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ABSTRACT 1 
In-vehicle infotainment systems can increase cognitive load and impair driving performance. These 2 
effects can be alleviated through interfaces that can assess cognitive load and adapt accordingly. Eye-3 
tracking and physiological measures that are sensitive to cognitive load, such as pupil diameter, gaze 4 
dispersion, heart rate (HR), and galvanic skin response (GSR), can enable cognitive load estimation. The 5 
advancement in cost-effective and non-intrusive sensors in wearable devices provides an opportunity to 6 
enhance driver state detection by fusing eye-tracking and physiological measures. As a preliminary 7 
investigation of the added benefits of utilizing physiological data along with eye-tracking data in driver 8 
cognitive load detection, this paper explores the performance of several machine learning models in 9 
classifying three levels of cognitive load imposed on 33 drivers in a driving simulator study: no external 10 
load, lower difficulty 1-back task, and higher difficulty 2-back task. We built five machine learning 11 
models, including k-nearest neighbor, support vector machine, feedforward neural network, recurrent 12 
neural network, and random forest (RF) on (1) eye-tracking data only, (2) HR and GSR, (3) eye-tracking 13 
and HR, (4) eye-tracking and GSR, and (5) eye-tracking, HR, and GSR. Although physiological data 14 
provided 1% - 15% lower classification accuracies compared to eye-tracking data, adding physiological 15 
data to eye-tracking data increased model accuracies, with an RF classifier achieving 97.8% accuracy. 16 
GSR led to a larger boost in accuracy (29.3%) over HR (17.9%), with the combination of the two 17 
boosting accuracy by 34.5%. Overall, utilizing both physiological and eye-tracking measures shows 18 
promise for driver state detection applications.  19 
 20 
Keywords: Cognitive Load Estimation, Machine Learning, Heart Rate, Galvanic Skin Response, Eye 21 
Measures  22 
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INTRODUCTION 1 
Factors such as road environment (i.e., high traffic conditions), bad weather, and the usage of in-2 

vehicle technologies (e.g., cellphone and infotainment systems) can increase the cognitive load 3 
experienced by drivers. Both simulator and on-road studies have shown that high cognitive load can 4 
impair driving performance and visual scanning behaviors (1, 2). Real-time assessment of cognitive load 5 
can enable vehicle manufacturers to provide preventative warnings and develop adaptive interfaces that 6 
can support drivers, for example, by actively limiting functionality on menu interfaces (3) and 7 
automatically filtering information when high levels of cognitive load is detected (4). Automated vehicle 8 
systems can also utilize cognitive load estimates to intelligently transfer vehicle control to the driver (5). 9 

As summarized in Table 1, a variety of measures were found to be responsive to varying levels 10 
of external cognitive load experienced by drivers, including: 1) eye-tracking measures, such as pupil 11 
diameter (2, 6), blink rate (7), and standard deviation (SD) of horizontal gaze position (7, 8), 2) 12 
physiological measures, such as heart rate (HR) (8-10), galvanic skin response (GSR) (8, 9), and 13 
Electroencephalography (EEG) (11, 12); 3) driving performance measures, such as vehicle speed (8); 14 
4) and subjective measures, such as NASA-Task Load Index (NASA-TLX) (1).  15 

 16 
TABLE 1 Example Cognitive Load Measurements 17 

Measure Trend with Increased Cognitive Taskload 
Eye-tracking  

 

Pupil diameter ↑ (2, 6) 
Blink  Rate ↑ (7) 
Gaze position Periphery/mirror/instrument check rate ↓ (1) 

SD of horizontal position ↓ (7, 8) 
SD of vertical position ↓ (7) 

Physiological  

 

HR HR ↑ (8-10) 
HR variability ↓ (10) 

GSR ↑ (8, 9) 
EEG Power of alpha band ↓ (11, 12) 

P300 latency ↑ (13) 
 Respiration Rate ↑ (9) 
Performance-based  

 
Vehicle speed Average ↑ (9) ↓ (8) 

SD ↑ (9) ↓ (8) 
Steering wheel  Reversal rate ↑ (8) 

