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Abstract—Drivers’ appropriate mental models of and trust in 

advanced driver assistance systems (ADAS) are essential to 
driving safety in vehicles with ADAS. Although several previous 
studies evaluated drivers’ ADAS mental models of and trust in 
adaptive cruise control and lane-keeping assist systems, research 
gaps still exist. Specifically, recent developments in ADAS have 
made more advanced functions available but they have been 
under-investigated. Further, the widely adopted proportional 
correctness-based scores may not differentiate drivers’ objective 
ADAS mental model and subjective bias towards the ADAS. 
Lastly, most previous studies adopted only regression models to 
explore the influential factors and thus may have ignored the 
underlying association among the factors. Therefore, our study 
aimed to explore drivers’ mental models of and trust in emerging 
ADAS by using the sensitivity (i.e., d’) and response bias (i.e., c) 
measures from the signal detection theory. We modeled the data 
from 287 drivers using Additive Bayesian Network (ABN) and 
further interpreted the graph model using regression analysis. 
We found that different factors might be associated with drivers’ 
objective knowledge of ADAS and subjective bias towards the 
existence of functions/limitations. Further, drivers’ subjective 
bias was more associated with their trust in ADAS compared to 
objective knowledge. The findings from our study provide new 
insights into the influential factors on drivers’ mental models of 
ADAS and better reveal how mental models can affect trust in 
ADAS. It also provides a case study on how the mixed approach 
with ABN and regression analysis can model observational data. 
 
Index Terms— ADAS, Mental models, Trust, Factors, Additive 
Bayesian Network, Regression analysis 
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I. INTRODUCTION 
N recent years, advanced driver assistance systems 
(ADAS), especially SAE Level 2 [1] ADAS, are 
becoming increasingly prevalent in modern vehicles [2], 

[3]. Traditionally, ADAS at the SAE Level 2 can provide 
longitudinal vehicle control via adaptive cruise control (ACC) 
or cruise control (CC), and lateral vehicle control via lane-
keeping assistance (LKA) or lane centering control (LCC) [1].  
  However, before drivers are fully exempted from driving 
responsibilities (e.g., at SAE Level 5), drivers’ understanding 
of driving automation is still essential to driving safety [4], 
which has been framed as the mental model in driving studies. 
The mental model was defined as “a rich and elaborate 
structure, reflecting the user’s understanding of what the 
system contains, how it works, and why it works that way” [5]. 
In this study, drivers’ ADAS mental models specifically refer 
to drivers’ perceptions and understanding of the functions, 
limitations, and capabilities of the ADAS [6]. A growing body 
of research has shown that drivers' mental models of ADAS 
can influence their behavior, trust, and safety while driving. 
For example, drivers who have a better understanding of 
ADAS functions and limitations are more likely to use the 
automation appropriately and be prepared to intervene when 
needed [7]. In contrast, drivers who have inaccurate or 
incomplete mental models may over-rely on the ADAS [8], 
fail to notice or respond to critical events [9], and be less able 
to regain control of the vehicle in case of a system failure [10]. 
Further, the mental model of ADAS may influence drivers’ 
trust in ADAS, which can further affect users’ reliance on 
ADAS, leading to over-reliance if the trust is too high [11]. 
  Given the importance of the mental model, previous studies 
have investigated influential factors of drivers’ ADAS mental 
models using the survey-based method. For example, [12] 
evaluated users' understanding of the ADAS through "yes or 
no" responses to statements regarding ACC functions and 
limitations. Similarly, [13] used an online survey to evaluate 
drivers’ understanding of ACC and LKA using 51 “true or 
false” questions regarding the functions and limitations of 
ACC/LKA. They found that drivers were not aware of the 
system's capabilities when they purchased the vehicle [12], 
and owning and using ACC did not result in a better 
understanding of the system [13]. Further, to account for users’ 
uncertainties about their answers in the survey, rating scales 
were also used in several studies to allow participants to 
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indicate their confidence in their responses [14]–[16]. They 
found that owners had a strong bias toward believing in the 
existence of ADAS capabilities [16]. Other studies also 
evaluated drivers’ mental models in driving simulators [7], 
[17], [18]. For example, [18] found that drivers who had been 
exposed to edge-case events of ACC in driving simulators had 
better mental models of ACC. In [7], it was found that drivers 
with stronger mental models responded faster in edge-case 
situations compared to drivers with weaker mental models. 
Further, [17] found that although exposure to ADAS can 
improve drivers’ mental models, training was still more 
effective in calibrating drivers’ mental models. It should be 
noted that, although subjective bias may exist in survey 
studies, it can collect data from a larger sample size compared 
to the driving simulator studies and thus may have better 
generalizability. 
  However, previous studies mostly focused on traditional 
ADAS functions (i.e., ACC and LCC). Recent advancements 
in hardware and software have made new emerging ADAS 
functions beyond ACC and LCC available, including 
automated lane changing, automated overtaking, flexible 
speed control, automatic stop-and-go, road assistance, and 
driver monitoring & warning. Vehicle manufacturers have 
also started to bundle all ADAS functions into a single system 
without differentiating each single component to customers, 
such as Tesla's Navigate on Autopilot (NOA) [19] and 
XPeng's Navigation Guided Pilot (NGP) systems [20]. This 
brings new challenges to traffic safety, given that the 
emerging Level 2 ADAS still requires drivers to be 
responsible for the driving task and be prepared to take over 
control of the vehicle in case of emergencies, but take more 
tactical driving responsibilities (e.g., automatic lane changing) 
compared to traditional ADAS that only support operational 
tasks in vehicles (e.g., keeping constant speed).  
  Therefore, this study aims to explore the factors associated 
with drivers’ mental models of and trust in emerging ADAS 
beyond ACC and LCC to facilitate appropriate usage of 
emerging ADAS. However, the percent-correctness score 
adopted in previous studies mixed users’ objective knowledge 
of and subjective tendency towards believing whether a 
function/limitation exists and thus provides limited guidance 
on moderating users’ mental models. Thus, in our study, we 
adopted d-prime (d’) and criterion location (c) in signal 
detection theory (SDT) [21] to measure participants’ 
sensitivity and response bias of their ADAS mental models. 
Further, to explore the influential factors of ADAS mental 
models, most previous research used linear regressions, which 
were not able to capture the structured relationships among the 
potential influential factors. To overcome this problem, a 
mixed approach combining Additive Bayesian Network (ABN) 
[22] and linear regressions was adopted in our study. 
  In light of the fast-growing market penetration of emerging 
ADAS functions in China [23] and the increasing number of 
ADAS-related accidents in China [24], the survey in our study 
targeted Chinese drivers. To the best of our knowledge, all 
existing studies focusing on ADAS mental models were 

