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Rear-end collisions account for a significant proportion of traffic accidents, highlighting the importance of analyzing drivers' 
car-following (CF) behavior for traffic safety research. Previous studies, whether based on modeling or data analysis, have 
primarily focused on the influence of the lead vehicle's (LV) state on a driver's CF behavior. However, in real-world driving, 
the information perceived by drivers is not limited to the LV; drivers also receive information about the following vehicle 
(FV), and their behavior may be influenced accordingly. Thus, this paper investigates the influence of FV states on the CF 
behavior of the ego-vehicle, specifically the impact of tailgating (where the time headway between the FV and the ego-
vehicle is less than 2 seconds) on the behavior of the ego-vehicle. The results indicate that when being tailgated, ego-vehicles 
tend to keep a smaller time headway to their LVs, confirming the nudging effects of the FV in CF events. 

 

INTRODUCTION 

Rear-end collision accounts for a large proportion of 
traffic accidents among both non-automated and autono-
mous vehicles (Almutairi et al., 2023; Huang et al., 2024), 
which is highly related to the car-following (CF) behavior 
of the vehicles (Almutairi et al., 2023; Bella & Russo, 
2011; Huang et al., 2024). Thus, the CF behaviors have 
been widely modeled in previous research, from both 
driver behavior modeling (Ahmed et al., 2021) and traffic 
controller design (Poudel & Li, 2023) perspectives of 
view. By modeling CF behaviors, more efficient, energy-
saving, and comfortable driving control models can be de-
signed, and the influential factors of driving CF strategies 
can be identified. 

Existing CF models mostly assume that the CF be-
haviors depend on the interaction between the lead vehi-
cle (LV) and the ego-vehicle (Zhu et al., 2018). However, 
the relationship between the ego-vehicle and the LV may 
not fully explain the variations in CF performance. For 
example, in a video-based study, Yan et al. (2023) found 
that drivers with traffic flow information ahead of the LV 
behaved more safely in critical events.  

At the same time, drivers may also consider the rear 
information when following LVs, given that a large por-
tion of drivers self-reported to have used tailgating to 
nudge the LVs (Stephens et al., 2023) and that the optical 
and video rearview mirrors can affect drivers’ perceived 
distance of rear hazards (Flannagan, 2005), indicating that 
drivers do look back in CF events. However, to the best 
of our knowledge, no research has quantified the effect of 

following vehicles (FVs) on the CF behaviors of the ego-
vehicle. Though several CF models have considered the 
behaviors of FV when designing CF models to stabilize 
traffic flow (Ma et al., 2023; Wang et al., 2022), they 
mostly simplified the mutual interactions between the FV 
and ego-vehicle by only considering the influence of ego-
vehicle on the FV, without quantifying the effects of the 
FV on ego-vehicle. 

Thus, in this study, we aim to understand how drivers’ 
CF strategies can be affected by the FVs. Specifically, CF 
event segments from naturalistic driving datasets were ex-
tracted to analyze the influence of tailgaters on the CF be-
haviors of the leading ego-vehicle. 

APPROACH 

Extraction of CF Segments 

This study extracts CF segments from the highD da-
taset based on the following criteria (Wen et al., 2022): 1) 
the CF duration should be over 15 seconds; 2) the follow-
ing distance should be less than 100 meters; 3) no lane 
changes occur in the segment; and 4) the vehicle’s mini-
mum speed should be over 10 m/s to avoid creeping traf-
fic.  

Further, as shown in Figure 1, we defined two types 
of CF events, i.e., the tailgated CF events, where the FV 
kept a time headway less than 2 seconds (Agency, 2014), 
and the normal CF event, where the time headway of the 
FV was always over 2 seconds. In total, 2,999 tailgated 
CF events and 1,679 normal CF events were extracted.  



 

 

Figure 1. Different car-following events. 

 

Pairing of the LV Speed Profiles 

To eliminate the impact of different traffic flow 
speeds on the analysis, we used the Dynamic Time Warp-
ing (DTW) (Müller, 2007) algorithm to identify matched 
ego-vehicle trajectories under different types of CF events 
(i.e., tailgated and normal). DTW is an algorithm com-
monly used to compare the similarity between time series. 
Specifically, the DTW can non-linearly align two time se-
ries to find the optimal match.  