Subjective  
 NASA-TLX ↑ (1) 

 18 
It is widely acknowledged that no single measure alone can provide sufficient information to 19 

estimate cognitive load (9, 11). Indeed, multiple measures have been combined in previous research to 20 
estimate the cognitive load experienced by drivers. For example, Solovey et al. (14) reached 89% 21 
accuracy in classifying 2 levels of cognitive load (no-task vs. an auditory recall 2-back task) using driving 22 
performance, GSR, and HR data collected in an on-road study. Liang, Reyes (15) reached 81.1% accuracy 23 
in identifying 2 levels of cognitive load (no-task vs. an auditory stock ticker task) using driving 24 
performance and eye-tracking data collected in a simulator study. In general, driving performance 25 
measures used in these earlier studies (e.g., speed and lane position) are highly sensitive to traffic 26 
conditions and may require additional driving context-assessment to improve their utility in driver state 27 
detection (16). This need for additional information can be a barrier for the use of driving performance 28 
measures in driver state detection.   29 

The fusion of eye-tracking and physiological measures seems to be more promising for real-time 30 
assessment of driver cognitive load, yet research is lacking in this area. Eye-tracking measures have been 31 
adopted in a number of production cars for detecting visual distraction (e.g., 17) and drowsiness (e.g., 18). 32 
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They have not yet been adopted for cognitive load detection, although pupil diameter (e.g., 2, 6), blink 1 
rate (e.g., 7), and gaze dispersion (e.g., 7, 8) are known to be sensitive to cognitive load variation. 2 
Physiological measures, such as HR (e.g., 8, 9, 10) and GSR (e.g., 8, 9), also react well to variations in 3 
cognitive demand and can now be collected through cost-effective and non-intrusive sensors, e.g., in 4 
wearable devices such as the Apple Watch (19) and FitBit (20). Thus, combining eye-tracking with HR 5 
and GSR data is now a feasible solution for in-car applications, yet, it is unknown what level of 6 
performance enhancement this combination may provide in driver cognitive load detection.  7 

Using a dataset collected in a driving simulator study, this paper investigates the benefits of 8 
fusing eye-tracking and physiological data for driver cognitive load classification. It is hypothesized that 9 
increasing the number of features in the dataset by fusing different measure types would improve 10 
classification performance. In the simulator study, three levels of cognitive load (no external load, 1-back 11 
task, and 2-back task) were imposed by an audio-verbal cognitive task, the modified n-back task (21), 12 
while participants drove through an urban environment. A variety of machine learning methods used in 13 
earlier studies were explored on this three-class driver state estimation problem, including k-nearest 14 
neighbor (KNN, e.g., 14), support vector machine (SVM, e.g., 22), feedforward neural network (FNN, 15 
e.g., 14), recurrent neural network (RNN, e.g., 23), and random forest (RF, e.g., 24). The models were 16 
built and compared using the following measures to investigate the benefits of fusing eye-tracking and 17 
different physiological data (in particular, HR and GSR):  18 

• eye-tracking data only, including eye closure (i.e., fraction of the iris covered by the upper and 19 
lower eye lid), pupil diameter, and gaze rotation angle (i.e., the orientation of the eye gaze with 20 
respect to the world coordinate system); 21 

• physiological data only, including HR and GSR; 22 
• eye-tracking data and HR combined; 23 
• eye-tracking data and GSR combined; 24 
• eye-tracking data, HR, and GSR combined. 25 

 26 
DATA SOURCE 27 

The data utilized in this paper was collected from 33 participants in a driving simulator study 28 
originally reported in (21, 25), which investigated the effects of different levels of external cognitive 29 
demand on drivers’ physiological, eye-tracking, and driving performance. In a within subject design, 30 
participants completed three counterbalanced conditions (in three drives total): no external task, and two 31 
difficulty levels of an external cognitive task (i.e., a secondary task). Eye-tracking measures, including the 32 
level of eye closure, pupil diameter, and gaze rotation angle, as well as physiological measures, including 33 
Electrocardiography (ECG) and GSR, were collected. Below we provide an overview of the experimental 34 
methods but a more detailed description of the methods can be found in (21). He et al. (26) also utilized 35 
physiological measures from this dataset for a preliminary machine learning application, but only with 36 
relatively simple machine learning models and without using eye-tracking data.  37 