conducted in North America (e.g., [13], [14], [16], [25], [26]) 
and Europe (e.g., [10], [12], [27], [28]). Given that cultural 
differences have been identified as a potentially influential 
factor in users’ trust in automation [29], our study targeting 
towards Asian market may provide valuable insights into the 
development of tailored in-vehicle interfaces and driver 
education programs. 
  In summary, the contribution of this study is four-fold: (1) 
This is one of the first studies that investigated Chinese drivers’ 
mental models of and trust in ADAS, which may guide the 
design of customized training programs from a cultural 
difference perspective of view; (2) This is also one of the first 
studies that targeted towards the emerging ADAS functions 
capable of handling tactical driving tasks; (3) This is the first 
study that adopted the SDT to quantify the subjective and 
objective components of ADAS mental models; (4) We 
introduced a novel ABN method to model the structures in 
questionnaire data, which may inspire future research. 

II. RELATED WORK 

A. The Influence of ADAS Mental Models on Driving Safety 
Drivers’ appropriate understanding of when, how, and under 

what circumstances an ADAS can be used is essential to 
driving safety. In other words, drivers' mental models of 
ADAS (i.e., ADAS with only ACC and LCC or similar 
systems) were positively associated with driving safety in 
vehicles with Level-2 ADAS [7], [8], [14] and this is 
especially the case in situations where drivers were required to 
regain control of their vehicles [30]. For example, the research 
found that drivers who were unaware or uncertain of ACC 
limitations were more likely to use the automation in 
situations beyond the system's capabilities [8]. Another study 
found that drivers with better-calibrated mental models of 
ACC responded more quickly to edge-case situations (e.g., 
ACC failed to detect an approaching object in front of the 
vehicle) [14]. The worse performance in urgent scenarios can 
be attributed to deteriorated attention allocation strategies as a 
result of an inappropriate ADAS mental model. Specifically, 
drivers who were unaware of the limitations of ACC and LCC 
were found to pay less attention to the roadway and engaged 
more in non-driving related tasks, leading to decreased 
preparedness to take back control of the vehicle when 
necessary [9], [10], [31]. In a more recent driving simulator 
study [7], researchers manipulated participants’ mental models 
by controlling the information participants received during 
training. They found that drivers' mental models of ADAS 
could predict their takeover performance, as measured by the 
mean absolute lateral position and standard deviation of the 
lateral position of the vehicle after a takeover. 

However, it should be re-emphasized that the ADASs 
investigated in these previous studies had only ACC and LCC 
functions. Given the complexity introduced by the emerging 
ADAS functions these years, it is thus imperative to 
understand how well drivers understand these systems and 
what we can do to calibrate users’ ADAS mental models. 



 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

B. The Association between Drivers’ ADAS Mental Models 
and Drivers’ Trust in ADAS 
  The link between the mental model and trust can potentially 
explain the impact of the mental model on driving safety. 
Trust in automation refers to “an individual's attitude that an 
agent will assist them in achieving their objectives in a 
situation marked by uncertainty and vulnerability” ([11], p. 
54). Previous research revealed that users' trust in ADAS was 
associated with their ability to perceive the environment [32], 
respond to takeover events [33], and deal with hazards [34]. 
Drivers’ trust in ADAS, on the other hand, can be affected by 
drivers' mental model of ADAS [11], [29]. For instance, a 
survey study conducted in North America found that for those 
who did not own a vehicle with ADAS, a better ADAS mental 

model was associated with a lower trust in the ADAS (i.e., 
ACC and LKA) [16]. 

However, it should be noted that the formation of trust in 
ADAS is a complex process. According to the framework in 
[29], human-automation trust variability originates from three 
layers, i.e., dispositional trust, situational trust, and learned 
trust. The mental model can be categorized into the layer of 
learned trust, but other factors from the dispositional (e.g., age 
and education) [35] and situational layers (e.g., traffic density) 
[36] may also influence drivers' trust in ADAS. Therefore, it is 
necessary to consider the moderating effects of these factors 
when exploring the relationship between the mental model and 
drivers' trust in ADAS.  

 

  

FIG. 1. THE OVERALL METHODOLOGICAL FRAMEWORK OF THIS STUDY
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C. Drivers’ Mental Models of Traditional ADAS 
  Despite the importance of drivers’ ADAS mental models, 
research has shown that drivers often had less than ideal 
mental models of Level-2 ADAS. For example, two early 
survey studies in the 2010s found that only 42% [8] and 28% 
[37] of ACC users were aware of the limitations of ACC. 
Another survey found that 30% of Volvo XC60 owners were 
unaware of the limited system capabilities in curves and 
roundabouts [12]. Recent studies suggest that despite being in 
the market for decades, drivers’ mental model of ACC did not 
improve. A survey study in the U.S. conducted in 2016 found 
that only 17% of respondents were able to correctly answer 
questions related to the ACC system [4], and another study in 
2021 found that 47% of ACC owners held misperceptions of 
ACC systems [13]. Drivers’ understanding of other emerging 
driving automation functions was even worse. For example, a 
survey study found that 81% of respondents were unaware of 
any limitations of the sensor-based backing aid system [38]. 
Another driving simulator study found that 20 out of 24 
drivers mistakenly believed that the lane departure warning 
(LDW) system would work at any speed [39]. These findings 
suggest that more work is still needed to help calibrate users’ 
mental models of ADAS. More importantly, the introduction 
of more recent and complex emerging ADAS functions may 
pose even greater challenges for drivers and thus it is urgent to 
assess drivers’ mental models of emerging Level-2 ADAS. 

