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ABSTRACT 1 
With the increasing number of vehicles equipped with Automated Driving System (ADS) being tested on 2 
the public road and the expanding market share of vehicles equipped with Advanced Driving Assistance 3 
System (ADAS), the number of ADS- or ADAS-involved crashes increases. Thus, it is necessary to 4 
investigate the distribution of ADS- and ADAS-involved crashes and the factors leading to them. The 5 
rear-end collision has been found to dominate among ADS-involved crashes. However, no research has 6 
explored the conditions when ADS-involved rear-end collisions are more likely to happen and no research 7 
has investigated ADAS-involved rear-end crashes. Based on 130 ADS-involved crashes and 84 ADAS-8 
involved crashes extracted from a dataset collected by National Highway Traffic Safety Administration 9 
(NHTSA) between July 2021 and May 2022, this study explored the crash patterns, especially rear-end 10 
crashes of ADS- and ADAS-controlled vehicles. Results show that the rear-end collisions dominate both 11 
the ADS- and ADAS-involved crashes and this is especially the case for ADAS-involved crashes. The 12 
type of ADS-involved and ADAS-involved crashes were both affected by the speed of the ego-vehicle 13 
relative to the posted speed limit. Further, the type of ADS-involved crash was affected by the pre-crash 14 
movement of the crash partner; while the type of ADAS-involved crash was further associated with the 15 
road type. The findings can provide insights into the design of ADAS and ADS control algorithms, the 16 
external human-machine interface design of the vehicles with ADS or ADAS, and the training program of 17 
human road users to improve traffic safety in mixed traffic. 18 
 19 
Keywords: ADS, ADAS, crashes, rear-end collisions  20 
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INTRODUCTION 1 
Over 90 percent of vehicle crashes can be attributed to human errors (1). Thus, introducing 2 

driving automation is expected to improve driving safety. In the past decades, with the development of 3 
both sensors (e.g., lidars) and artificial intelligence, SAE Level 2 driving automation (2) has become a 4 
reality, with over one-third of new cars sold with advanced driving assistance systems (ADAS) in major 5 
markets such as Mainland China, Europe, Japan, and the US in 2021 (3). Although still not being 6 
available to consumers, higher level of driving automation (i.e., SAE Level 3 to 5), for example, 7 
automated driving system (ADS), has been widely tested on open roads in some states in the U.S. (e.g., 8 
Waymo in California and Uber in Arizona). The co-existing of vehicles driven by human drivers, vehicles 9 
controlled by ADAS, and vehicles driven by ADS makes it possible to explore the safety benefits of 10 
introducing different levels of driving automation. 11 

Previous studies have compared the safety performance of ADS-controlled vehicles to human-12 
driven vehicles. It was found that the ADS being tested on road at the current stage generally exhibited 13 
worse safety record compared to human drivers (4–7). Specifically, research found that the rear-end 14 
crashes dominate the ADS-involved crashes (5, 8–10), potentially due to the reduced behavioral 15 
predictability of ADS-controlled vehicles (11, 12). The crash pattern of ADAS-controlled vehicles, 16 
however, has been under-investigated, potentially due to the lack of data. The ADAS-controlled vehicles, 17 
with human drivers in the control loop, may exhibit different behaviors compared to ADS-controlled 18 
vehicles. On one hand, the perception capability of ADAS is in general weaker than that of ADS and thus 19 
the behavior of ADAS-driven vehicles should be even less predictable; on the other hand, with SAE 20 
Level 2 automation, drivers are still actively monitoring the road and may step in proactively to avoid 21 
emergencies (13). This anticipation capability may even be enhanced in ADAS-control vehicles, as 22 
drivers should have more spare attentional recourses to perceive the environment (14). But it should be 23 
noted, the drivers may adapt to new technologies. In extremely cases, drivers may even give up their role 24 
when ADAS is controlling the vehicle (15). All these factors may influence the crash patterns of ADAS-25 
controlled vehicles.  26 

Although a large number of studies have investigated the safety implications of ADAS in closed 27 
tracks or driving simulators (16–20), to the best of our knowledge, no studies have compared the crash 28 
patterns between ADAS-controlled and ADS-controlled vehicles. A scrutiny of the crash patterns, as well 29 
as an exploration of the potential factors influencing the crash patterns in ADAS-controlled and ADS-30 
controlled vehicles, can reveal how the advancement of technologies impacts road safety and guide the 31 
optimization of ADS and ADAS control algorithm. From human road users’ perspective of view, the 32 
analyses of crash patterns with ADS- and ADAS-controlled vehicles can also guide the behaviors of 33 
human road users in mixed traffic. Thus, in our study, we compared the crash patterns, especially rear-end 34 
collision patterns between ADS-controlled and ADAS-controlled vehicles and explored the factors 35 
leading to the rear-end collisions. Given the fast evolution of driving automation technologies (10), we 36 
adopted a newly released crash report dataset by the National Highway Traffic Safety Administration 37 
(NHTSA dataset), which includes the ADS- and ADAS-involved crashes from July 2021 to May 2022.  38 

