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With more autonomous vehicles (AVs) being tested or deployed on public roads, human-driven vehicles 

(HVs) have to share the road with AVs. However, human drivers may not interact AVs the same way as 

they interact with HVs. Very few studies have investigated drivers’ behaviors when sharing the road with 

AVs. Based on a real-world dataset, our study explored drivers’ interactions with AVs in two types of 

events on highway, i.e., car-following event and car-passing event. The results show that, compared to 

interacting with HVs, drivers tended to keep a larger safety margin (i.e., larger gap distance and time gap) 

at high speed in both types of events when interacting with AVs. At the same time, drivers seemed to have 

difficulty anticipating AVs’ speed changes at high speed, as indicated by a larger standard deviation of the 

HVs’ speed and a smaller time to collision when following AVs versus following HVs.  

 

INTRODUCTION 

With the advancements of sensor and computation 

technologies, autonomous vehicle (AVs) services, such as 

Waymo in the U.S. (Waymo, 2021) and Baidu in China 

(Baidu Apollo, 2021), are being tested and deployed on public 

roads. As no lanes are designated for the implementation of 

AVs, inevitably, there will be a transition period in the 

foreseeable future, in which human-driven vehicles (HVs) and 

AVs share the road. This may bring challenges to traffic 

safety, especially with the increasing percentage of AVs on 

the road – not just because AVs need to perceive and 

understand human drivers’ behaviors, but also because human 

drivers may take different strategies to interact with AVs. 

When sharing the road with other HVs, drivers can safely 

assume that most HVs will follow commonly accepted “rules” 

and their behaviors will be “predictable” to some extent. Thus, 

drivers may have developed their own strategies to interact 

with HVs. For example, drivers may keep a gap time that they 

feel safe when following lead vehicles (LVs) (Saifuzzaman & 

Zheng, 2014), assuming the lead vehicles will follow the 

speed of traffic when there is no emergency. Drivers may also 

keep a comfortable lateral distance (LD) when passing other 

HVs through adjacent lanes, assuming other drivers will not 

change lanes before checking blind spots. However, AVs are 

new to most drivers, and drivers may not have developed 

appropriate expectations of AVs’ behaviors. Thus, human 

drivers may take different strategies when interacting with 

AVs, which may or may not lead to unsafe situations.  

Although research based on traffic simulation has 

discussed the safety implications of mixing AVs and HVs in 

traffic network (e.g., Sinha et al., 2020), the outcomes of these 

studies were susceptible to the choice of human drivers’ 

behavioral model. Most of these previous traffic simulations 

adopted arbitrary parameters when modeling drivers’ 

behaviors in the mixed traffic (Papadoulis et al., 2019; Sinha 

et al., 2020; Virdi et al., 2019), which brings concerns on the 

validity of the simulation results. To address this issue, a few 

studies have investigated how human drivers react to AVs on 

road. In a field study, Mahdinia et al (2021) found that when 

following AVs, drivers exhibited lower speed volatility and 

lower acceleration volatility and increased time to collision 

(TTC) compared to that when following HVs. In another field 

study, Zhao et al (2020) found that the impact of AVs on 

human drivers’ car-following behaviors are subject to drivers’ 

subjective trusts toward AVs. However, it should be noted that 

the speed of lead vehicles was less than 40 km/h in Mahdinia 

et al (2021) and less than 60 km/h in Zhao et al (2020), and 

thus they may not reveal drivers’ behaviors on highway. 

Further, both of them were conducted in controlled 

environments and only car-following events were investigated, 

which may limit the generality of the results. To evaluate the 

impact of sharing road with AVs on human drivers’ behaviors, 

further research based on real-world data is needed. 