III. MATERIALS AND METHODS 
  The overall methodological framework of this study is 
presented in Fig. 1. Overall, using the data collected from a 
survey study, an ABN model was built to explore the 
relationships among the factors of interest. The ABN was 
further tuned through parametric bootstrapping to avoid 
potential overfitting. Then, a post-ABN regression analysis 
was conducted to interpret the relationships among the 
targeted factors.  

A. Questionnaire Design 
A questionnaire was designed specifically to collect the 

data for this study. The questionnaire included four parts: (1) 
demographic questions; (2) driving-related questions; (3) 
assessment of drivers’ mental model of ADAS; and (4) 
assessment of drivers’ trust in ADAS: 

 
1) Demographic information 
  Participants’ demographic information was collected, 
including age, gender, education level, working status, 
marriage status, household income, and self-reported 
technology familiarity. Three questions adopted from [16], 
[40] were used to evaluate participants' self-reported 
technology familiarity, i.e., "your level of experience with 
technology," with possible responses ranging from 1 ("very 
inexperienced") to 10 ("very experienced"); "the degree to 
which you consider yourself as an early adopter of 
technology," with possible responses ranging from 1 
("absolutely no") to 10 ("absolutely yes"); and "how easy you 

find it to learn new technology," with possible responses 
ranging from 1 ("very difficult") to 10 ("very easy"). 
2) Driving-related questions 
  The driving-related information included participants’ 
vehicle brand, possession period of their vehicle, years of 
licensure, driving frequency, weekly driving distance, ADAS 
experience, ADAS frequency, and ADAS familiarity. For 
ADAS familiarity, similar questions used for the assessment 
of technology familiarity were used, with the word 
‘technology’ replaced by “ADAS”. 
3) Assessment of the ADAS mental model 
  A total of 49 statements were developed to evaluate the 
mental model of ADAS among drivers. These statements 
were developed based on a review of previous studies [4], 
[13], [16], [27], [28], [41], [42] and user manuals or official 
training materials from various automobile manufacturers. 
The statements were designed to assess the functions and 
limitations of Level-2 ADAS systems currently available in 
the market, including both traditional (i.e., ACC and LCC) 
and emerging ADAS functions. The term "ADAS", instead 
of the names of the sub-systems (e.g., ACC and LCC), was 
used throughout the questionnaire, as this is how vehicle 
manufacturers introduce ADAS to consumers. Following 
[43], to provide a more structured assessment of drivers’ 
ADAS mental models, the statements used to assess drivers’ 
ADAS mental models were categorized into four parts, each 
targeting one part of ADAS-related knowledge, i.e., ACC-
related functions, LCC-related functions, functions beyond 
ACC & LCC, and ADAS limitations. Generally, the ACC-
related functions and LCC-related functions parts included 
statements of what ACC can do (e.g., “when you drive with 
ADAS on, the system can help you maintain a pre-set speed”) 
and LCC can do (e.g., “when you drive with ADAS on, the 
system can help maintain the vehicle in the center of the 
lane”). The functions beyond ACC & LCC part assessed 
participants’ understanding of what the sub-systems beyond 
ACC and LCC can do (e.g., “automatic lane changing will be 
triggered when the lead vehicle is too slow”). The ADAS-
limitations part included statements regarding the limitations 
and boundaries of ADAS (e.g., “when you drive with ADAS 
on, the system may have difficulty when driving through 
construction zones”). The mental-model-related questions 
and their grouping are provided in Appendix A. For 23 out of 
the 49 statements, real-world photos or videos were included 
to enhance understanding of the situations. Participants were 
instructed to rate their level of agreement with each statement 
on a scale of 1 to 6, with 1 indicating "strongly disagree" and 
6 indicating "strongly agree".  

Among all 49 statements, 34 of them can be treated as 
signals in SDT as they stated ADAS functions or limitations 
that indeed exist in the real world; while 15 of them can be 
treated as noises as they stated functions or limitations that 
do not exist. We further checked the assumptions of SDT, 
i.e., Gaussian distribution of the evidence when only noise is 
present, and when both signal and noise are present, and 
equal variance of the distributions [44]. Both assumptions 
were met. In this study, the questions designed for assessing 
drivers’ mental model of ADAS were ordinal (i.e., level of 
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agreement on the statement regarding the existence of a 
limitation or function), thus a fuzzy SDT [45] was adopted. 
4) Assessment of drivers’ trust in ADAS 
  To evaluate drivers' trust in ADAS, following [16], we 
utilized a five-item scale developed by [46]. Participants 
were asked to indicate their level of agreement on a five-
point Likert scale, ranging from 1 (“Strongly Disagree”) to 5 
(“Strongly Agree”), for the following five statements, i.e., "I 
can trust the ADAS system," "The ADAS system is reliable," 
"I am confident in the ADAS system," "I am familiar with the 
ADAS system," and "The ADAS system is dependable." 

B. Participants 
   To explore drivers’ mental models of emerging ADAS, we 
specifically recruited participants among drivers of five 
vehicle brands (i.e., Tesla, Xpeng, NIO, LI, and WEY) that 
sold vehicles equipped with emerging ADAS functions in the 
Chinese market, via online posters in interest groups of car 
owners on social media (e.g., WeChat group of car owners). A 
total of 781 participants completed the questionnaire, of which 
160 were excluded because they did not own a vehicle with 
Level-2 ADAS. Then, 268 samples were further excluded 
based on attention check questions and survey completion 
time, following previous studies [47], [48]. Lastly, 66 samples 
were excluded through manual review as they provided 
inconsistent or invalid information (e.g., the vehicle model 
does not match the vehicle brand), and 287 valid responses 
(262 males and 25 females) were kept. Each participant was 
compensated with 10 RMB for the valid response.  

