing each 

7 drives, participants took a 10-minute break before proceeding to the next 7 drives. 

3.6 Procedures 

Participants were reminded to maintain regular sleep habits, avoid alcohol, and not 

consume caffeine 24 hours before the experiment. As shown in Figure 5, upon arrival, 
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participants provided written consent, followed by a 30-minute orientation session regarding 

the experimental procedures, operation of the vehicles, and cognitive tasks. Then, participants 

underwent a practice driving session, in which the driver experienced one TOR in on highway. 

Afterward, the participants were equipped with physiological sensors and eye-tracking devices, 

and then the formal experiment began, in which, each participant experienced 21 TORs, i.e., 3 

takeover scenarios in combination with 7 task load levels (baseline, 3 n-back levels, 2 math 

task levels, and 1 cognitive spatial task). Each TOR happened on one of the 21 straight sections 

of the road. The order of the experiment conditions was counterbalanced using a Latin-Square 

design. The driver was required to complete two questionnaires, i.e., the NASA Task Load 

Index (NASA_TLX) (Hart & Staveland, 1988) for workload, and a 12-item questionnaire by 

Jian et al. (2000) for trust in driving automation. To avoid potential impacts of takeover events 

on subjective data reporting, we reminded participants during the training phase and each time 

before the questionnaire that they should base their responses on the duration before the 

takeover events. 

 
Figure 5. Experimental process. 
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3.7 Signal Processing and Variable Extraction 

 As shown in Table 2 and Figure 3, the variables of interest regarding drivers’ takeover 

performance, physiological responses, and psychological states were extracted. The takeover 

time was from the moment the TOR was initiated to the deactivation of the ADAS. The time 

period for extracting takeover quality data was from the ADAS disengagement to the 

achievement of lateral stability. It should be noted that for the physiological measures, band-

pass filters were applied to reduce the noise in the data before metric extraction. Specifically, 

for EDA, a fourth-order Butterworth low-pass filter was applied to mitigate high-frequency 

disturbances. ECG signals were processed through a band-pass filter between 3 Hz to 45 Hz, 

followed by R-wave detection using an enhanced Pan-Tompkins algorithm (Sathyapriya et al., 

2014) to calculate the R-R intervals. For RESP, band-pass filters were applied within the 

frequency range between 0.1 Hz to 0.35 Hz.  All physiological metrics and the ET metrics were 

extracted 120 seconds before TOR to the TOR onset; while the psychological states were based 

on the corresponding questionnaire responses collected after each takeover event. 
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Table 2. Extraction of variables. 
Measures Metrics Unit Definitions Calculation Details 
Workload (WL) MD - Mental load Each dimension served as a 

measurement item for the latent 

variable WL in SEM, each ranging 

from 1 (low) to 21 (high). (Hart & 

Staveland, 1988) 

PD - Physical load 
TD - Temporal load 
EFF - Effort degree 
PF - Performance satisfaction 
FRU - Frustration degree 

Trust (TRU) T1 - Deceptive  Seven-point Likert scale, ranging 

from 1 "strongly disagree" to 7 

"strongly agree." (Jian et al., 

2000). Each dimension served as a 

measurement item for the latent 

variable TRU in the SEM. 

T2 - Underhanded  
T3 - Suspicious 
T4 - Wary 
T5 - Harmful or injurious 
T6 - Confident 
T7 - Security 
T8 - Integrity 
T9 - Dependable 
T10 - Reliable 
T11 - Trust 
T12 - Familiar 

Takeover time 

(TOT) 

TOT s Takeover time, i.e., The duration from the issuance of a takeover request 

by an automated system to the moment the driver begins to assume 

control (Ayoub et al., 2022). 

 

 

 

Takeover quality V m/s Vehicle speed 

 

The average/max value of the 
Max LD m The max lateral distance from the centerline of the lane 
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(TOQ) Mean LD m The mean lateral distance from the centerline of the lane metrics during the period from the 

initiation of takeover to effective 

takeover (lateral stability). (Cao et 

al., 2021; Yao et al., 2021).  

BP - Vehicle brake pedal depth (0-10) 
SW rad Vehicle steering wheel angel 
AX m/s2 Longitudinal acceleration 
AY m/s2 Lateral acceleration 

Eye-tracking (ET) 

metrics 

PA px Pupil area Average of the metrics from 120 

seconds prior to the TOR to the 

moment of the TOR initiation.  