 38 
Participants 39 

Thirty-three drivers (18 males and 15 females), recruited through campus and online posts, 40 
completed this driving simulator study. Participants were required to drive at least several times per 41 
month, to hold a full driver’s license (G license in Ontario, Canada or equivalent) for at least 3 years, and 42 
to be under 35 years old (average age: 27.6; SD: 4.45). The compensation was C$12 per hour, and the 43 
participants were told that they could receive a bonus of up to C$14 based on their secondary task 44 
performance as an incentive for engaging in the secondary task. 45 

 46 
Apparatus 47 

The study was conducted on a NADS miniSimTM driving simulator (Figure 1a). This fixed-based 48 
simulator has three 42-inch screens, creating a 130o horizontal and 24o vertical field at a 48-inch viewing 49 
distance. The center screen displays the left and center parts of the windshield; the right screen displays 50 
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the rest of the windshield, the rear-view mirror, and the right-side window and mirror; while the left 1 
screen displays the left-side window and mirror. 2 

The eye-tracking information was collected at 60 Hz by using the faceLAB 5.0, a dashboard 3 
mounted eye-tracker by Seeing Machines. ECG was collected with three solid gel foam electrodes placed 4 
on participants’ chest; and GSR was collected with one solid gel foam electrode beneath the bare left foot 5 
and the other under the heel (Figure 1b). Both ECG and GSR sensors were from Becker Meditec and the 6 
data was collected at 240 Hz using the D-Lab software developed by Ergoneers. 7 

 8 

       9 
                                      (a)                                                           (b) 10 
Figure 1 Apparatus: (a) driving Simulator – NADS miniSim and faceLAB 5.0 eye-tracking system; 11 
(b) placement of ECG and GSR Sensors 12 
 13 
Experimental Tasks 14 

The secondary task used in this study was a modified version of an auditory-verbal n-back task 15 
widely used in driving research (e.g., 8, 9), and was validated to impose graded levels of cognitive load 16 
on drivers (21, 25). The modification was performed to minimize physiological signal interference due to 17 
speech. In each n-back task, participants listened to a pre-recorded series of 10 letters, separated by 18 
approximately 2.5-second intervals, for an overall duration of approximately 25 seconds. For the 1-back 19 
task (lower cognitive load), participants were asked to silently count the number of times two identical 20 
letters appeared back-to-back (e.g., PP). For the 2-back task (higher cognitive load), participants were 21 
asked to silently count the number of times two identical letters appeared in pairs separated by one letter 22 
in between (e.g., DTD). Participants were asked to verbally provide their answer at the end of each n-back 23 
task. Figure 2 offers examples of auditory input provided to participants with the target instances 24 
highlighted with different colors.  25 

 26 

   27 
                            (a)                                                           (b) 28 

Figure 2 Visualization of the modified n-back task: (a) example 1-back task, the correct answer is 29 
“1”; (b) example 2-back task, the correct answer is “2” 30 
 31 

The driving scenarios were designed to involve mainly operational driving, without tactical 32 
decisions (e.g., navigation or passing a vehicle). Participants were asked to follow a lead vehicle at a 33 
speed of 40 mph (around 64.4 km/h) and a comfortable headway on a 4-lane urban road. In addition to 34 
training drives, each participant completed three drives with different levels of the modified n-back task: 35 
baseline with no task, lower cognitive load with 1-back task, and higher cognitive load with 2-back task. 36 
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The order of these three taskload levels was counterbalanced across participants. For machine learning 1 
models presented in this paper, data from four n-back tasks (a series of 10 letters for each n-back task) per 2 
drive were utilized. Participants had completed another two n-back tasks in each drive, but these 3 
corresponded to lead vehicle braking event response, which could affect physiological measures and was 4 
deemed to be outside the scope of the current analysis. In each n-back drive, the participants spent 100 5 
seconds performing the four n-back tasks. This 100-second period for each n-back drive (i.e., 1-back and 6 
2-back) and a corresponding 100-second period for the no-task drive were used in model building, leading 7 
to 300 seconds of data per participant being used in the machine learning models.  8 