C. Variable Extraction 
1) Drivers’ ADAS mental model 

  For questions regarding the mental model, we scored 
drivers’ responses by following the user manuals of the 
corresponding vehicle models (i.e., the vehicle model that a 
driver claimed to own) to avoid the influence of potential 
differences in ADAS functions or limitations between 
different vehicle models. As mentioned previously, we 
adopted the d’ and c as measures of drivers’ ADAS mental 
models. Given the non-binary responses in this study, we 
adopted the fuzzy SDT [45] as it can handle rating-scale-based 
responses without arbitrarily categorizing ratings into binary 
classes. In this study, we denoted the response from the 
participant for the 𝑖!"	question as PR#. Then, we calculated 
the four states of the world (i.e., hit, miss, false alarm, and 
correct rejection) using the equations proposed by [45]: 

𝐻𝑖𝑡 = 	𝑚𝑖𝑛	(𝑟, 𝑠)																																																						(1) 
𝑀𝑖𝑠𝑠 = 	𝑚𝑎𝑥	(𝑠 − 𝑟, 0)																																										(2) 
𝐹𝑎𝑙𝑠𝑒	𝐴𝑙𝑎𝑟𝑚 = 	𝑚𝑎𝑥	(𝑟 − 𝑠, 0)																										(3) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 	𝑚𝑖𝑛	(1 − 𝑠, 1 − 𝑟)									(4) 
where, 𝑟 = $	&	|()!	&	*|

$
	and stands for the probability of a 

positive response (i.e., the confidence of saying “yes, signal 
present”); while s represents the probability of a signal (which 
was 0 when the signal was absent and 1 when the signal was 
present). The minimum functions used in Equation (1) and (4) 
can be viewed as quantifying the degree of overlap between 
the fuzzy state of the real world (i.e., signal present or absent) 
and the respondent’s fuzzy belief that the signal is present or 
absent. While the maximum function in Equation (2) and (3) 
can be interpreted as the degree of over-confidence (i.e., r > s, 
false alarm) or under-confidence (r < s, miss) in the presence 
of a signal. They are constrained to be positive by the 
maximum function; otherwise, the over-confidence becomes 
under-confidence, and vice versa.  

Then the hit rate (𝑝(𝐻)) and false alarm rate (𝑝(𝐹𝐴)) can be 
calculated as: 

𝑝	(𝐻) 	= 	𝐻𝑖𝑡𝑠/(𝐻𝑖𝑡𝑠	 + 	𝑀𝑖𝑠𝑠𝑒𝑠)						(5) 
𝑝	(𝐹𝐴) 	= 	𝐹𝑎𝑙𝑠𝑒	𝐴𝑙𝑎𝑟𝑚𝑠/(𝐹𝑎𝑙𝑠𝑒	𝐴𝑙𝑎𝑟𝑚𝑠	

+ 	𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠)				(6) 
Extreme hit rates and false alarm rates (i.e., 0 or 1) were 

adjusted following the methods suggested in [49]. The mean 
and 95% confidence intervals (CI) for 𝑝(𝐻) and 𝑝(𝐹𝐴) of 
all groups calculated based on [50] are presented in Appendix 
B. Finally, the d’ and c were obtained using following 
equations: 

𝑑′	 = 	𝑧	(𝑝(𝐹𝐴)) 	− 	𝑧(𝑝(𝐻))							(7) 
𝑐	 = 	0.5 ∗ (𝑧	(𝑝(𝐻)) 	+ 	𝑧(𝑝(𝐹𝐴)))							(8) 

in which 𝑧	() is the function that transforms the probability 
into z-scores. The calculation was conducted using the psycho 
package in R [51]. For each part of the ADAS functions, we 
obtained the d’ and c of the corresponding mental model, i.e., 
d’-ACC and c-ACC for ACC-related functions; d’-LCC, c-
LCC for LCC-related functions; d’-beyond and c-beyond for 
functions beyond ACC & LCC; and d’-limitation and c-
limitation for ADAS limitations. 
2) Drivers’ trust in ADAS 

Drivers’ trust in ADAS was calculated as the average 
ratings of five trust-related questions in the questionnaires 
following [46]: the higher the rating, the higher the trust. 
3) Other variables 

  Following [52], we calculated participants’ technology 
familiarity and ADAS familiarity by averaging their responses 
to the corresponding questions. It should be noted that gender 
was not included as a factor as the collected data was highly 
imbalanced in terms of gender. All variables are presented in 
Table I along with their distributions. 
 

TABLE I 
QUESTIONS IN THE SURVEY, EXTRACTED VARIABLES, AND THE DISTRIBUTION OF THE VARIABLES 

Part Description Variable [Type] Distributions 
 
 
 
 

The age (in years of old) of the participant. Age[C] M = 29.9 (SD: 6.1) 
Min: 20, Max: 58 

The highest education level of the 
participant.  

Education[O] • Professional college or less (n=86) 
• Bachelor or above (n=201) 
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Note: C represents the continuous variable; N represents the nominal variable; O represents the ordinal variable. M stands for the mean; SD 
stands for standard deviation; 95%CI stands for 95% confidence intervals.
 

D. Additive Bayesian Network (ABN) Modelling  
  A mixed approach with ABN and regression analysis was 
used to explore the influential factors of drivers’ mental 
models of emerging ADAS. Being different from most 
classical model selection techniques that focus on a single 
dependent variable, ABN provides a tool for modeling 
multivariate relationships among variables of interest. Thus, 
with ABN, we were able to model the relationships among all 
variables without causing multicollinearity issues. 
  All Bayesian Networks (BN) models consist of two 
mutually dependent components: a qualitative part (a pre-

defined or data-driven structure) and a quantitative part (the 
learned parameters). The model structure was determined by a 
directed acyclic graph (DAG), which serves as a graphical 
representation of the joint probability distribution factorization 
among all random variables. In the DAG, each node represents 
a random variable, and the directed arcs denote the 
probabilistic dependencies between variables. Traditionally, 
the BN can only handle categorical variables and requires the 
discretization of the continuous variables if there are. 
Considering that we have continuous variables in the survey, 
in our study, an ABN was adopted [22]. As a special type of 
BN, the ABN model can be regarded as a graphical model that 

 
Demographic 
questions 
 

The working status of the participant. Working status[N] • Full-time work (n=153) 
• Others (n=134) 

The marriage status of the participant. Marriage status[N] • Married (n=173) 
• Not married (n=114) 

The household income of the participant (in 
RMB). 

