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The sensitivity (d’) and bias (c) in signal detection theory can reflect respondents’ objective performance in 
understanding a system and their bias towards saying yes. Thus, d’ and c can be used as alternatives of 
proportion correctness (PC) when evaluating drivers’ mental models of advanced driving assistance system 
(ADAS). The adoption of d’ and c as mental model metrics also allows cross-study comparisons as their 
values are independent of signal (i.e., ADAS function present) and noise (i.e., ADAS function absent) ratio. 
However, there is no closed-form solution of the relationships among d’, c, and PC. Hence, using numerical 
simulations, we extracted an empirical equation that quantifies how d’ and c can estimate PC. The equation 
was then validated based on participants’ responses from a survey study that targeted towards drivers’ 
ADAS mental model. The results show that the empirical equation reached a satisfying performance (R2 > 
0.8) in estimating PC. 
 

INTRODUCTION 

The past few years have witnessed an increasing number 
of ADAS-related crashes (National Highway Traffic Safety 
Administration, 2022), most of which are due to or partially 
due to drivers’ misusing or overusing of advanced driver 
assistance systems (ADAS). Previous studies found that 
drivers who have inappropriate mental models of ADAS (i.e., 
understanding of the functions and limitations of ADAS) were 
more likely to misuse or overuse the systems (Dickie & Boyle, 
2009; Rossi et al., 2020). Hence, researchers tried to 
understand the factors influencing drivers’ mental model of 
ADAS, which can provide insights on how to help drivers 
construct appropriate ADAS mental models. 

To understand drivers’ mental model of ADAS, most 
previous studies used survey-based method. Usually, in the 
survey, participants were presented with multiple statements 
about whether an ADAS function/limitation was present or 
not. Then, two types of responses were collected, i.e., binary 
answers (i.e., yes or no response indicating whether a 
function/limitation exists) or rating answers (i.e., Likert scales 
indicating how confident participants feel that the 
function/limitation exists). To evaluate the mental models, 
proportion correctness (PC) has been widely adopted in 
previous studies (for instance, a participant would get a PC of 
45% if 45 out of 100 questions were answered correctly). 
DeGuzman and Donmez (2021) evaluated drivers’ 
understanding of adaptive cruise control (ACC) and lane-
keeping assistant (LKA) through an online survey consisted of 
51 questions, in which participants were asked to judge 
whether the statement regarding the functions and limitations 
of ACC/LKA was true or false. Similarly, Larsson (2012) 
assessed drivers’ understanding of the ADAS based on their 
“yes or no” answers to statements regarding ADAS functions 
and limitations. The performance of the mental models in the 
previous two studies was based on the PC out of all questions 

used in the surveys. When rating scale answers were collected 
to evaluate participants’ mental model performance, a more 
complex calculation procedure was adopted to calculate the 
PC. For example, Beggiato and Krems (2013) assessed 
drivers’ knowledge of ACC using a 35-question survey, in 
which respondents answered questions using a Likert scale 
ranging from 1 (“fully disagree”) to 6 (“fully agree”). The 
absolute difference between actual responses and correct 
answers was used to derive a PC-based score to indicate 
participants’ mental models of ACC. 

However, PC may be a biased evaluation of the mental 
model, especially when the number of signal (i.e., ADAS 
function present) and noise (i.e., ADAS function absent) is 
unbalanced. For example, a respondent who trusts ADAS 
more (thus more likely to believe a ADAS function exists) 
may obtain higher PC-based score if most of the statements 
are about existing ADAS functions compared to that when 
most of the statements are about the non-existing functions. 
To resolve this issue, given that drivers’ responses are binary 
(yes or no) or rating scales, and the signals are either present 
or absent, the signal detection theory (SDT) (Green & Swets, 
1966) may be a better choice when measuring the mental 
model. In SDT, sensitivity (d’) can provide unbiased measure 
of drivers’ understanding of the mental model objectively and 
response bias (c) can reflect drivers’ subjective bias in 
believing whether the signals are present or not. Given that 
previous research mostly used PC-based score to measure the 
ADAS mental model, to facilitate comparisons across 
different studies and future meta-analysis, it is necessary to 
reveal the relationships among d’, c, and PC. However, to the 
best of knowledge, no research has clearly provided such 
relationships, given that there is no closed-form solution. 