 39 
LITERATURE REVIEW 40 
 41 
Safety Performance of ADS-controlled vehicles 42 

Using the open data, previous research found that compared to human-driven vehicles, the ADS-43 
controlled vehicles being tested on road at the current stage exhibited worse safety record regardless of 44 
the metrics being adopted. For example, based on the California Department of Motor Vehicles (DMV) 45 
dataset, Favarò et al. (5) found that the mean mileage before a human-driven vehicle involving a crash 46 
was 500,000 miles, as compared to 42,017 miles before ADS-controlled vehicles (SAE Level 3 or above) 47 
involving a crash. From the injury perspective of view, researchers found that among ADS-involved 48 
crashes in the DMV dataset, 70.83% of the injuries were in ADS-controlled vehicles; while only 29.17% 49 
of injuries were in human-driven vehicles (4). Similarly, based on a different dataset collected in 50 
California (i.e., publicly disclosed on-road data from Google, Delphi, and Audi), Schoettle & Sivak (6) 51 
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found that the number of crashes among ADS-controlled vehicles was 9.1 per million miles traveled, 1 
which was much higher compared to that of conventional human-driven vehicles (1.9). In addition, a 2 
more recent naturalistic driving study revealed that ADS-controlled vehicles were 4.8 times more likely to 3 
be rear-ended by following vehicles compared to that of human-driven vehicles (7). 4 
 5 
Patterns of ADS-related crashes 6 
 7 
TABLE 1 Summary of literatures about patterns of ADS-related crashes 8 
 9 

Study Data source 
(data extraction period) 

Number 
of crashes 

Main findings 

Dixit et al. 
(21) 

DMV dataset 
(Sep. 2014 - Nov. 2015) 

12 For autonomous vehicles, the number of crashes 
was highly correlated with the miles travelled. 

Favarò et al. 
(5) 

DMV dataset 
(Sep. 2014 - Mar. 2017) 

26 Being rear-ended by a conventional vehicle is the 
most frequent type of ADS-involved collisions. 

Petrović et al. 
(9) 

 

DMV dataset 
(Jan. 2015 – Dec. 2017) 

53 - Rear-end collisions occurred the most often 
among ADS-involved collisions (64.2%). 
- Collisions related with “pedestrian” (none) and 
“broadside” (5.7%) were the two least types of 
collisions in ADS-involved collisions. 

Boggs et al. 
(8) 

DMV dataset 
(Sep. 2014 – Nov. 2018) 

113 - The most frequent ADS-involved crash type was 
rear-end collisions (61.1%; N = 69). 
- When the ADS was engaged, the likelihood of 
involving a rear-end crash was substantially higher. 

Liu et al. (10) DMV dataset 
(Oct. 2014 – Jun. 2020) 

122 - The most frequent ADS-involved pre-crash 
scenarios were rear-end collisions (52.46%). 
- Three dominating causes of ADS-involved 
crashes were: larger perception-reaction time, 
inappropriate path planning before emergencies, 
and inaccurate identification of lane-changing 
intentions of other vehicles 

Song et al. 
(11) 

DMV dataset 
(2015 – 2019) 

168 - The most representative pattern of AV-involved 
crashes was “collision following AV stop”. 
- ADS disengagement had a transition probability 
of 68% to an immediate collision. 

 10 
To understand why ADS exhibited a worse safety record compared to human drivers, previous 11 

research explored the patterns of ADS-related crashes, as summarized in Table 1. It was found that 12 
compared to human-driven vehicles, the ADS-controlled vehicles were more likely to be rear-ended by 13 
following vehicles (5, 8–10, 21). Specifically, from the start of the DMV program (2014) to Nov. 2018, 14 
rear-end collision takes up to 61.1% of all ADS-involved crashes in DMV dataset (8). Similarly, research 15 
based on Waymo open dataset (22) also revealed that compared to human driven vehicles, ADS-driven 16 
vehicles lead to smaller time to collisions of following vehicles (12). The research by Song et al. (11) 17 
provided further details regarding ADS-involved rear-end crashes - it was found that the most 18 
representative temporal pattern of ADS-involved crashes was “collision following autonomous vehicle 19 
stopping”. Another research by Liu et al. (10) further found that compared to human drivers, ADS led to a 20 
larger perception-reaction time, inappropriate path planning before emergencies, and inaccurate 21 
identification of lane-changing intentions of other vehicles. As a result, compared to that when the lead 22 
vehicle was controlled by a human driver, it is in general more difficult for the following vehicle drivers 23 
to anticipate the motion of ADS-controlled lead vehicles and thus brake proactively. However, it should 24 
be noted that these previous studies were mostly based on the DMV dataset collected crash between 2014 25 
to 2019, which may not reveal the most up-to-date ADS behaviors. Further, the DMV dataset did not 26 
include ADAS-involved crashes. Thus, these previous studies only focused on the comparisons between 27 