Household 
income[O] 

• < 250,000 (n=143) 
• ≥ 250,000 (n=144) 

Participant’s self-reported familiarity with 
technology. 

Technology 
familiarity[C] 

M = 7.2 (SD: 1.3) 
Min: 4.3, Max: 10 

 
 
 
 
 
 
 
Driving-related 
questions 

The brand of the vehicle that the participant 
owned. 

Vehicle brand[N] • Tesla (n=141) 
• Others (n=146) 

The duration of possession of the current 
vehicle. 

Possession 
period[O] 

• < 1 year (n=95) 
• ≥ 1 year (n=192) 

For many years since participants obtained 
their first driver's license. 

Years of 
licensure[C] 

M = 7.4 (SD: 4.4) 
Min: 1, Max: 28 

Participant’s self-reported driving 
frequency in the past year. 

Driving 
frequency[O] 

• Almost every day (n=148) 
• Other (less frequent) (n=139) 

Participant’s self-reported weekly average 
driving distance in the past year. 

Weekly driving 
distance[O] 

• < 99 km (n=122) 
• ≥ 99 km (n=165) 

Participant’s self-reported experience of 
emerging ADAS. 

ADAS 
experience[O] 

• < 6 months (n=150) 
• ≥ 6 months (n=137) 

Participant’s self-reported frequency of 
using emerging ADAS. 

ADAS 
frequency[O] 

• < several times per week (n=99) 
• ≥ several times per week (n=188) 

Participant’s self-reported familiarity with 
emerging ADAS. 

ADAS 
familiarity[C] 

M = 8.2 (SD: 1.3) 
Min: 4.3, Max: 10 

Drivers’ 
mental model 
of ADAS 

The sensitivity of participant’s mental 
model of ACC functions. 

d’-ACC[C] M = 0.4 (SD: 0.5), Min: -1.2, Max: 2.1 
95%CI: [0.34, 0.46] 

The response bias of participant’s mental 
model of ACC functions. 

c-ACC[C] M = -1.1 (SD: 0.4), Min: -1.4, Max: 0.6 
95%CI: [-1.15, -1.05] 

The sensitivity of participant’s mental 
model of LCC functions. 

d’-LCC[C] M= 0.3 (SD: 0.6), Min: -1.3, Max: 2.5 
95%CI: [0.23, 0.37] 

The response bias of participant’s mental 
model of LCC functions. 

c-LCC[C] M = -0.9 (SD: 0.5), Min = -1.2, Max: 0.9 
95%CI: [-0.96, -0.84] 

The sensitivity of participant’s mental 
model of functions beyond ACC and LCC. 

d’-beyond[C] M = 0.2 (SD: 0.4), Min: -1.2, Max: 1.7 
95%CI: [0.15, 0.25] 

The response bias of participant’s mental 
model of functions beyond ACC and LCC. 

c-beyond[C] M = -1.1 (SD: 0.6), Min: -1.6, Max: 0.8 
95%CI: [-1.17, -1.03] 

The sensitivity of participant’s mental 
model of ADAS limitations. 

d’-limitation[C] M = 0.4 (SD: 0.7), Min: -2.5, Max: 2.2 
95%CI: [0.32, 0.48] 

The response bias of participant’s mental 
model of ADAS limitations. 

c-limitation[C] M = -0.8 (SD: 0.7), Min: -1.4, Max: 1.4 
95%CI: [-0.88, -0.72] 

Drivers’ trust 
in ADAS 

Participant’s self-reported trust in emerging 
ADAS. 

Trust[C] M = 4.1 (SD: 0.7) 
Min: 2, Max: 5 
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bundles multiple generalized linear models (GLM) [53], in 
which, each sub-structure represents a GLM, with the variable 
(or node) itself being used as the dependent variable and the 
variables (or nodes) directed to it as independent variables. 
  The ABN offers greater flexibility compared to traditional 
BN, as ABN can incorporate variables with various types of 
distributions, such as countable, categorical, and continuous 
variables. Further, unlike methods such as structural equation 
modeling [54], which relies on expert knowledge to determine 
an optimal model structure, ABN modeling is a data-driven 
approach [53], although expert knowledge can still be 
incorporated if needed. In our study, we employed a Bayesian 
approach for both structure discovery and parameter learning. 
Specifically, a uniform structural prior was applied (i.e., all 
eligible DAG structures were weighted equally in the absence 
of data), and uninformative priors were used for all parameters 
at each arrow (i.e., all values were equally probable in the 
absence of data). The ABN modelling in this study was 
conducted using R [51] and JAGS [55], which included the 
following four consecutive steps: 

Step 1: Initialize the input variables 
  Each variable was assigned a specific probability 
distribution based on its type: binomial distribution for binary 
variables and Gaussian distribution for quantitative ones. 

Step 2: Identify the optimal model 
  To identify the optimal model, we varied the maximum 
number of connected nodes allowed for each node, starting 
from one to seven. A heuristic search-based method [56] was 
adopted, i.e., gradually increasing the number of allowable 
connected nodes from one to seven. The highest goodness-of-
fit was achieved when we reached the largest network score 
with the specific number of allowable connected nodes [22]. 
The R package ‘abn’ (version 2.7-3) [22] was used in this step 
to identify the optimal model. 