 

 
 

FR Times/minute Fixations rate, i.e., the number of fixations per minute, where a fixation 

is defined as a gaze duration greater than 0 seconds. 
FT s/min Fixations time, i.e., the total fixation duration divided by the total time. 
SR Times/minute Saccade rate, i.e., the number of saccade per minute. 
ST s/min Saccade time, i.e., the total saccade duration divided by the total time 
SA Degrees Saccade angle, i.e., the angle between two consecutive fixation points 

Electrodermal 

Activity (EDA) 

SCL µS Skin conductance level 
SCR µS Skin conductance response 

Electrocardiogram 

(ECG)   

HR Beats/minute Heart rate 

RMSSD s Magnitude of the differences between consecutive R-R intervals  
SDNN s Variability of the time intervals between consecutive normal heartbeats 
LF ms² Spectral power in the low-frequency range (usually 0.04 to 0.15 Hz)  
HF ms² Spectral power in the high-frequency range (usually 0.15 to 0.4 Hz)  
LF/HF % Ratio of LF to HF 

Respiration 

(RESP) 

RR Times/ minute Rate of breaths 
RD mm Size of respiratory depth 
RV % Variation in respiratory intervals 
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3.8 Construction of Structural Equation Model  

A three-step approach was employed to test the research hypotheses in SEM models, 

following the methodology by Okumus et al. (2016). First, the measurement models were 

constructed to evaluate the validity of the model, by analyzing the relationships between 

measurement items and latent variables through a confirmatory factor analysis. At the same 

time, the reliability of the model was assessed through composite reliability (CR), and the 

convergent validity was evaluated by calculating the average variance extracted (AVE). Next, 

SEM analysis was performed to calculate the standardized coefficients for each factor. The 

goodness-of-fit of the model was evaluated using the criteria recommended by Schermelleh-

Engel et al. (2003). Specifically, the Chi-square/Degree of Freedom (χ²/df) index measures the 

overall fit by comparing the proposed model structure to the observed data. The Goodness of 

Fit Index (GFI) reflects how well the model explains the variance in the observed data. The 

Adjusted Goodness-of-Fit Index (AGFI) further adjusts for model complexity and degrees of 

freedom. The Normed Fit Index (NFI) evaluates the fit by comparing the proposed model to a 

null model. The Comparative Fit Index (CFI) also compares the model to a baseline, taking 

sample size into account. Finally, the Root Mean Square Error of Approximation (RMSEA) 

assesses the model by measuring the error of approximation per degree of freedom.  

4 Results 

4.1 Validation of the Cognitive Tasks 

 We first checked if the NDRT we used imposed differentiable loads on drivers. It was 

found that the NASA_TLX data did not follow a normal distribution, so we used the Friedman 

test to compare workload levels across varying task difficulties within each type of cognitive 
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task. When a significant effect was detected, we conducted Wilcoxon signed-rank tests for post-

hoc comparisons. As illustrated in Figure 6, our task imposed distinct levels of workload on 

drivers.  

 

Figure 6. Significance test results of self-reported NASA-TLX. (a) Cognitive spatial task, (b) 

Math task, and (c) N-back task. Note: MT1 is math task 1 (decrement of 3), MT2 is math task 

2 (decrement of 5), BL is the baseline (driving only), 0-B is 0-back task, 1-B is 1-back task and 

2-B is the 2-back task, *** means p < .001. 

4.2 SEM  

The SEM constructed 25 paths based on 812 valid data points (42 participants and 21 

takeovers per participant, with 70 data points being lost due to physiological or eye-tracking 

data missing). To account for the correlations introduced by repeated measurements (as each 

participant experienced multiple takeover events), we adopted the Mixed-Effects Model (MLM) 

in SEM to account for individual and experimental sequence effects. Thus, the model can 

handle the repeated measures on IH. This approach avoids the violation of the SEM 

assumptions on data independence. 

 Table 3 presents the results of the measurement model. For the measurement model, 

measurement items with factor loadings below 0.5 were removed, including RR from RESP, 

HR and LF/HF from ECG, ST, FT and SA from ETB, PD and PF from WL, Familiarity from 

TRU, and V, Mean LD, AY, and SW from TOQ. As a result, we found that the SCL, RD, SDNN, 
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FR, MD, T9 of Trust, and BP were the most effective indicators of EDA, RESP,  ECG, ETB, 

WL, TRU, and TOQ, respectively, as indicated by their high loading factors. At the same time, 

the CR of all constructs ranged from 0.768 to 0.95, all above the recommended threshold of 0.7 

(Wang et al., 2021), indicating internal consistency. The AVE values all ranged from 0.513 to 

0.748, surpassing the recommended threshold of 0.5 (Wu et al., 2023), indicating the 

convergent validity of the model. 

 

Table 3. Results of factor analysis. 