Huang, Wen, and He  

5 
 

ADS-controlled and human-driven vehicles. A research based on newly collected dataset should be 1 
conducted to better understand the impact of technology revolution on safety record of driving automation 2 
(including ADS and ADAS).  3 
 4 
METHODS 5 

 6 
Dataset Description 7 

On June 29, 2021, the National Highway Traffic Safety Administration (NHTSA) issued a 8 
Standing General Order requiring relevant entities (e.g., vehicle manufacturers, operators) to report 9 
certain crashes involving vehicles equipped with SAE Level 2 ADAS or SAE Level 3-5 ADS (23). This 10 
General Order requires manufacturers and operators to report certain crashes when ADS or ADAS is 11 
engaged or immediately after the ADS or ADAS is disengaged, and to provide sufficient information for 12 
NHTSA to identify crashes warranting further follow-up. Specifically, for any ADS-involved and ADAS-13 
-involved crashes, the automation (i.e., ADS or ADAS) should be in use at the time of the collision or 14 
disengaged within 30 seconds prior to the crash and the crash resulted in property damage or injury.  15 

As of May 15, 2022, there are 392 ADAS-involved crashes reported by 12 reporting entities and 16 
130 ADS-involved crashes reported by 25 reporting entities in the NHTSA dataset. Reporting entities 17 
submitted crash reports in electronic format using the web-based incident report form. The crash report 18 
includes subject vehicle (SV) information (e.g., make, model, model year, mileage), incident information 19 
(e.g., date, time), incident scene (e.g., location, city, roadway type, surface condition, speed limit, 20 
weather, lighting), crash description (e.g., crash partner, pre-crash movement of SV, pre-crash speed of 21 
SV, the crash contact area of SV and crash partner, highest injury severity), post-crash information (e.g., 22 
whether investigated by a law enforcement agency or not), and the narrative (e.g., written description of 23 
other information). NHTSA released the summarized crash report data in the format of .csv files, with 24 
122 variables containing all information covered in the incident report form.  25 
 26 
Data Preprocessing and Variable Extraction 27 

The raw data of the NHTSA dataset was first pre-processed to remove repeating and invalid 28 
records, following the guidance from NHTSA. In total, 392 ADAS-involved crashes and 130 ADS-29 
involved crashes were extracted using customized R codes, which are in line with the number of crashes 30 
presented in NHTSA’s report (24, 25). Next, due to the data accessibility issues, the information on the 31 
selected variables was missing in some ADAS-involved crashes. Hence, we filtered out the ADAS-32 
involved crashes where data was missing in three variables, i.e., the contact area of crash partner (CP), the 33 
contact area of SV, and the pre-crash movement of CP – as we were not able to extract the collision type 34 
of the crash without these three variables. As a result, 84 of 392 ADAS-equipped vehicle crashes were 35 
kept for further analysis. The data of all ADS-involved crashes were complete, and all 130 crashes were 36 
kept for further analysis. It should be noted that not all 122 variables in NHTSA are related to crash 37 
patterns. Thus, following previous research, 9 variables that might be related to crash patterns in ADS- 38 
and ADAS-involved crashes were selected, as described below. Among the selected variables, 5 39 
categorical variables that include data aggregation are summarized in Figure 1. 40 
 41 
[Insert Figure 1 Here] 42 
 43 
Figure 1 The aggregation of selected categorical variables in the NHTSA dataset. The numbers in 44 
brackets are the numbers and percentages of instances under each category. 45 
 46 
Collision Type (CT) 47 

As we mainly focus on rear-end collisions, by manually inspecting the information about the 48 
contact area of CP, the contact area of SV, and the narrative, we labeled the collision type of all ADS and 49 
ADAS crashes as two types: rear-end collision and others. In rear-end collision, the contact area of the SV 50 
should be rear left, rear right, or rear; the contact area of the CP should be front left, front right, or front. 51 
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In other words, in this study, we only considered rear-end crashes that ADS- or ADAS-controlled 1 
vehicles were rear-ended by other vehicles (i.e., ADS- or ADAS-controlled vehicles as SVs). In case of 2 
unclear contact areas, the collision type was labeled based on the written description in the narrative. In 3 
total, 52 (40% out of 130) of ADS-equipped vehicle crashes and 44 (52.4% out of 84) of ADAS-equipped 4 
vehicle crashes were rear-end collisions. 5 
 6 
Vehicle Type (VT) 7 

The vehicle type was defined as the type of vehicle involved in the crashes, which includes two 8 
categories: ADS and ADAS. 9 
Speed Gap Ratio (SGR) 10 
 The speed of the involving road agents was found to be associated with the ADS-involved 11 
crashes in previous research (5, 26). To quantify the influence of the speed on ADS- or ADAS-involved 12 
crashes, a new variable, the speed gap ratio (SGR), was generated (Equation 1): 13 
 14 