Step 3: Adjust to overcome potential overfitting 
  As BN is prone to overfitting the data [57], in our study, a 
parametric bootstrapping method using Markov Chain Monte 
Carlo (MCMC) simulations was adopted to overcome the 
potential overfitting of our model [58]. As shown in Fig. 1, 
first, the posterior parameters were estimated from the optimal 
model structure using Laplace approximations. Then, based on 
the optimal model structure obtained in Step 2 as well as the 
estimated posterior parameters, we used MCMC samplers 
(i.e., JAGS) to generate 10,000 bootstrap datasets. Each 
generated bootstrap dataset had the same size as the original 
dataset. Then, we performed a model search (i.e., repeating 
Step 2) on all generated bootstrap datasets, leading to 10,000 
bootstrap ABN structures in total. Thus, we were able to 
calculate the frequency of occurrence for each arc in the 
bootstrap ABN structure. Only the arcs that occurred in over 
50% of the bootstrap ABN structure were kept in the final 
pruned BN model. 

Step 4: Calculate the link strength 
  Link strength is a valuable tool for both visualization and 
approximate inference, which could be regarded as a proxy for 

arc uncertainty. The link strength is particularly advantageous 
in BN modelling, as the conventional metric for assessing 
significance in frequentist statistics (i.e., p-value) is not 
appropriate for BN. Following [22], we used the percentage 
link strength (PLS) as the link strength metric. The PLS 
between variable X and Y is defined as the percentage 
reduction in uncertainty of variable Y given the state of X if 
the states of all other variables directed to Y are known, as 
expressed below: 

𝑃𝐿𝑆	(𝑋 → 𝑌) 	= 	
𝐻(𝑌|𝑍) 	− 	𝐻(𝑌|𝑋, 𝑍)

𝐻	(𝑌|𝑍) 								(9) 

where Z are the remaining variables directed to Y (excluding 
X) and H is the entropy computed using the empirical 
distribution of the random variable. The link strength is set to 
zero if there is no arc connecting X and Y. 
  In this study, we constructed one graph model that includes 
all demographic variables (e.g., age, education), driving-
related variables (e.g., vehicle brand, possession period), trust, 
and sensitivity and response bias of all four parts of the mental 
model (i.e., d’-ACC, c-ACC, d’-LCC, c-LCC, d’-beyond, c-
beyond, d’-limitation, c-limitation). At the same time, as the 
main focus of this study is to explore factors associated with 
drivers’ mental model of and trust in different ADAS 
functions, the associations across sensitivity and response bias 
related to different parts of the ADAS mental model were 
banned (e.g., the link between d’-ACC and d’-LCC was 
banned) in the ABN modelling process following [59]. 

E. Post-ABN Regression Analysis 
  The ABN structure was unable to directly inform the 
correlation between connected variables. Specifically, the link 
strength, as visualized as the width of the arcs in ABN, can 
only inform the uncertainty reduction of one variable if we 
know the value/level of another variable connected by an arc, 
but not the linear association among variables; the latter, 
however, is of more interest if we aim to explore the 
influential factors of specific variable of interests. Therefore, 
we conducted post-ABN regression analyses for all arcs in the 
graph model outputted by ABN.  
  As shown in Fig. 1, for each variable being directed by 
other variables in an ABN model, we fitted a regression model 
with the variable itself as the dependent variable and all 
variables directing to it as independent variables. More 
specifically, we fitted linear regression models when the 
dependent variable was continuous and binomial logistic 
regression models when the dependent variable was 
categorical. Besides, in the model with 2 or more independent 
variables, we considered potential two-way interaction effects 
between independent variables and only the statistically 
significant (p<.05) interaction effects were reported. It should 
be noted that the regression models for marriage status, 
household income, and education were omitted here, as they 
were not connected to the variables of interests (i.e., d’, c, and 
trust) directly or indirectly. All regression analysis and 
visualization in this study were conducted in R [51]. 
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IV. RESULTS 

A. ABN Modelling Analysis 
  For better visualization, we visualized the association 
among variables and d’ & c for each part of the mental model 
separately, leading to four BN structures, i.e., Fig. 2 for ACC-
related functions, Fig. 3 for LCC-related functions, Fig. 4 for 
functions beyond ACC & LCC, and Fig. 5 for ADAS 
limitations. In all BNs, rectangles represent binary nodes, and 
ovals represent continuous nodes. Further, demographic-
related variables are highlighted in blue, and driving-related 
variables are in green. The percentage values in Fig. 2 - Fig. 5 
are the PLS of each link and the width of the arrows is 
proportional to the PLS between two nodes. 
 

  
FIG. 2. THE FINAL DAG FOR ACC PART 

 
FIG. 3. THE FINAL DAG FOR LCC PART 

 

 
FIG. 4. THE FINAL DAG FOR BEYOND PART 

 
FIG. 5. THE FINAL DAG FOR LIMITATION PART 

B. Post-ABN Regression Analysis 
  Based on the four DAGs from the ABN analysis, we fitted 
9 regression models, including 8 linear regression models 
(with years of licensure, ADAS familiarity, trust, c-ACC, d’-
LCC, c-LCC, c-beyond, and c-limitation as dependent 
variables) and 1 logistic regression model (with possession 
period as the dependent variable). Post-hoc contrasts were 
conducted if the independent variables were significant (p 
< .05) in the model. Results of all fitted models along with 
the significant post-hoc contrasts are as follows: 
1) Year of licensure 
  It was found that the age was associated with the years of 
licensure, F(1,285) = 135.77, p < .0001. Each year of 
increase in age led to a 0.42-year (95%CI: [0.35, 0.49]) 
increase in the years of licensure. 
2) Possession period 
  We found that both ADAS experience (c2(1) = 15.38, p 
< .0001) and years of licensure (c2(1) = 14.45, p = .0001) were 
associated with the possession period. Specifically, drivers with 
more ADAS experience (i.e., ≥ 6 months) had a higher 
probability of having a possession period over 1 year, with an 
odds ratio (OR) of 2.93 (95%CI: [1.71, 5.01]). Further, every 1-
year increase in the years of licensure led to a 0.89 
multiplicative decrease in the odds of a possession period over 
1 year, with a 95% confidence interval (CI) of [0.84, 0.94]. 
3) ADAS familiarity 