Latent variable Measurement Variable Factor loading AVE CR 
EDA SCL 0.824 0.624 0.768 

SCR 0.755 
RESP RD 0.903 0.684 0.810 

RV 0.743 
ECG RMSSD 0.676 0.513 0.807 

SDNN 0.823 
LF 0.640 
HF 0.715 

 

 

ETB 

 

SR 0.872 0.748 0.898 
PA 0.743 
FR 0.966 

 WL   MD 0.918 0.693 0.899 
TD 0.842 
FRU 0.664 
EFF 0.882 

 
TRU T1 0.703 0.636 0.950 

T2 0.679 
T3 0.772 
T4 0.671 
T5 0.701 
T6 0.855 
T7 0.808 
T8 0.662 
T9 0.973 
T10 0.970 
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T11 0.893 
TOQ  BP -0.839 0.583 0.807 

AX -0.724 
Max LD -0.722 

 

 As shown in Table 4, all fit indices are acceptable, indicating satisfactory goodness-of-fit 

of the model. Then, Figure 7 and Table 5 present the path coefficients and their significance in 

the final model with non-significant paths eliminated.  

The results indicate that none of the physiological signals were direct predictors of TOQ 

(Takeover Quality) or TOT (Takeover Time). Instead, they were associated with TOQ and TOT 

indirectly through psychological latent variables (WL, TRU). Specifically, ETB (Eye-tracking 

behavior) and EDA (Electrodermal Activity) were related to TOQ and TOT through the 

mediating psychological variable TRU (Trust), with increased eye-related activity and 

decreased EDA activity being associated with higher levels of TRU, and consequently, higher 

TOQ and TOT. At the same time, ETB, ECG (Electrocardiogram) and RESP (Respiration) were 

related to TOT through the mediating psychological state WL, with decreased ECG, increased 

RESP and ETB activity being associated with higher workload, and consequently higher TOT. 

Additionally, we observed an association between RESP and ECG, with higher RESP activity 

leading to higher ECG activity. However, the ETB was not associated with any physiological 

signals. Finally, we found that individual heterogeneity (IH) had an impact on physiological 

signals, eye movement metrics, psychological states, and takeover performance, with the largest 

effect observed on EDA and the smallest effect on TOQ, and the takeover scenarios can affect 

TOQ and TOT. 
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Table 4. Goodness-of-fit of the SEM model. 

Goodness-of-fit measures Good fit Acceptable fit Model value 

Chi-square/Degree of Freedom (χ²/df) [0,2] (2,3) 2.574 

Goodness of Fit Index (GFI) [0.95,1] [0.90,0.95) 0.973 

Adjusted Goodness-of-Fit Index (AGFI) [0.90,1] [0.85,0.90) 0.966 

Normed Fit Index (NFI) [0.95,1] [0.90,0.95) 0.952 

Comparative Fit Index (CFI) [0.97,1] [0.95,0.97) 0.931 

Root Mean Square Error of Approximation (RMSEA) [0,0.05] (0.05,0.08] 0.059 

 

 

Figure 7. The final model results. * means p < .05, ** means p < .01, *** means p < .001. 

Only significant paths are shown. 

Table 5. Mediating effect analysis. 

Physiological 

signal 

Takeover 

performance 

Mediating 

variable 

Effect path Effect size 
RESP TOT WL Total 0.018 

RESP→WL 0.082 
TRU→TOQ 0.225 

EDA TOQ TRU Total -0.01 
EDA→TRU -0.12 
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TRU→TOQ 0.083 
TOT TRU Total -0.02 

EDA→WL  -0.12 
WL →TOT 0.137 

ECG TOT WL  Total -0.02 
ECG→WL  -0.101 
WL →TOT 0.202 

ETB TOT WL and TRU Total 0.056 
ETB→WL  0.08 
WL →TOT 0.202 

 

 

ETB→TRU  0.29 
TRU →TOT 0.137 

 

 

TOQ TRU Total 0.024 
ETB→TRU  0.29 
TRU →TOQ 0.083 

 

 

 

5 Discussion 

 Based on the data from a driving simulator study, we evaluated the relationships among 

users’ psychological states, physiological states, eye-tracking metrics, and takeover 

performance in SAE Level-3 vehicles. In our model, the smaller TOQ value was associated 

with larger brake pedal depth (BP), longitudinal acceleration (AX), and maximum lane 

deviation (MaxLD), which all indicate worse takeover quality (Cao et al., 2021; Jin et al., 2021; 

Yao et al., 2021). Thus, the better the takeover quality, the larger the TOQ value. Similarly, the 

larger the TOT value, the longer the takeover time, as the TOT is only positively associated 

with the takeover time. 

First, in line with previous research (Du et al., 2020; Liu et al., 2024; Payre et al., 2016) 

and partially supporting H3 and H5, we found that the driver's trust in driving automation was 

associated with both takeover quality and takeover time. In contrast, workload was only 

associated with takeover time. Specifically, we first found that trust was positively associated 
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with takeover quality but not takeover time. The positive association between trust and takeover 

quality indicates that drivers would generate smoother and stabler control of the vehicle when 

they trusted more in driving automation. It is possible that those who pose higher trust in driving 

automation would be less stressed when taking back control of the vehicle, which can partially 

be supported by the negative relationship between the EDA and the trust in the SEM model 

(supporting H4), as previous research has found that EDA was associated with increased stress 

among drivers (Setz et al., 2010). Further, in line with Jin et al. (2021), we also observed a 

positive association between trust and takeover time. This is as expected, as drivers who trusted 

in automation more might tend to rely on automation more and thus respond more slowly.  