𝑆𝐺𝑅 =  𝑃𝑆𝐿 − 𝑆𝑉𝑃𝐶𝑆 
𝑃𝑆𝐿

          (1) 15 
 16 

where, PSL is the posted speed limit (in mph) on the roadway where the incident occurred; SVPCS, as 17 
defined in the NHTSA dataset, is the speed (in mph) of the SV (i.e., ADS- or ADAS-equipped vehicles) 18 
at the time of the incident.  19 

When the SVPCS is lower than the PSL, the SGR is a positive number between 0 and 1. In this 20 
case, the smaller the SGR, the closer the speed of the SV is closer to the posted speed limit. When the SV-21 
pre crash speed is over the posted speed limit, the speed gap ratio would be negative. 22 
 23 
Incident Time (IT) 24 

The time of day was found to be associated with the risk of ADS-involved crashes (27) and 25 
conventional human-driven vehicle crashes (28). The incident time (IT) was recorded as the time of a day 26 
(e.g., 21:20) in the NHTSA dataset. To facilitate the analysis, following the previous practice of the 27 
National Safety Council (NSC) (29), we categorized the incident time into three time slots: morning-noon 28 
(4:00 – 12:00, 53 cases), noon-night (12:00 – 20:00, 90 cases), and night (20:00 – 4:00, 71 cases). 29 

 30 
Roadway Type (RT) 31 

The roadway type (RT) was defined as the type of road on which the collision happened and the 32 
crash risk of ADS on different RT was found to be different (8, 30). The RT recorded in the NHTSA 33 
dataset includes street, intersection, highway/freeway, parking lot, traffic circle, rural road, unpaved road, 34 
and unknown. As there were differences in roadway type distributions between ADS- and ADAS-35 
involved crashes, two categorization strategies were adopted. Three categories of RT were generated for 36 
ADS-involved crashes, i.e., street, intersection/traffic circle, and others; while for ADAS-involved 37 
crashes, the three categories of RT were highway/freeway/rural road, street, and intersection. 38 
 39 
Roadway Surface (RS) 40 

As another potential contributing factor to the crash risk of ADS-controlled vehicles (27), the 41 
roadway surface was defined as the roadway surface (RS) conditions at the time of the incident. The RS 42 
in NHTSA includes dry, wet, snow/slush/ice, others, and unknown. Due to the small number of instances 43 
of some RS types, after inspecting the roadway surface distribution of all ADS and ADAS crashes, we 44 
divided the roadway surface of all crashes into two categories: dry and others. 45 
 46 
Lighting (LT) 47 

The performance of ADS and ADAS might differ under different lighting conditions (31). In the 48 
original data, the lighting (LT) was defined as the lighting conditions at the time and location of the 49 
incident. The LT in NHTSA includes daylight, dawn/dusk, dark - lighted, dark - not lighted, dark - 50 
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unknown lighting, unknown, and others. To facilitate statistical analyses, we aggregated the LT with 1 
small number of instances and generated two levels for LT, i.e., daylight and others. 2 
 3 
Crash-With (CW) 4 

The crash-with (CW) was referred to as the object with which the subject vehicle came into 5 
contact in the incident. The CW in NHTSA dataset includes passenger car, SUV, Van, heavy truck, 6 
pickup truck, van, etc. To facilitate statistical analyses, we aggregated the CW with small number of 7 
instances and categorized the CW into three categories: passenger car, SUV, and others. 8 
 9 
Pre-crash Movement of Crash Partner (PMCP) 10 

The pre-crash movement of the crash partner (PMCP) was defined as the pre-crash movement of 11 
the other agents involved in the crash and was found to be a predictor of ADS-involved crashes in 12 
previous research (27). Possible values of PMCP in the NHTSA dataset include stopped, proceeding 13 
straight, lane/road departure, making a right turn, making a left turn, making a U-turn, changing lanes, 14 
backing, etc. After inspecting the data, we categorized the PMCP into three categories according to the 15 
direction of the movement, i.e., proceeding straight, changing lanes/taking turns, and others. 16 
 17 
Statistical Analysis 18 

Three statistical models were built to: 1) compare the chance of rear-end collisions between the 19 
ADS-involved and ADAS-involved crashes (Model 1); 2) investigate the factors affecting the collision 20 
types in ADS-involved (Model 2) and ADAS-involved crashes (Model 3).  21 

In all models, the CT (rear-end vs. others) was used as the dependent variable and the binomial 22 
logistic regression was used. Specifically, in Model 1, the independent variables of the full model include 23 
the IT (morning-noon vs. noon-night vs. night), RS (dry vs. others), LT (daylight vs. others), CW 24 
(passenger car vs. SUV vs. others), PMCP (proceeding straight vs. changing lanes/taking turns vs. 25 
others), SGR, and VT (ADS vs. ADAS). The two-way interactions between VT and other independent 26 
variables were also included in the model. In Model 2 and Model 3, the independent variables of the full 27 
model include IT, RT, RS, LT, CW, PMCP, SGR, and their two-way interactions. The model equations 28 
for the fitted models are presented as follows. For Model 1: 29 