It was found that drivers’ ADAS frequency (F(1,283) = 
13.12, p = .0003), driving frequency (F(1,283) = 15.68, p 
< .0001), and technology familiarity (F(1,283) = 59.63, p 
< .0001) were all significant predictors of drivers’ ADAS 
familiarity. Specifically, each 1-unit increase in technology 
familiarity led to a 0.35-unit (95%CI: [0.25, 0.45]) increase in 
the ADAS familiarity. Drivers with higher driving frequencies 
(i.e., almost every day) had higher ADAS familiarity compared 
to those who drove less frequently (∆ = 0.46, 95%CI: [0.19, 
0.73]). Drivers with higher ADAS frequencies (i.e., ≥ several 
times per week) had higher ADAS familiarity compared to 
those who used ADAS less frequently (∆ = 0.50, 95%CI: [0.22, 
0.78]). 
4) Trust 

ADAS experience (F(1,284) = 23.44, p < .0001) and ADAS 
familiarity  (F(1,284) = 50.86, p < .0001) both significantly 
affected drivers’ trust in ADAS. Specifically, drivers with 
ADAS experience less than 6 months had lower trust in ADAS 
compared to drivers with more ADAS experience (∆ = -0.23, 
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95%CI: [-0.38, -0.08]). Each 1-unit increase in ADAS 
familiarity led to a 0.21-unit (95%CI: [0.15, 0.27]) increase in 
the trust. 
5) c-ACC 

Drivers’ trust in ADAS was significantly associated with 
drivers’ response bias of ACC functions (i.e., c-ACC), F(1,285) 
= 42.15, p < .0001. Each 1-unit increase in trust was associated 
with a 0.23-unit (95%CI: [0.16, 0.30]) decrease in the c-ACC. 
6) d’-LCC 

  Drivers’ working status (F(1,284) = 16.61, p < .0001) and 
possession period (F(1,284) = 20.65, p < .0001) were 
significantly associated with their sensitivity of LCC functions 
(i.e., d’-LCC). Drivers with a possession period of less than 1 
year had higher d’-LCC compared to drivers with a longer 
possession period (∆ = 0.35, 95%CI: [0.20, 0.50]). Drivers who 
had full-time work had higher d’-LCC compared to drivers with 
other working status (∆ = 0.27, 95%CI: [0.13, 0.41]). 
7) c-LCC 

  Drivers’ trust (F(1,284) = 26.46, p < .0001) and d’-LCC 
(F(1,284) = 101.13, p < .0001) were significantly associated 
with drivers’ c-LCC. Each 1-unit increase in trust was 
associated with a 0.20-unit (95%CI: [0.12, 0.28]) decrease in the 
c-LCC. Each 1-unit increase in d’-LCC was associated with a 
0.38-unit (95%CI: [0.30, 0.46]) increase in the c-LCC. 
8) c-beyond 

  Drivers’ trust (F(1,284) = 71.75, p < .0001) and possession 
period (F(1,284) = 14.27, p < .0001) were significantly 
associated with drivers’ c-beyond. Each 1-unit increase in trust 
was associated with a 0.34-unit (95%CI: [0.26, 0.42]) decrease 
in the c-beyond. Drivers with a possession period of less than 1 
year had higher c-beyond compared to drivers with longer 
possession periods (∆ = 0.24, 95%CI: [0.12, 0.36]). 
9) c-limitation 

Drivers’ ADAS experience (F(1,284) = 9.21, p = .003) and 
d’-limitation (F(1,284) = 62.69, p < .0001) were significantly 
associated with drivers’ c-limitation. Each 1-unit increase in d’-
limitation was associated with a 0.42-unit (95%CI: [0.31, 0.53]) 
decrease in the c-beyond. Drivers with ADAS experience of less 
than 6 months had higher c-beyond compared to drivers with 
more ADAS experience (∆ = 0.22, 95%CI: [0.07, 0.37]). 

V. DISCUSSION 

A. Factors Related to Drivers’ ADAS Mental Model 
  First, no demographic factors nor driving-related factors 
considered in this study were found to be associated with 
drivers’ objective knowledge of ACC functions (i.e., d’-ACC), 
functions beyond ACC & LCC (i.e., d’-beyond), and 
limitations of ADAS (i.e., d’-limitation); a shorter possession 
period (i.e., less than 1 year) was even associated with higher 
d’-LCC. This is surprising but somewhat echoes the findings 
in [13], which stated that users of traditional ADAS did not 
have better knowledge of ADAS even compared to non-
ADAS users. Our results expanded this finding to emerging 
ADAS users. This is potentially because while driving, drivers 
rarely encounter ADAS failures [42] and have few chances to 
correct their ADAS mental model. In contrast, their perceived 
reliability of the ADAS may potentially have reinforced their 
“first impression” of ADAS. This explanation can be partially 

supported by the positive correlation between ADAS 
experience and trust in ADAS, both observed in our study and 
also found in many previous studies (e.g., [27]). 
  Further, the ABN suggested factors that are potentially 
associated with the possession period, which may help us 
better understand the relationships between the possession 
period and users’ objective knowledge of LCC functions (i.e., 
d’-LCC). We found that more ADAS experience and a shorter 
year of licensure were associated with a longer possession 
period of the ADAS. The former is straightforward – those 
who owned their current vehicle (with ADAS) for a longer 
period are those who had more experience with ADAS. The 
association between the year of licensure and the possession 
period, however, is counter-intuitive. A possible explanation is 
that the drivers with shorter years of licensure are relatively 
younger and tend to be earlier adopters of new technologies 
[60], which may indirectly explain the negative association 
between the possession period and the d’-LCC, i.e., earlier 
technology adopters may seek information regarding new 
technologies more actively. 
  Further, it is interesting to notice that the d’ and c of LCC 
function and ADAS limitation are coupled, while d’ and c are 
uncoupled in ACC and beyond parts. Theoretically, the d’ and c 
should be decoupled in SDT [61]. However, the participants may 
adjust their response bias when they have different levels of 
knowledge of a system. In our case, knowing better about the 
ADAS (i.e., higher d’), the users were more conservative 
regarding the ADAS capabilities (i.e., more conservative 
regarding the existence of LCC functions, and more likely to 
believe the existence of ADAS limitations). In other words, 
drivers tend to overestimate what the system can do if they know 
little about the system. This is alerting. Given that drivers have 
few chances to calibrate their mental model when using the 
ADAS in daily life (as ADAS failures are rare [62]), they may 
have less than ideal ADAS mental model and thus may tend to 
over-estimate the capabilities of the systems, which may further 
confirm their inaccurate ADAS mental model. The association 
between the c-beyond and the possession period has supported 
this “vicious circle” - drivers with a longer possession period had 
lower c-beyond compared to drivers with a shorter possession 
period, indicating that drivers become more inclined to believe 
the existence of ADAS functions after they gain more experience 
of the system. However, this association between the d’ and c 
has not been observed for ACC and functions beyond ACC & 
LCC (potentially because drivers know ACC well and were very 
unfamiliar with functions beyond ACC & LCC [43]) – future 
research is needed to investigate how subjective and objective 
parts of the mental model can interact with each other and further 
influence drivers’ behaviors when using the ADAS. 