Therefore, this study aims to quantify the relationships 
among d’, c, and PC when binary answers or rating answers 
were collected in the mental-model-related surveys. Empirical 
equations were extracted through numerical simulations. To 
validate the extracted relationships, we further compared the 



PC calculated from the empirical equation and the PC derived 
from a real survey study targeted towards evaluating drivers’ 
ADAS mental model. 

METHOD 

Data Description 

The data used in this study included two parts: (1) data 
acquired from simulation (Simulated Data); (2) data extracted 
from a survey study that explored drivers’ understanding of 
ADAS technologies (Survey Data).  

Simulated Data. We followed three steps to generate the 
Simulated Data: 
(1) Generate a predefined perfect answer (PA) for N 

questions (i.e., a 1*N vector). The number of statements 
with only noise and the number of statements with signals 
were controlled by pre-set probability of noises, p(n). 

(2) Generate participants’ responses (PR) to the N questions 
from P participants (i.e., a P*N matrix).  

(3) Run the simulation IterNo (number of iterations) times. 
Specifically, for questions with binary answers (i.e., 

binary questions), the predefined PA was either 0 (i.e., noise, 
or signal absent) and 1 (i.e., signal present). PR was also either 
0 (i.e., “no, there is no signal”) or 1 (i.e., “yes, there is a 
signal”), with the possibility of 50% for each. For questions 
with rating answers (i.e., rating questions), the PA was either 1 
(i.e., “signal absent”) or 6 (i.e., “signal present”). While 
participants’ responses can be any integers from 1 (i.e., “I am 
very confident there is no signal”) to 6 (i.e., “I am very 
confident that there is a signal”), with the possibility of 1/6 for 
each rating. Both PA and PR were generated using the 
‘sample’ function in R. 

As the total number of trials (N), probability of noises 
(p(n)), and the number of participants (P) vary in different 
studies, to fully reveal the relationships among d’, c and PC, 
we simulated different combinations of these variables. 
Specifically, we set N = (100, 200, 300, 400, 500); p(n) = (0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9); P = (100, 200). It should 
be noted that, the exact number of noises in each iteration 
varied around N*p(n) due to the randomized sampling process. 
Therefore, we further defined the signal-to-noise ratio (SN-
ratio) as the actual number of signals divided by the number of 
noises in each iteration. Most of SN-ratios distributed within 
the range of (0, 10) given the p(n) we set. In total, we 
simulated 90 conditions (5 N levels * 9 p(n) levels *2 P 
levels), and the number of iterations (IterNo) for each 
condition was 100. All the Simulated Data was generated 
using R 3.6.3 (R Core Development Team, 2019). 

Survey Data. The data in this part was extracted from a 
survey study, in which we explored drivers’ ADAS mental 
models using 49 statements about the functions and limitations 
of ADAS. The statements were generated based on a review of 
previous relevant studies (Beggiato & Krems, 2013; Beggiato, 
Pereira, Petzoldt, & Krems, 2015; DeGuzman & Donmez, 
2021a, 2021b; McDonald, Carney, & McGehee, 2018) and 
user manuals from vehicle manufacturers. Participants were 
asked to rate their level of agreement to each statement, 
ranging from 1 (“strongly disagree”) to 6 (“strongly agree”). 

Further, participants were informed that ratings below or equal 
to 3 indicated an intention to disagree while ratings above or 
equal to 4 indicated an intention to agree. Thus, we could also 
generate binary answers from this survey (i.e., if ratings were 
≤ 3, then we treat the answer as “no, signal is absent”; while if 
ratings were ≥4, we treat the answer as “yes, signal is 
present”). Among all 49 statements, 34 of them can be treated 
as signals in SDT as they stated ADAS functions or 
limitations that indeed exist; while 15 of them can be treated 
as noises as they stated functions or limitations that do not 
exist. In total, 287 valid responses from the survey were used 
for analysis as Survey Data in the current study. 

Variable Extraction 

Dependent Variable. The PC was selected as the 
dependent variable for both binary questions and rating 
questions. More specifically, the PC of binary answers (PC-
binary) was calculated as follows: 
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where, 𝐼	(PR! , PA!) = 7	1			𝑤ℎ𝑒𝑛	PR! = PA!
	0			𝑤ℎ𝑒𝑛	PR! ≠ PA!

; PR! was the 

actual response to the 𝑖&' question from a participant; PA! was 
the perfect answer to the 𝑖&' question.  