 30 

𝑙𝑛 (
𝑝(𝐶𝑇 = 𝑟𝑒𝑎𝑟 − 𝑒𝑛𝑑)

𝑝(𝐶𝑇 = 𝑜𝑡ℎ𝑒𝑟𝑠)
) =  𝛽0 + 𝛽1 ∗ 𝐼𝑇 +  𝛽2 ∗ 𝑅𝑆 + 𝛽3 ∗ 𝐿𝑇 + 𝛽4 ∗ 𝐶𝑊 + 𝛽5 ∗ 𝑃𝑀𝐶𝑃 + 𝛽6 ∗ 𝑆𝐺𝑅31 

+ 𝛽7 ∗ 𝑉𝑇 + ∑ 𝛽𝑉𝑇|𝑋 ∗ (𝑉𝑇|𝑋)                             (2) 32 

 33 
where, 𝑋 ∈  {IT, RS, LT, CW, PMCP, SGR}, while (𝑉𝑇|𝑋) stands for the two-way interaction effect 34 
between VT and factor 𝑋 (e.g., 𝑉𝑇|𝐼𝑇, 𝑉𝑇|𝑅𝑆). 35 

For Model 2 (ADS-involved crashes) and Model 3 (ADAS-involved crashes): 36 
 37 

𝑙𝑛 (
𝑝(𝐶𝑇 = 𝑟𝑒𝑎𝑟 − 𝑒𝑛𝑑)

𝑝(𝐶𝑇 = 𝑜𝑡ℎ𝑒𝑟𝑠) ) =  𝛽0 + 𝛽1 ∗ 𝐼𝑇 +  𝛽2 ∗ 𝑅𝑇 + 𝛽3 ∗ 𝑅𝑆 + 𝛽4 ∗ 𝐿𝑇 + 𝛽5 ∗ 𝐶𝑊 + 𝛽6 ∗ 𝑃𝑀𝐶𝑃38 

+ 𝛽7 ∗ 𝑆𝐺𝑅 + ∑ 𝛽𝑀|𝑁 ∗ (𝑀|𝑁)                             (3) 39 

 40 
where, 𝑀, 𝑁 ∈  {IT, RT, RS, LT, CW, PMCP, SGR}, while (𝑀|𝑁) stands for the two-way interaction effect 41 
between factor M and factor 𝑁 (e.g., 𝐼𝑇|𝑅𝑇, 𝑅𝑇|𝑅𝑆). 42 

It should be noted that different categories were used for RT in Model 2 and Model 3 (RT of 43 
Model 2 for ADS: intersection/traffic circle, street, and others; RT of Model 3 for ADAS: 44 
highway/freeway/rural road, intersection, and street). We applied the backward stepwise selection method 45 
based on Bayesian Information Criterion (BIC) (32) for model selection. All models were built using the 46 
GENMOD procedure in SAS OnDemand for Academics. 47 
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RESULTS  1 
We report all significant effects (p<.05) and marginally significant effects (.05<p<.1) in the fitted 2 

models after model selection. The post-hoc contrasts were conducted if the main or interaction effects 3 
were significant or marginally significant. It should be noted that in the model selection process, all 4 
dropped variables were not significant (p>.1). For Model 1, we only report the post-hoc effects of VT and 5 
its interactions with other independent variables. Table 2 summarizes the model results. 6 

 7 
 8 

TABLE 2 Wald statistics of type 3 analysis for models 9 

IV Model 1 (ADS & ADAS) Model 2 (ADS) Model 3 (ADAS) 
2-value p 2-value p 2-value p 

VT 2(1) = 13.57 .0002** N.A. N.A. N.A. N.A. 
SGR 2(1) = 17.27 <.0001** 2(1) = 6.74 .0094** 2(1) = 5.36 .02** 
PMCP 2(2) = 8.97 .01** 2(2) = 27.78 <.0001** 2(2) = 3.74 .15 
RT N.A. N.A. 2(2) = 6.68 .04** 2(2) = 14.97 .0006** 
IT - - - - 2(2) = 3.78 .15 
PMCP*VT 2(2) = 25.45 <.0001** - - - - 
SGR*VT 2(1) = 5.32 .02** - - - - 
SGR*RT - - 2(2) = 4.96 .08* - - 

Note: in this table and the following tables, * marks marginal significant effect, ** marks significant effects. IV stands for 10 
independent variable; N.A. standards for not applicable; - means that the variable was removed during the model selection 11 
process. 12 
 13 
Comparison of ADS and ADAS Crashes 14 