Thus, our study explored the influence of AVs on human 

drivers’ behaviors using a real-world dataset, the Waymo 

Open Dataset (Waymo LLC, 2020), which is a public dataset 

released by Waymo LLC. The dataset records the movements 

of other road agents surrounding the AVs. As AVs are 

expected to be first deployed on highway, in this study, we 

mainly focused on the influence of AVs on human drivers’ 

behaviors on highway. Two types of events were analyzed in 

this study, i.e., the car-following events in which HV follows 

an AV or HV, and the car-passing events in which HV passes 

an AV or HV. Four safety-relevant metrics were extracted 

from the car-following events, i.e., the time gap, gap distance, 

time to collision (TTC), and the standard deviation of the 

following vehicle speed (SD-FVspeed); while for car-passing 

events, we focused on the lateral distance (LD) between the 

passing vehicle (PV) and vehicle being passed (BPV). 



METHOD 

Data Description 

The data used in this study was extracted from the 

Waymo Open Dataset, which contains the road test data from 

several AVs that can be categorized as SAE Level 4 or Level 

5 automation (SAE On-Road Automated Vehicle Standards 

Committee, 2021). Waymo has conducted over 32 million 

kilometers test of these AVs on public roads in selected U.S. 

cities, such as Phoenix, Mountain View and San Francisco. In 

the dataset, the AVs’ trajectories and surrounding traffic 

environment were captured at 10-Hz frequency through 

sensors mounted on the AVs (e.g., lidars and cameras).       

The Waymo Open Dataset is constituted of two parts: the 

perception and motion parts. The perception part of the 

Waymo dataset was first released in August 2019, which 

includes 1,000 segments of 20-second data, consisting of high-

resolution lidar and camera raw data (Sun et al., 2020). The 

motion part was first released in March 2021, which contains 

103,354 segments of high-quality 3D environmental data 

(including the size and location of other road agents) and high-

resolution map data (Ettinger et al., 2021); each segment was 

also 20 seconds long. Both parts of the dataset were used for 

the extraction of car-following events and car-passing events 

in this study. 

Extraction of Events 

Car-following events. In any 20-second segment, if one 

vehicle followed another vehicle in the same lane for over 15 

seconds (Shangguan et al., 2021) and the behaviors of the two 

vehicles satisfied all the criteria listed below, then the event 

was extracted as a car-following event. 

• None of the two vehicles made lane changes or turns (Bao 

et al., 2020); 

• The speed of following vehicle (FV) was greater than 10 

km/h (Zhu & Zhang, 2018); 

• The gap distance (from the front bumper of the FV to the 

rear bumper of the LV) was less than 85 m (Hammit et 

al., 2018); 

Based on these criteria, 229 HV-following-AV events 

and 1,246 HV-following-HV events on highway were 

extracted through customized python codes. 

 

 

Figure 1. An example of five frames from a car-passing video. In the 

video, AV is highlighted as red box and the surrounding HVs are 

marked as black dots. 

Car-passing events. To extract the car-passing events, 

each 20-second segment was visualized as a short video that 

shows the motion of the AV and the motion of the surrounding 

vehicles detected by the AV (Figure 1). A car-passing event 

was extracted if one vehicle passed another vehicle through 

adjacent lanes (i.e., either left or right lane). By manually 

inspecting the videos, 37 HV-pass-AV events, and 26 HV-

pass-HV events on highways were extracted.  

Dependent Variables 

For car-following events, four metrics were extracted as 

dependent variables: i.e., gap distance, time gap, the reciprocal 

of TTC (reTTC), and the standard deviation of the following 

vehicle speed (SD-FVspeed). The time gap was defined as the 

gap distance divided by the speed of the following vehicle. 

The TTC was defined as the gap distance divided by the speed 

difference between the following vehicle and the lead vehicle. 

The reTTC, instead of TTC, was used so that infinite or 

negative TTC can be avoided: when the lead vehicle was 

equal or faster than the following vehicle, the reTTC was set 

to 0. All these four metrics were found to be associated with 

crash risk (Kamrani et al., 2018; Liu & Selpi, 2020; 

Minderhoud & Bovy, 2001; Vogel, 2003). The gap distance, 

time gap, and the TTC were extracted every 1 second in a car-

following event, while the SD-FVspeed was calculated based 

on the speed of FV throughout a whole car-following event. 