The specific implementation of DTW is as follows: 
given two time series sequences 𝑋 =	 (𝑥!, 𝑥", … , 𝑥#) and 
𝑌 = 	 (𝑦!, 𝑦", … , 𝑦$), where m and n represent the lengths 
of the two sequences, a matrix D of size m×n was con-
structed. The element 𝐷(𝑖, 𝑗) represents the minimum cu-
mulative distance between the subsequence 𝑥! to 𝑥% and 
𝑦! to 𝑦&. The recursive relationship for the matrix is de-
fined as follows: 

𝐷(𝑖, 𝑗) = 𝑑/𝑥% , 𝑦&0 + min[𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 −
1), 𝐷(𝑖 − 1, 𝑗 − 1)]  

(1) 

where 𝑑/𝑥% , 𝑦&0 represents the Euclidean distance be-
tween 𝑥%  and 𝑦&  in two sequences. The lower-right ele-
ment 𝐷(𝑛,𝑚) of the matrix D is the DTW distance be-
tween the two sequences - the smaller the distance, the 
higher similarity between the sequences. With the DTW 
algorithm, we identified 477 pairs of tailgater and normal 
CF events.  

Metrics Evaluating the CF Behaviors 

To assess the influence of tailgaters on drivers’ CF be-
haviors, we compared ego-vehicles’ speed fluctuation and 
driving safety metrics across two types of paired CF 
events with paired t-tests. Specifically, the speed fluctua-
tions were measured by the following metrics: 

Standard Deviation (Vsd) (Lee et al., 2015), which 
can be calculated following Equation (2): 

𝑉'( =	<
∑ (𝑣% − �̅�)"#
%)!
𝑛 − 1

 (2) 

where, 𝑣% is the sample point of speed in a dataset; �̅� 
is the mean value of speed samples; and 𝑛 is the sample 
size in the dataset. 

Mean Absolute Deviation (Dmean) (Konno & 
Koshizuka, 2005), which can be calculated with Equation 
(3): 
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𝑛
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Coefficient of Variation (Cv) (Abdi, 2010), which can 
be expressed as follows: 

𝐶, =
𝑉'(
|�̅�|

× 100% (4) 

where, �̅� is the mean speed in a CF segment. 



Time-Varying Stochastic Volatility (Vf) (Nakajima, 
2011), which can be calculated following Equation (5): 

𝑉- = <∑ (𝑟% − �̅�)"#
%)!
𝑛 − 1

 (5) 

where, 𝑟% = ln G ,!
,!"#

H × 100% ; 𝑣%  and 𝑣%.!  are the 

observed speed sample 𝑖 and 𝑖 − 1, respectively; �̅� is the 
mean value of 𝑟%; and 𝑛 is the sample size. 

The safety of the ego-vehicle’s CF behavior was 
measured by the following metrics: 

Mean time headway (meanHDW) (Swaroop & 
Rajagopal, 2001), which can be calculated as follows: 

𝑚𝑒𝑎𝑛𝐻𝐷𝑊(𝑡) = 𝑚𝑒𝑎𝑛N
𝑋/(𝑡) − 𝑋0(𝑡)

𝑉0(𝑡)
O (6) 

where, 𝑋/(𝑡) and 𝑋0(𝑡) are the positions of lead vehicle 
and ego-vehicle at time t. 𝑉0(𝑡) is the speed of ego-vehi-
cle at time t 

Maximum reciprocal time-to-collision 
(maxreTTC) (Alonso-Mora et al., 2012), which can be 
calculated as follows: 

𝑚𝑎𝑥𝑟𝑒𝑇𝑇𝐶(𝑡) = max N
𝑉0(𝑡) − 𝑉/(𝑡)

𝑋/(𝑡) − 𝑋0(𝑡) − 𝐿
O (7) 

OUTCOMES 

The statistical results are shown in Table 1. 