As shown in Table 2, it was found that Vehicle Type (VT), Speed Gap Ratio (SGR), and Pre-15 
crash Movement of Crash Partner (PMCP) were significant predictors of the collision types. Further, 16 
significant interaction effects between PMCP and VT, and between SGR and VT were also observed for 17 
crash type. Table 3 presents the parameter estimation of the model. Post-hoc comparisons show that, 18 
when an ADS-involved crash happened, it is less likely to be a rear-end collision compared to that when 19 
an ADAS-involved crash happened, but to different extents when there was different PMCP (Proceeding 20 
Straight: OR=0.03, 95%CI: [0.002, 0.766]; Changing Lanes/Taking Turns: OR=0.005, 95%CI: [0.0002, 21 
0.1149]; Others: OR=0.0002, 95%CI: [0.0001, 0.0057]). 22 
 23 
TABLE 3 Analysis of Maximum Likelihood Parameter Estimates for Model 1 24 

Parameter Estimate S.E. 95% CL p 
Intercept -0.70 0.54 -1.76 0.36 .2 
PMCP (changing lanes/taking turns) 0.02 0.59 -1.14 1.19 .97 
PMCP (others) 1.27 0.65 -0.02 2.56 .055* 
VT (ADS) -3.37 1.58 -6.47 -0.27 .03** 
PMCP (changing lanes/taking turns)*VT (ADS) -1.97 0.80 -3.54 -0.40 .01** 
PMCP (others)*VT (ADS) -5.35 1.06 -7.43 -3.27 <.0001** 
SGR 1.68 0.78 0.16 3.20 .03** 
SGR*VT (ADS) 4.19 1.82 0.63 7.75 .02** 

Note: in this table and the following tables, S.E. stands for standard error; CL standards for Wald confidence limits. 25 
 26 
 27 
 28 
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Rear-End Collisions in ADS-Involved Crashes 1 
As shown in Table 2, the Pre-crash Movement of Crash Partner (PMCP), Speed Gap Ratio 2 

(SGR), and Road Type (RT) were found to significantly affect the collision type of ADS-involved 3 
crashes. Further, a marginally significant interaction effect between SGR and RT was observed.  4 

 5 
TABLE 4 Analysis of Maximum Likelihood Parameter Estimates for Model 2 6 

Parameter Estimate S.E. 95% CL p 
Intercept 1.21 1.70 -2.13 4.54 .48 
PMCP (changing lanes/taking turns) -2.22 0.60 -3.41 -1.04 .0002** 
PMCP (others) -4.68 0.95 -6.54 -2.81 <.0001** 
SGR 1.00 2.62 -4.13 6.12 .7 
RT (intersection/traffic circle) -5.20 2.67 -10.43 0.02 .051* 
RT (street) -21.69 10.83 -42.92 -0.46 .04** 
SGR* RT (intersection/traffic circle) 5.02 3.47 -1.78 11.82 .15 
SGR* RT (street) 21.99 11.23 -0.02 44.00 .0502* 

 7 
Table 4 presents the analysis of maximum likelihood parameter estimates of the model. The 8 

likelihood of an ADS-involved crash being a rear-end crash was the highest when the PMCP was 9 
Proceeding Straight, followed by Changing Lanes/Taking Turns, and then followed by Others (Changing 10 
Lanes/Taking Turns vs. Proceeding Straight: OR=0.11, 95%CI: [0.03, 0.35]; Changing Lanes/Taking 11 
Turns vs. Others: OR=11.58, 95%CI: [1.98, 67.84]; Proceeding Straight vs. Others: OR=107.38, 95%CI: 12 
[16.67, 691.54]). 13 

When the RT was Street, every 10% increase of the SGR (i.e., percent of speed gap out of the 14 
posted speed) leads to a 9.96 (95%CI: [1.35, 235.09]) multiplicative increase in the odds of an ADS-15 
involved crash to be a rear-end collision. However, the effect of SGR was not observed when the RT was 16 
Intersection/Traffic Circle or Others.  17 
 18 
Rear-End Collisions in ADAS-Involved Crashes 19 
 As shown in Table 2, it was found that the Speed Gap Ratio (SGR) and Road Type (RT) were 20 
significant predictors of the likelihood of collision types in ADAS-involved crashes. As shown in Table 21 
5, an ADAS-involved crash was more likely to be a rear-end crash on Highway/Freeway/Rural Road 22 
compared to that when the crash happened on Street (OR=7.67, 95%CI: [1.96, 29.95]) or in Intersection 23 
(OR=15.58, 95%CI: [2.80, 86.66]); no significant difference was observed between Street and 24 
Intersection. Further, every 10% increase of the SGR (i.e., percent of speed gap out of the posted speed) 25 
leads to a 1.27 (95%CI: [1.05,1.57]) multiplicative increase in the odds of an ADAS-involved crash being 26 
a rear-end collision. 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 



Huang, Wen, and He  

10 
 

TABLE 5 Analysis of Maximum Likelihood Parameter Estimates of Model 3 1 

Parameter Estimate S.E. 95% CL p 
Intercept -2.85 1.09 -4.99 -0.70 .009** 
PMCP (changing lanes/taking turns) 0.51 0.72 -0.91 1.92 .5 
PMCP (other) 1.52 0.82 -0.08 3.13 .06* 
SGR 2.36 1.02 0.36 4.35 .02** 
IT (afternoon-night) 0.12 0.77 -1.38 1.62 .9 
IT (night) 1.19 0.70 -0.18 2.57 .09* 
RT (highway/freeway/rural road) 2.04 0.70 0.68 3.40 .003** 
RT (intersection) -0.71 0.98 -2.64 1.22 .5 