For car-passing events, we selected LD as the dependent 

variable. Following previous research (Dozza et al., 2016), the 

LD was defined as the lateral distance between the geometric 

centers of two vehicles in a car-passing event at the moment 

the PV and BPV were the closest. 

Statistical Analysis 

For the metrics in car-following events, the car-following 

type (i.e., HV-follow-HV versus HV-follow-AV), the speed of 

the LV (LVspeed), and their interactions were used as 

independent variables. The LVspeed was the mean speed of 

the LV in the data extraction period of the metrics (i.e., 1 

second for gap distance, time gap and reTTC, and the duration 

of the car-following events for SD-FVspeed). Further, for gap 

distance, time gap and reTTC, the car-following event was 

included as a random effect. For LD, the car-passing type (i.e., 

HV-pass-HV versus HV-pass-AV), the speed of the BPV 

(BPVspeed), and their interaction were used as independent 

variables. Specifically, the BPVspeed was the speed of the 

BPV when the PV and BPV were closest in a passing event. 

For models including random effects, mixed models were 

built using the lmer function within the lme4 package in R 

3.6.1 (R Development Core Team, 2019), while other models 

were built using the glm function within the stat package. To 

satisfy the assumptions of the mixed model, the square root 

transformation (sqrt) was applied to the reTTC.  



RESULTS 

Table 1 summarizes the statistical results for all the 

metrics in both car-following events and car-passing events.  

Car-following Events 

Gap distance. A significant interaction effect of car-

following type and LVspeed has been observed for the gap 

distance (Table 1 and Figure 2). In general, the gap distance 

increased with the increase of the LVspeed but to different 

extents in two types of events. For each 1 km/h increase in 

LVspeed, the gap distance increased 0.45 m in HV-follow-AV 

events, with 95% a confidence interval (CI) of 0.44 to 0.46; 

while in HV-follow-HV events, a 0.41 m (95%CI: 0.38, 0.44) 

increase in gap distance was observed for each 1 km/h 

increase in LVspeed. When comparisons were made across 

car-following types, it was found that compared to that in HV-

follow-HV events, in HV-follow-AV events, the gap distance 

was smaller when the LVspeed was less than 42 km/h, and 

larger when the LVspeed was over 103 km/h. No significant 

difference was observed between two types of car-following 

events when the LVspeed was between 42 km/h to 103 km/h.  

Table 1. Statistical results for the metrics 

Metrics IVs Estimate (SE) t value p-value 

Gap 

distance 

Intercept -0.71 (0.61) -1.17 .3 

CFT  2.75 (0.66) 4.18 <.0001 

 LVspeed 0.45 (0.008) 58.11 < .0001 

CFT * 

LVspeed 

-0.04 (0.008) -4.869 < .0001 

Time gap Intercept 1.44 (0.06) 23.85 < .0001 

CFT  0.35 (0.07) 5.32 < .0001 

 LVspeed 0.006 (0.00) 7.73 < .0001 

CFT* 

LVspeed 

-0.0055 (0.00) -6.46 < .0001 

Sqrt of 

reTTC 

Intercept 0.18 (0.008) 21.10 < .0001 

CFT  0.029 (0.009) 3.17 .0009 

 LVspeed -0.002 (0.000) -11.06 < .0001 

CFT * 

LVspeed 

-0.001 (0.0001) -6.207 < .0001 

SD-

FVspeed 

Intercept 1.61 (0.11) 13.81 < .0001 

CFT -0.25 (0.13) -1.95 .052 

LVspeed -0.017 (0.0077) -2.16 .03 

CFT * 

LVspeed 

0.032 (0.009) 3.54 .0004 

LD Intercept 5.2 (0.75) 6.94 < .0001 

CPT -2.6 (1.0) -2.49 .016 

BPVspeed 0.0003 (0.04) 0.01 .99 

CPT * 

BPVspeed 

0.10 (0.06) 1.83 .072 

Note: IV stands for independent variables; SE stands for standard 

error; CFT stands for car-following type; CPT stands for car-passing 

type. The baseline types for CFT and CPT are the HV-follow-HV and 

the HV-pass-HV, respectively. 