At the same time, the PC of rating answers (PC-rating) 
was calculated as follows: 
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where, PR! was the actual response to the 𝑖&' question from 
the participant; PA! was the perfect answer to the 𝑖&' question 
(i.e., either 1 or 6). Thus, being an integer within [0, 5], 
|𝑃𝑅! 	−	𝑃𝐴!| is the distance between the participant’s 
response and the perfect answer for the  𝑖&' question. 

Independent variables. The sensitivity (d’) and response 
bias (c) in SDT were selected as the independent variables. As 
both PA and PR are binary for binary questions, the traditional 
SDT (Stanislaw & Todorov, 1999) was adopted. We defined 
the hit as "signal present and answer yes”, miss as “signal 
present but answer no”, false alarm as “signal absent but 
answer yes”, and correct rejection as “signal absent and 
answer no”. For the rating questions, we adopted the fuzzy 
SDT to handle the non-binary responses. The fuzzy SDT 
enabled the analysis of fuzzy signals based on signal detection 
theory without arbitrarily binarizing the original responses 
(Parasuraman, Masalonis, & Hancock, 2000). In fuzzy SDT, 
the four states of the world (i.e., hit, miss, false alarm, and 
correct rejection) were calculated as follows: 

𝐻𝑖𝑡 = min(𝑟, 𝑠)																																																							(3) 
𝑀𝑖𝑠𝑠 = max(𝑠 − 𝑟, 0)																																											(4) 
𝐹𝑎𝑙𝑠𝑒	𝐴𝑙𝑎𝑟𝑚 = max(𝑟 − 𝑠, 0)																												(5) 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = min(1 − 𝑠, 1 − 𝑟)										(6) 

where, 𝑟 = (	)	|+,!	)	+-!|
(

	 (i.e., the confidence of saying “yes”); 
s represents the probability of a signal (which was 0 when the 
signal was absent and 1 when the signal was present). The 



calculation of d’ and c for both binary questions and rating 
questions was performed using the psycho package in R 3.6.3. 

Extraction of Empirical Equation 

Overall, the analyses in this study included two parts. 
First, by using the Simulated Data, we fitted linear regression 
models to explore the empirical relationships among d’, c and 
PC. Specifically, for each single iteration in one condition, we 
could calculate P sets of d’, c and PC, as we have P 
participants. Then, we were able to construct a linear model 
using these P sets of d’ and c and PC. In the model, as shown 
in Eq. (7), d’ and c as well as their two-way interactions were 
independent variables, and the corresponding PC was the 
dependent variable: 

 
𝑃𝐶	 = 	𝛽. 	+	𝛽% ∗ 𝑑′	 +	𝛽/ ∗ 𝑐	 +	𝛽0 ∗ (𝑑′|𝑐)								(7)	 
 

Where, (𝑑′|𝑐) stands for the interaction between d’ and c. For 
each condition, this procedure was repeated IterNo times. 
Further, we considered two types of questions (i.e., binary 
questions or rating questions). Thus, 18,000 models were 
fitted (90 conditions * 2 types of questions * 100 iterations).  

In total, 18,000 sets of coefficients ((i.e., 𝛽., 𝛽%, 𝛽/, and 
𝛽0) in Eq (7) were generated. Then, to extract an empirical 
equation, in Figure 1 to 5, we visualized the distribution of 
these coefficients. Then, the extracted empirical equation was 
applied to the Survey Data. Specifically, the relationship 
between PC calculated from the empirical equation (predicted 
PC) and the PC derived from participants’ responses 
(extracted PC) was fitted in linear regression models and the 
R-squared (R2) was used as the evaluation metric. The model 
fitting process, data pre-processing process, and results 
visualization in this study were performed using R 3.6.3. 

RESULTS 

Relationships among d’, c and PC in Simulated Data 

Summary of fitted models. Table 1 summarizes the 
descriptive statistics (i.e., mean, min, and max) of the 
coefficient estimates in all fitted models. It should be noted 
that the R-squared for all fitted models was over 0.999, 
indicating a close-to-perfect performance of using d’ and c to 
predict PC. 
Table 1. Descriptive statistics for all the estimates in all fitted models 

Question Type Coefficient Mean (SD) Min Max 
Binary 

questions 
𝛽! .50 (<.0001) 0.4998 0.5002 

𝛽" .20 (.002) 0.1998 0.2027 
𝛽# .0003 (.21)  -0.3754 0.3753 

𝛽$ <.0001 (.002) -0.0169 0.0152 
Rating 

questions 
𝛽! .50 (<.0001) 0.4993 0.5006 
𝛽" .20 (.0004) 0.1982 0.2019 
𝛽# <.0001 (.21) -0.3757 0.3758 
𝛽$ <.0001 (.004) -0.0307 0.0271 

Note: SD stands for standard deviation. 