 2 
DISCUSSIONS  3 

Through a recently released ADAS/ADS crash dataset by NHTSA, this study investigated the 4 
patterns of rear-end collisions among ADS- and ADAS-involved crashes. Previous research has found 5 
that ADS-equipped vehicles were more likely to involve in rear-end collisions compared to conventional 6 
human-driven vehicles (8). Our results show that the rear-end collisions also dominate the ADAS-7 
involved crashes: a larger portion of the rear-end collisions has been observed in ADAS-involved crashes 8 
even compared to that in ADS-involved crashes. The drivers are expected to be in the control loop in 9 
vehicles with SAE Level 2 ADAS and should be able to step in promptly before the ADAS can detect and 10 
respond to emergencies, given that drivers are better at anticipating the evolving situations on road 11 
compared to ADAS (33). However, as has been observed in previous research, drivers may shift their 12 
attention away from driving-related tasks in ADAS-equipped vehicles (34). Thus, drivers may not be able 13 
to take back control of the vehicle in time (35), or they may not be able to control the vehicle well even 14 
after stepping in (36).As ADAS was less capable of foreseeing the development of the situation compared 15 
to ADS, the lack of human-intervention may explain the even larger portion of rear-end collisions in 16 
ADAS-involved collisions compared to that in ADS-involved collisions. However, the readers should be 17 
aware that we were not comparing the ADS- and ADAS-involved crashes under the same conditions. 18 
ADS and ADAS were designed for different types of roads – ADS has been tested mostly on city roads, 19 
while ADAS is suggested to be used on highways or freeways only. It would be practically infeasible to 20 
compare the crash patterns of ADS- and ADAS-controlled vehicles on the same types of roads that one of 21 
them is not designed for. 22 

To further illustrate the crash patterns in conditions where ADS and ADAS were designed for, 23 
two additional models were built for ADS-involved and ADAS-involved crashes, respectively. For 24 
ADAS-involved crashes, as expected, with the increase of the SGR, the likelihood of an ADAS-involved 25 
crash being a rear-end collision increases, regardless of the type of road the ADAS-involved crashes 26 
happened. At the same time, we noticed that on highway/freeway/rural road, a larger portion of rear-end 27 
collisions in ADAS-involved crashes has been observed compared to that in urban areas (i.e., street or 28 
intersections). It is likely that drivers have over-relied on ADAS on highway/freeway/rural road where 29 
most ADASs were designed for and thus they tended not to take control of the vehicle until the situations 30 
become critical. This may can lead to unexpected hard braking of the ADAS-controlled vehicles and 31 
increase the likelihood of being rear-ended. Similar phenomenon has been observed when new 32 
technologies are implemented in vehicles. For example, based on the results of a naturalistic driving study 33 
in China, the forward collision system with a headway monitoring function led to shorter headway of the 34 
ego-vehicle as drivers may adapt to the system (37). Further, the portion of rear-end collisions did not 35 
differ across PMCP conditions for ADAS-controlled vehicles. In other words, regardless of the pre-crash 36 
movement of another involving crash partner, the likelihood of an ADAS-involved crash being a rear-end 37 
crash remained the same, potentially because of the already high likelihood of rear-end collisions in 38 
ADAS-involved crashes under all conditions. 39 
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While for ADS-involved crashes, it was found that when the pre-crash movement of the crash 1 
partner (PMCP) was proceeding straight, the portion of rear-end collisions was the largest. It seems that 2 
when proceeding straight, human drivers were less capable to anticipate the motion of an ADS-controlled 3 
vehicle compared to when there was lateral movement of human-driven vehicles. Previous research has 4 
observed a smaller TTC when human drivers were following an ADS-controlled vehicle in mixed traffic 5 
compared to that when following a human-driven vehicle (12). It might be possible that when proceeding 6 
straight, the front view of the following driver is more likely to be “blocked” by the lead vehicle; if the 7 
ADS-controlled vehicle is not pre-active to the incidents ahead, the time budget left for the following 8 
vehicle to respond will be limited. While when there was lateral movement of the following human-9 
driven vehicles (e.g., changing lanes or making turns), the human drivers’ view is less likely to be 10 
“blocked” by the lead vehicles, and thus they are more capable of anticipating an intensive slowdown of 11 
the ADS-controlled vehicle ahead and avoid colliding into it. Further, the effect of SGR (i.e., percent of 12 
speed gap out of the posted speed) was only observed when the ADS-involved rear-end crashes happened 13 
on straight city road (i.e., Street) but not in other scenarios such as at intersections, indicating that the 14 
following vehicle had difficulty in responding to the slowdown of an ADS-controlled lead vehicle. The 15 
external human-machine interfaces (eHMIs) may support the decisions of human drivers surrounding the 16 
ADS-controlled vehicles (38–40) and thus reduce the risk of crashes with ADS-equipped vehicles.  17 