B. Factors Related to Drivers’ Trust in ADAS 
  We further investigated the influential factors of trust. We 
found that objective experience with ADAS (i.e., ADAS 
experience and ADAS frequency), self-confidence in knowing 
ADAS (i.e., ADAS familiarity), and the technology in general 
(i.e., technology familiarity) can increase users’ trust in ADAS, 
although the influences of some factors are indirect (i.e., 
technology familiarity is positively associated with trust via 
ADAS familiarity). 
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  Further, the sensitivity (d’) of any parts of the ADAS was 
not associated with trust; but trust in ADAS was negatively 
associated with response bias of ADAS functions. Previous 
studies found an association between mental models and trust 
[16]. Our results are in line with this finding but provide a 
higher resolution. Specifically, trust in ADAS was more 
closely related to users’ belief in the existence of the functions, 
but less with users’ objective knowledge of the systems (i.e., 
d’), though as mentioned previously, the d’ and c can be 
coupled. 
  By differentiating the ADAS functions and limitations, we 
further found that trust was associated with response bias of 
ADAS functions (i.e., c-ACC, c-LCC, and c-beyond) but not 
with limitations (i.e., c-limitation). It seems that trust was 
positively related to users’ tendency to believe in what the 
ADAS can do (existence of the functions), but not what the 
ADAS cannot do (limitations of the systems). Previous 
research found that drivers’ trust in ADAS may drop 
dramatically after experiencing unexplained ADAS failures 
[63], potentially because experiencing failure can influence 
one’s ADAS mental model [27]. Our results, together with the 
previous finding regarding the relationship between ADAS 
failure and trust, provide a higher resolution on the 
relationship between trust and the ADAS mental model. 

C. Limitations 
  It should be noted that this study only explored limited factors 
related to drivers’ mental model of and trust in ADAS, future 
research may take other factors (e.g., advertising strategies for 
different vehicle brands) into consideration, which could provide 
more insights on how drivers’ mental model of and trust in 
ADAS are formed. Further, it should be noted that neither ABN 
nor regression analysis was able to inform the causality between 
the variables. For example, it is also possible that those who 
trusted more in ADAS tended to use the ADAS more frequently, 
or higher trust in ADAS led to lower c, instead of the other way 
around. Experiments with better-controlled variables are needed 
to investigate the directions of the relationships observed in our 
study so that certain strategies can be proposed to calibrate 
drivers’ mental models of and trust in ADAS. It is also important 
to note that we used a limited number of questions in the survey, 
although the Fuzzy SDT can potentially increase the resolution 
of the calculation, the estimation of d’ and c can still be biased to 
some extent [64]. Future research with a larger number of 
questions is needed to further validate our conclusions. 
  Finally, although our study targeted an under-investigated 
population, the Chinese ADAS users, we could not compare the 
ADAS mental models of Chinese users in this study with other 
previous studies, as different questions were used to assess 
ADAS mental models. However, we compared Chinese drivers’ 
trust in ADAS with other studies that used the same scale for 
measuring trust, and we found that Chinese drivers generally had 
higher trust (Mean = 4.1, SD = 0.7) in ADAS compared to 
drivers in the U.S. (Mean = 3.67, SD = 0.80) [65] and Canada 
(Mean = 3.4, SD = 0.8) [16]. Different cultures and different 
advertising strategies of vehicle manufacturers may lead to the 
difference in trust in ADAS among drivers from different 
countries, which may further affect their use of ADAS.  

VI. CONCLUSIONS 
  Utilizing 287 drivers’ responses obtained from a survey 
study, we investigated the factors that are associated with 
drivers' mental models of and trust in emerging ADAS beyond 
the traditional ADAS (i.e., ACC and LCC). Being different 
from prior research that relied on proportional correctness-
based scores to evaluate drivers' mental models of ADAS, our 
study adopted the d' and c from signal detection theory and 
provided a more nuanced assessment of drivers' objective 
knowledge and subjective bias towards ADAS. Further, using 
a mixed approach combining ABN and linear regression, we 
found that users’ objective knowledge of ADAS (d’) and 
inclination to believe the existence of ADAS functions and 
limitations (c) might be affected by different factors. In 
general, drivers’ objective knowledge of ADAS mental models 
may not improve with accumulated experience with the ADAS; 
instead, drivers even became more inclined to believe in the 
existence of ADAS functions when they have more experience. 
Moreover, we revealed the underlying mechanisms of how the 
mental model can influence users’ trust in ADAS – the 
objective knowledge might have limited influence on trust, but 
users’ bias towards the existence of ADAS capabilities (not 
limitations) might play a more direct role. These findings 
highlight the imperative need to provide training to improve 
drivers’ ADAS mental models and calibrate their trust in ADAS 
[66]. Compared to ADAS limitations, the training targeting 
ADAS functions should be designed to avoid drivers being over-
confident in the ADAS, for example, using responsibility-
focused strategies [67].  
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