Estimates of 𝛽.. Figure 1 visualizes the relationships 
among N, P, SN-ratio, and estimates of 𝛽. for both binary 

questions and rating questions. It can be observed for both 
binary and rating questions, 𝛽. fluctuated around 0.5 (see 
Figure 1 and Table 1) regardless of the values of P and SN-
ratio. At the same time, the intercept term (i.e., 𝛽.) was always 
significant in all fitted models. Further, with the increase of N, 
𝛽. tended to converge to 0.5. Therefore, we set 𝛽. = 0.5 in our 
empirical equation. 

 
Figure 1. Relationships among N, P, SN-ratio, and estimates of 𝛽! for 
two types of questions: (A) binary questions; (B) rating questions. 

 
Figure 2. Relationships among N, P, SN-ratio, and estimates of 𝛽" for 
two types of questions: (A) binary questions; (B) rating questions. 

Estimates of 𝛽%. As shown in Figure 2 and Table 1, the 𝛽% 
fluctuated around 0.2 for different P and SN-ratio and the 
estimates of 𝛽% got closer to 0.2 when the N increased. At the 
same time, 𝛽% was always significant in all fitted models. 
Thus, we set 𝛽% as 0.2 in our empirical equation. 

Estimates of 𝛽/. From Figure 3, it can be observed that 
neither N nor P affects 𝛽/. However, it is interesting to notice 
that the 𝛽/ was a function of SN-ratio for both binary and 
rating questions and 𝛽/ was always significant in all fitted 
models. Thus, to further quantify the relationship between 𝛽/ 
and SN-ratio, inspired by the way of calculating c in SDT (i.e., 
transferring probabilities to z-score) and the curve shape in 
Figure 3, we fitted a function (Eq. (8)) using the nonlinear 
least squares algorithm in R (i.e., ‘nls’ function) to represent 
the relationship between 𝛽/ and SN-ratio. The fitted function 



was visualized in a curve in Figure 4 along with the simulated 
data points. 

													𝛽/ 	= 	
1"#.%&'((*+",-.!/)

%2	1"#.%&'((*+",-.!/)
	− 	0.5													(8)				

 
Figure 3. Relationships among N, P, SN-ratio, and estimates of 𝛽# for 
two types of questions: (A) binary questions; (B) rating questions. 

 
Figure 4. Simulated data (in color) and the fitted based on Eq. 8 (in 
black): (A) binary questions; (B) rating questions. 

Estimates of 𝛽0. For both binary and rating questions, it 
was found that the 𝛽0 generally fluctuated around 0 (Figure 5 
and Table 1) for different P and SN-ratio, and the estimates of 
𝛽0 would get closer to 0 with the increase of N. However, it 
was found that among all fitted models, the interaction effects 
between d’ and c were significant in around 63% of all fitted 
models (i.e., 5680 of 9000 models for binary questions and 
5608 of 9000 models for rating questions). To further reveal 
the contribution of these interaction terms in the model, using 
the same data, we fitted other 18,000 models, while without 
the interaction term between d’ and c. It was found that all the 
models without the interaction term still had R2 values of over 
0.999. In other words, although the interaction effect between 
d’ and c was significant in some cases, the contribution of this 
interaction effect to the prediction of PC was almost omittable. 
Hence, we set 𝛽0 as 0. 

 
Figure 5. Relationship among N, P, SN-ratio, and estimates of 𝛽$ for 
two types of questions: (A) binary questions; (B) rating questions. 

The empirical equation. Based on the above results, the 
empirical equation describing the relationships among d’, c, 
and PC can be written as: 

𝑃𝐶	 = 	0.5	 + 	0.2 ∗ 𝑑′	 +	𝛽3 ∗ 𝑐							(9)	 
where, 𝛽3 	= 	

1"#.%&'((*+",-.!/)

%2	1"#.%&'((*+",-.!/)
	− 	0.5						(10) 

A Survey-based Case Study 

 
Figure 6. Comparisons between predicted PC from Eq. (9) and (10), 
and PC extracted from Survey Data: (A) binary questions; (B) rating 
questions. 

To explore the accuracy of using d’ and c to estimate PC 
based on the empirical equation we extracted from the 
Simulated Data, we compared the predicted PC and extracted 
for both binary answers and rating answers. As shown in 
Figure 6, two linear regression models were fitted. The R2 for 
both types of questions were over 0.8, indicating high validity 
of our empirical equation. 