It should be noted that the incident time, roadway surface, lighting condition, and the types of the 18 
crash partner did not affect the likelihood of rear-end collision for both ADS-controlled and ADAS-19 
controlled vehicles. It seems that the types of the ADS- or ADAS-involved crashes are more related to the 20 
motion-related factors (i.e., relative movement of the road agents or the factors that can affect the 21 
movement of the road agents) in the scenarios rather than the environment-related factors (i.e., lighting, 22 
surface condition, time of the day and type of the crash partner). However, given the limited sample size 23 
in this study, further study should further explore the effects of these factors. 24 

In summary, the findings from our study may help improve the safety of mixed traffic from 25 
different stakeholders’ perspective of view. Specifically, for vehicle manufacturers, a comparison 26 
between ADS- and ADAS-involved crashes can guide the design of ADAS and ADS control algorithms, 27 
for example, in which scenarios the control algorithms need further improvement and whether the more 28 
advanced driving automation technologies can significantly benefit the traffic safety. For 29 
government/policy makers, the analyses of ADS- and ADAS-involved crashes can help design 30 
regulations for ADS- and ADAS-controlled vehicles. For example, we found that the high risk of rear-end 31 
collisions among ADS-controlled vehicles might be partially attributed to the block of front view. Thus, 32 
the law makers may consider making the external human machine interface mandatory to support better 33 
human-ADS coordination. From the perspective of driver education, our study may provide insights on 34 
how to support drivers to better coordinate with ADS- or ADAS-controlled vehicles. For example, 35 
improving drivers’ awareness of the limitations of ADAS and ADS may help drivers take more 36 
appropriate strategies when interacting with ADS- and ADAS-controlled vehicles (e.g., keep a large 37 
headway distance to the ADAS- or ADS-controlled lead vehicles to better prepare for sudden brake of 38 
them). 39 
 40 
CONCLUSIONS 41 

In this study, using NHTSA dataset, we explored the crash patterns of ADS- and ADAS-42 
controlled vehicles by extracting the data from the most up-to-date crash reports at the time of the paper 43 
submission (between July 2021 and May 2022). The major findings from this study are summarized as 44 
follows: 45 
 There were higher portion of rear-end collisions in ADAS-involved crashes compared to that in 46 

ADS-involved crashes. 47 
 Regardless of vehicle type (i.e., ADS-controlled or ADAS-controlled), the type of driving-48 

automation-involved crashes are more related to motion-related factors (i.e., relative movement of 49 
the road agents or the factors that can affect the movement of the road agents) compared to 50 
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environment-related factors (i.e., lighting, surface condition, time of the day and type of the crash 1 
partner) in scenarios. 2 

 The likelihood of an ADAS-involved crash being a rear-end collision would: (1) increase with the 3 
increase of the speed gap ratio (SGR); (2) be higher on highway/freeway/rural road compared to that 4 
in urban areas (i.e., street and intersections). 5 

 The likelihood of an ADS-involved crash being a rear-end collision would: (1) be the highest when 6 
the pre-crash movement of the crash partner was proceeding straight; (2) increase with the increase 7 
of SGR when the crash happened on straight city road (i.e., street). 8 

Several limitations of this study should also be noted. First, due to the data accessibility, only a 9 
small part (around 22%) of ADAS-equipped vehicle crash data was included in this study. Secondly, it 10 
should be also noted that the NHTSA dataset did not provide the status of crash partners or subject 11 
vehicles before a collision. Thus, we were not able to fully recover the dynamic scenarios leading to a 12 
crash. Future research with more comprehensive data is needed to further explore the leading factors of 13 
the rear-end collisions of ADS-controlled vehicles. Besides, we only considered cases that ADS- or 14 
ADAS controlled vehicles were rear-ended by other vehicles. However, different factors might be 15 
associated with the cases when the ADS- or ADAS rear-ended other vehicles (e.g., the ADS-controlled 16 
vehicles might rear-end other vehicles when they have difficulty predicting the behaviors of other road 17 
agents; while they are more likely to be rear-ended when their own behaviors are less predictable). Future 18 
research should take this into consideration when more data becomes available. In addition, we only 19 
adopted the binomial logistic regression in this study for data analyses, which was not able to account for 20 
potential unobserved factors. Future research can consider more sophisticated models (e.g., random 21 
parameters logit models) to capture potential unobserved heterogeneity in the data. Finally, it should be 22 
further noted that the ADS-controlled vehicle crashes are occurring in the test stage on public roads, so 23 
their crash pattern might be different after they are fully commercialized. Future research may investigate 24 
how the development of ADS-related and ADAS-related technologies can impact mixed traffic safety by 25 
comparing the crash patterns years apart.  26 
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