Table 1. The comparison of CF behaviors between tailgated and normal CF events  

Metrics Tailgated Events  Normal Events    
Max Min Mean SD  Max Min Mean SD  ∆ (%) p-value 

 Speed Fluctuation 
Vsd (m/s) 6.02 0.06 1.42 1.00  5.54 0.08 1.45 1.02  -2.11 .7 
Dmean(m/s) 5.25 0.05 1.21 0.87  5.03 0.06 1.24 0.89  -2.48 .5 
Cv 42.68 0.28 12.45 10.78  44.64 0.52 12.78 11.24  -2.65 .7 
Vf(m/s) 0.79 0.02 0.10 0.10  0.75 0.02 0.11 0.10  -10.00 .9 
 Safety 
meanHDW (s) 7.02 0.22 2.38 1.15  12.78 0.20 2.62 1.33  -10.08 .003* 
maxreTTC (s) 121.87 0.0003 0.64 7.36  76.10 0.0003 0.46 4.83  28.13 .6 

Note: In the table, * marks significant results (p < .05), ∆ is the percentage difference between two types of CF events, 
and SD stands for standard deviation. 

 
 

Speed Fluctuation 

In this study, although there are minor differences in 
the descriptive statistics (Vsd, Dmean, Cv, and Vf), none 
of them were significant (p > .05). This indicates that our 
DTW algorithm has selected CF events with similar speed 
profiles. However, it should be noted that, descriptively, 
more extreme speed fluctuations have occurred in the tail-
gated CF events, as indicated by the percentage differ-
ences of the mean values of the metrics. 

Safety 

As shown in Figure 2, the meanHDW in the tailgated 
CF event was 10.8% lower in the normal CF event. Given 
that the speed profiles were similar across the event pairs, 
the smaller meanHDW in the tailgated CF event as com-
pared to that in the normal CF event indicates that the ego-

vehicle drove closer and more aggressively to the LV in 
the tailgated CF events. The lack of significant differences 
in the reTTC may because the drivers got increasingly 
more cautious and thus more sensitive to the LV speed 
changes when following LV at a closer distance, as indi-
cated by the smaller meanHDW.  

 



 
Figure 2. Comparisons of meanHDW in different CF con-
ditions, M stands for mean value, SD stands for standard 
deviation, and significant comparisons (p < .05) are 
marked using “*”. In the figure, each box represents the 
interquartile range (IQR) of the data: the bottom and top 
edges of the box correspond to the first (Q1) and third 
quartiles (Q3), respectively, while the bold line inside the 
box indicates the median. The whiskers extend to the min-
imum and maximum values within 1.5 times the IQR 
from the quartiles.  
 

DISCUSSION 

In this study, CF events with and without tailgaters 
were extracted from an on-road dataset, the highD dataset. 
Then, the DTW method successfully identified CF pairs 
with similar speed profiles as indicated by non-significant 
(p > .05) differences in speed fluctuation metrics across 
these two types of CF events.  

As a result, for the first time, we observed the nudge 
effects (Zadka-Peer & Rosenbloom, 2024) of the FV on 
drivers’ CF behaviors in a naturalistic environment. Spe-
cifically, we found that with a tailgater, drivers kept a 
shorter time headway to the LV. This result provides evi-
dence that drivers consider more than LV information in 
CF events (Gunawan, 2012; Jiang et al., 2001; Treiber et 
al., 2000) – the peer pressure from behind can also shape 
drivers’ CF strategies. Further, drivers may have driven 
more cautiously when they kept a shorter time headway 
to the LV, as indicated by the larger, though statistically 
non-significant difference in remaxTTC. This result indi-
cates that drivers could still adapt their driving behaviors 
based on the complexity of the traffic, even with the peer 
pressure from behind.  

However, it should be noted that due to the nature of 
the on-road observation dataset, we could not explore 
drivers' subjective thoughts on being tailgated and their 
decision-making process. Further research with recruited 
participants could provide further information on these 
topics. Further, our results were based on a single dataset. 
Future research should validate our findings on other da-
tasets. Nevertheless, our research indicates that future 
driver behavior models in the traffic simulation should 
take the impact of the FV into consideration. As a next 
step, additional research should be conducted to quantita-
tively model drivers’ CF behaviors in different conditions, 
potentially using data-driven methods, such as inversed 
reinforcement learning (Wen et al., 2023), to recover driv-
ers' strategies in different situations 
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