DISCUSSION 

Based on the data generated from a numerical simulation, 
this study explored the relationships between the sensitivity 
(d’) and response bias (c) calculated based on SDT and the 
proportion correctness calculated based on the methods 
adopted in previous research. Two types of questions (i.e., 
binary questions and rating questions) were considered when 
generating the Simulated Data for equation extraction. Using 



the Simulated Data, we quantified an empirical equation, in 
which the PC can be estimated based on d’ and c. We further 
validated the extracted equation using the data collected from 
a real-world survey study. The PC predicted by the extracted 
empirical equation and the PC derived from participants’ 
responses were compared. It was found that the extracted 
empirical equation reached satisfying performance in 
predicting PC for both binary (i.e., R2 = 0.82) and rating 
questions (i.e., R2 = 0.89). Thus, this equation may facilitate 
future meta-analysis and across-study comparisons when 
different mental model metrics were used in different studies. 

Some interesting characteristics of the extracted 
empirical equation should be noted here. First, with 𝛽% = 0.2, 
it is straightforward to understand that higher d’ would lead to 
higher PC-based score. At the same time, the effect of 
response bias on PC (i.e., the value of 𝛽3) was influenced by 
the SN-ratio. More specifically, the 𝛽3 is positive when the 
SN-ratio < 1; the 𝛽3 becomes negative when the SN-ratio > 1; 
and the 𝛽3 become 0 when the SN-ratio = 1. In other words, 
for two individuals who have similar level of understanding of 
a system (d'), when answering a questionnaire that include 
fewer signals than noises (i.e., SN-ratio < 1), the participant 
who is more risky (i.e., smaller c, tends to say yes) would 
reach lower accuracy compared to the one who is more 
conservative (i.e., larger c, tends to say no). In contrast, when 
the number of signals was larger than the number of noises 
(i.e., SN-ratio > 1), the risker individuals would reach higher 
accuracy when answering the questions. When the number of 
signals was equal to the number of noises (i.e., SN-ratio = 1), 
the conserveness (or riskiness) of individuals would have no 
impact on the accuracy they obtain. Further, it should be noted 
that, the more extreme the SN-ratio, the larger the influence of 
c (i.e., respondents’ bias) on the PC-based score. 

Another interesting implication of the equation is that the 
PC would only be predicted by d’ when 𝛽3 ∗ 𝑐 was 0. This can 
happen in two possible scenarios: (1) when 𝑐 = 0, that is, the 
respondent has no bias towards saying yes or no; (2) 𝛽3 = 0, 
that is, the SN-ratio in the task is 1 (i.e., there is equal number 
of signals and noises). The first scenario is straightforward, as 
c = 0 means the respondent has no bias. The second scenario 
can provide some implications for future studies. If we need to 
obtain an objective understanding of respondents’ knowledge 
of a system and nullify the influence of their bias, we should 
set the SN-ratio in a designed questionnaire to be 1. At the 
same time, for future meta-analysis, the cross-study 
comparisons of PC-based scores can be performed only when 
the SN-ratio in the two studies are the same. Further, when the 
PC was only predicted by d’ (i.e., 𝛽3 ∗ 𝑐 = 0), the empirical 
equation is simplified to 𝑃𝐶	 = 	0.5	 + 	0.2 ∗ 𝑑′. Thus, the 
higher the d’ (i.e., better capability to distinguish signals and 
noises), the higher the PC. 

The intercept (𝛽.) is 0.5 in the empirical equation, which 
is also straightforward. When a respondent knows nothing 
about a system (i.e., d’ = 0) and has no bias towards saying 
yes or no (i.e., c = 0), the answers from the respondent would 
be totally by chance (i.e., 50% probability of answering the 
questions correctly, leading a PC-based score of 0.5).  

In summary, we extracted an empirical equation to 
quantify how d’ and c can be used to estimate PC. The 

implications obtained from the equation can provide insights 
on the design of the mental-model-related questionnaires. The 
equation can also facilitate future cross-study comparisons of 
mental models. However, it should also be noted that the 
empirical equation is not validated through mathematical 
proof, as when calculating d’ and c, the probabilities have to 
be transferred from z-scores using the cumulative distribution 
function of normal distribution, which, unfortunately has no 
closed-form solutions. To this end, future research may further 
validate the effectiveness of the empirical equation extracted 
in our study using more field data. 
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