Conversely, partially supporting H3, workload was associated with takeover time, but not 

takeover quality. The significant positive relationship between workload and takeover time 

agrees with the findings in previous driving studies (Liu et al., 2024), as switching between 

ongoing (i.e., NDRT) and interrupting tasks (i.e., driving task) is cognitively demanding and 

thus time-consuming (Payre et al., 2016). The lack of association between workload and 

takeover quality is also reasonable. In the takeover process, drivers would relocate their 

cognitive resources from NDRT to the driving task (Zeeb et al., 2016). Thus, the takeover 

performance would not be compromised if the shift of attention can be completed in time. 

However, future research is still needed to further validate our explanations, potentially through 

more direct measures of drivers’ brain activities, such as electroencephalogram (EEG) or 

Functional Near-Infrared Spectroscopy (fNIRS).  

 Contradictory to our expectation (H1), physiological activity was not directly associated 

with the takeover performance but indirectly correlated with the takeover performance through 
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trust and workload. This hierarchical relationship suggests that when using physiological 

signals to predict takeover performance (e.g., Du et al., 2020), the machine learning models 

might be estimating the psychological states of the drivers. Hence, additional information that 

can explain the variations in drivers’ psychological states, such as the traffic conditions that 

affect drivers’ task load (Stapel et al., 2019) and environmental factors that influence situational 

trust (Jin et al., 2021), may improve the accuracy of takeover performance estimation.  

 Additionally, partially supporting H6, we observed a significant correlation between 

respiratory activity and electrocardiographic signals, suggesting the underlying relationships or 

mechanisms among different physiological measures (Wang et al., 2024). Further, partially 

supporting H2 to H5, several physiological metrics and eye-tracking metrics were indirectly 

related to takeover time and takeover quality through psychological states. However, it should 

be noted that being different from previous studies (He et al., 2019), the EDA was not found to 

be associated with the workload. It is likely that the variations in other drivers’ states shadowed 

the variation in EDA, given that the EDA is sensitive to multiple states of the drivers (e.g., 

Radhakrishnan et al., 2022; Sarchiapone et al., 2018). 

Next, being contradictory to H7, takeover time was not associated with takeover quality, 

which suggests that a rapid response (short TOT) does not necessarily ensure a high-quality 

takeover. It is likely that the takeover time was more related to the takeover scenario and drivers’ 

capability to rebuild situation awareness when the vehicle was controlled by ADAS (Tanshi & 

Söffker, 2019), while the takeover quality was more related to drivers’ manual driving skills 

(Soares et al., 2021). Finally, we found that all variables of interest in our study were associated 

with individual heterogeneity to some extent, suggesting the need to consider individual 
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differences when estimating drivers’ performance in takeover events. 

6 Limitations 

 This study has several limitations that should be considered when interpreting the findings. 

First, the realism of the driving simulator might influence the participants’ physiological 

responses. Specifically, while driving simulators provide a safe and controllable environment 

for experiments, they may not fully replicate the complexity of real-world driving, which could 

potentially bias biometric signals. Future studies should validate these findings in both 

simulator and on-road experiments to assess their generalizability (such as Yang et al., 2025). 

Secondly, only cognitive tasks were used in the study. Further research should be conducted to 

validate the conclusions when NDRTs with other modalities (e.g., visual and manual) are 

provided.  

7 Conclusion 

 In this study, we adopted a structural equation model to explore the relationships among 

physiological signals (i.e., cardiac activity, respiratory activity, electrodermal activity), eye-

tracking metrics, psychological states (i.e., trust, workload), and variations in takeover 

performance (takeover time and takeover quality) in conditionally automated vehicles. The 

major findings are summarized as follows: 

• The driver's psychological states (i.e., trust in the automated system and workload) were 

directly associated with takeover performance. Specifically, trust was positively associated 

with takeover quality and takeover time, whereas drivers’ task load was positively associated 

with takeover time. 

• Physiological signals (including respiratory activity, cardiac activity, and electrodermal 
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activity) and eye-tracking metrics were found to be indirectly associated with takeover 

performance via drivers’ psychological states, but they were not directly associated with 

takeover performance.  

• Physiological signals and eye-tracking metrics are associated with psychological states.  

 This study reveals the hierarchical relationship among physiological signals, eye-tracking 

behavior, psychological states, and takeover performance, emphasizing the influence of drivers’ 

states on takeover performance. Understanding these complex relationships can guide the 

design of driver monitoring systems for takeover performance estimation.   
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