Time gap. A significant interaction effect of car-

following type and LVspeed has been observed for the time 

gap. As shown in Figure 3, in both HV-following-HV and 

HV-following-AV events, the time gap decreased with the 

increase of the LVspeed, but to different extents in two types 

of events. For each 1 km/h increase in LVspeed, the time gap 

increased 0.006 s (95%CI: 0.0045, 0.0076) in HV-follow-AV 

events but did not change in HV-follow-HV events. This 

indicates that although drivers tended to increase the gap 

distance with increasing speed, they may not be able to fully 

compensate the effect of speed, especially when they were 

following the AVs. When comparisons were made across car-

following types, it was found that compared to that in HV-

follow-HV events, in HV-follow-AV events, the time gap was 

smaller when the LVspeed was less than 45 km/h, and larger 

when the LVspeed was over 85 km/h. No significant 

difference was observed between two types of car-following 

events when the LVspeed was between 45 km/h to 85 km/h. 

 

Figure 2. The results of the gap distance model. In this figure and the 

following figures, the shadow represents 95% confidence interval 

(CI) of the estimated differences between the two types of car-

following events. 

 

Figure 3. The results of the time gap model.  

Reciprocal of TTC. A significant interaction effect of car-

following type and LVspeed has been observed for the reTTC. 

As shown in Figure 4, in both HV-following-HV and HV-

following-AV events, the reTTC decreased with the increase 

of the LVspeed, indicating that drivers tended to keep a larger 

time margin with increasing speed. Further, in HV-follow-AV 

event, the drivers seemed to be less responsive to the change 



of speed in terms of reTTC, compared to that in HV-follow-

HV events: for each 1km/h increase in speed, the sqrt of 

reTTC in HV-follow-AV events decreased 0.0016 (95%CI: 

0.0013, 0.0019); while in HV-follow-HV events, the sqrt of 

reTTC decreased 0.0026 (95%CI: 0.0021, 0.0031). When 

comparisons were made across car-following types, it was 

found that compared to that in HV-follow-HV events, when 

the LVspeed was less than 15 km/h, the reTTC was smaller in 

HV-follow-AV events; while when the LVspeed was over 38 

km/h, the reTTC was larger in HV-follow-AV events. No 

significant difference was observed when the LVspeed was 

between 15 km/h and 38 km/h. 

 

Figure 4. The results of the reTTC model.  

 

Figure 5. The results of the SD-LVspeed model.  

Standard Deviation of FVspeed. A significant interaction 

effect of car-following type and LVspeed has been observed 

for the SD-FVspeed. As shown in Figure 5, with each 1 km/h 

increase in LVspeed, the SD-FVspeed decreased 0.02 km/h 

(95%CI: 0.01, 0.03) in HV-follow-AV events, while no 

significant trend was observed in HV-follow-HV events. 

When comparisons were made across car-following types, it 

was found that only when the LVspeed was over 43 km/h, the 

SD-FVspeed in HV-follow-AV events was smaller compared 

to that in HV-follow-HV events. No significant difference was 

observed when the LVspeed was less than 43 km/h. 

Car-Passing Events 

In car-passing events, only a significant effect of the car-

passing event type has been observed for the LD (Table 1 and 

Figure 6). It was found that the LD in HV-pass-AV events was 

0.78 m (95%CI: [0.70, 0.86]) larger than that in HV-overtake-

HV events. 

 

Figure 6. The results of the LD model.  

DISCUSSION 

Through a dataset collected on open public roads, this 

study investigated how human drivers respond differently to 

AVs versus HVs on highway. As expected, we found that 

drivers tended to keep a larger safety margin with increasing 

speed regardless of the types of vehicles (i.e., either AV or 

HV) they interacted with, by keeping a larger gap distance, 

and a larger TTC (i.e., smaller reTTC) to the lead vehicle in 

car-following events. At the same time, it is interesting to 

notice that although the gap distance increased with increasing 

lead vehicle speed in HV-follow-HV events, the time gap did 

not change with the speed, indicating that drivers did not fully 

compensate the effect of vehicle speed increase on highway 

when following HVs. It is also alerting that drivers kept a less 

than 2 seconds time gap at most speed regardless the types of 

car-following events, although 2-second time gap was 

recommended for the consideration of driving safety (New 

York State Department of Motor Vehicles, 2020). The speed 

had no impact on LD in car-passing events, potentially 

because the vehicles had less freedom to adjust their distance 

to vehicles being passed, as their lateral positions were 

restricted by the width of lanes. 

Being different from the findings in Mahdinia et al 

(2021), which observed smaller speed volatility when drivers 

were following AVs versus following HVs, in our study, we 

found that the drivers showed smaller speed volatility (as 

indicated by the SD of FVspeed) when following AVs (versus 

following HVs) only when the speed of the lead vehicle was 

over 43 km/h; and there was no difference between car-

following types when the lead vehicle speed was less than 43 

km/h. Further, the TTC also showed a trend that is different 

from the findings in Mahdinia et al (2021). Compared to that 

in HV-follow-HV events, a larger TTC (i.e., smaller reTTC) 

was only observed in HV-follow-AV events when the lead 



vehicle speed was less than 15 km/h in our study; while when 

the lead vehicle speed was over 38 km/h, the TTC in HV-

follow-AV events was smaller than that in HV-follow-HV 

events. This conflicting result as compared to Mahdinia et al 

(2021) at high speed may be attributed to different scenario 

complexities in test fields and on public roads. The smaller 

TTC observed in our study indicates that at high speed, drivers 

seemed to be less reactive to the speed variations of a leading 

AV than to a leading HV. It is possible that AVs behaves 

differently at high speed as compared to human drivers, and 

thus drivers following a leading AV are less capable of 

anticipating the speed changes of the AV. 

At the same time, drivers seemed to keep a larger safety 

margin when interacting with AVs compared to interacting 

with HVs, especially at high speed. In car following events, 

we observed larger gap distance and time gap in HV-follow-

AV events compared to that in HV-follow-HV events when 

the leading vehicle speed was over 103 km/h and 85 km/h, 

respectively. In car-passing events, drivers also kept a larger 

LD regardless of the lead vehicle speed. This indicates that 

drivers may still trust less in AVs than HVs (Zhao et al., 

2020). However, it is interesting to notice that drivers tended 

to follow a leading AV at a closer gap distance and smaller 

gap time as compared to following a HV when the speed of 

the lead vehicle was relatively small. This trend might be 

explained as drivers having perceived different levels of risk 

or behavioral control (Ajzen, 1991) at different speed range: 

drivers might be curious about AVs and regard tailgating an 

AV as a more controllable behavior when the speed was low. 

In summary, our results show that drivers may interact 

with AVs differently as compared to interacting with HVs and 

to different extents at different speed. These results indicate 

the necessity of external human machine interface (eHMI) of 

AVs that can increase the transparency of AVs. The results 

may also provide insights on the design of AV control 

algorithms that take the behaviors of surrounding HVs into 

consideration. It should be noted that different AV control 

algorithms may lead to different behaviors of AVs, which can 

affect human drivers’ responses to them (Zhao et al., 2020). 

Unfortunately, we have no information whether Waymo has 

updated the control algorithms during the data collection 

period, which may have introduced a covariate that we cannot 

quantify in our analysis. Further, we were not able to collect 

human drivers’ subjective ratings and thus we cannot analyze 

the underlying reasons for the change of behaviors when 

interacting with AVs. Future research may address these 

issues through questionnaires and controlled experiments on 

open roads or test fields. 
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