 9 
Procedures 10 

After verifying their eligibility, participants were asked to sign a consent form. All participants 11 
completed a practice drive that was identical to the route used in the three experimental drives. 12 
Participants were then provided written and oral instructions on the modified n-back task and practiced it 13 
without driving to ensure that they fully understood the secondary task. The eye-tracking system was then 14 
calibrated and the physiological sensors were placed on participants. Then, participants completed another 15 
practice drive while performing the secondary task. Participants went on to complete the three 16 
experimental drives (no-task, 1-back, and 2-back).  17 

 18 
DATA PROCESSING & MODEL TRAINING 19 

A three-class classification problem was pursued in our analysis: no-task vs. 1-back task vs. 2-20 
back task. We fitted KNN, SVM, FNN, RNN and RF models to different combinations of eye-tracking 21 
and physiological data. Overall, five different datasets were created as described in the section below. 22 
 23 
Signal Processing and Feature Extraction  24 

Table 2 summarizes our signal processing steps. In total, two physiological features were 25 
generated (HR and GSR) along with six eye-tracking features, including eye closure (EC) raw data, blink 26 
duration (BD), blink frequency (BF), pupil diameter (PD), eyeball rotation speed (eyeRS), and percentage 27 
of time at least 75% of iris is covered by eyelids (PERCLOS). These features were selected based on 28 
previous studies, which showed relationships between BF, PD, gaze dispersion and cognitive load, as 29 
summarized in Table 1. In place of SD of gaze position and periphery/mirror/instrument check rate 30 
reported in Table 1, we used eyeRS, which captures gaze dispersion and can be calculated independently 31 
of the driving scene (e.g., extracted through video of driver’s face only). Although no clear relationship 32 
has been found between BD and cognitive load (e.g., 27) and PERCLOS is primarily a measure of 33 
drowsiness (e.g., 18), we opted to include these features, as they can be readily available from eye closure 34 
data. All eye-tracking features were calculated for each eye and were then averaged across the two eyes.  35 

The measures that were originally sampled at a rate higher than 60 Hz (i.e., physiological 36 
measures) were down-sampled to 60 Hz in order have equal number of data points across all features. All 37 
features, except EC, GSR and PD, were calculated within a moving window. With a step size of 1/60 sec 38 
(i.e., 60 Hz), a window size of 10 sec was used for the eye-tracking features and a window size of 5 sec 39 
was used for HR. The ECG data is noisy and thus is commonly converted to inter-beat interval (ibi) data 40 
after R-peak detection (e.g., 14) and a running window procedure is necessary for this conversion. The 5-41 
second window was adopted for HR based on our preliminary work on the same data investigating 42 
cognitive load detection (26). A longer time window was deemed necessary for eye-tracking measures 43 
given that, for example, the average blink frequency was recorded to be around 10 times/minute in (28) 44 
and 24 times/min in our dataset. Thus, a 10-second window size was chosen to provide a long enough 45 
period for reliable eye-tracking data extraction, but not too long compared to the entire data extraction 46 
period for each level of cognitive load (100 seconds), although earlier research used a longer time 47 
window for PERCLOS (30 seconds in (29) and 1 minute in (30)). 48 



   
 

   
 

TABLE 2 Processing of Eye-Tracking and Physiological Measures to Obtain Machine Learning Features (i.e., Inputs) 1 

Type Measure Features Processing Steps 
Eye-tracking 
Sampling frequency: 
60 Hz  

Eye closure (left and right): 
The fraction of the iris 
covered by the upper and 
lower eye lids (0: fully open 
to 1: fully closed) 

4 features at 60 Hz: 
EC: eye closure raw data 
BD: blink duration (ms) 
BF: blink frequency 
(number/sec) 
PERCLOS: % of time at 
least 75% of iris is covered 
by upper and lower eyelids 

1) Identify frames with eye closure over 75% and frames with 
eye fully closed (for left and right eye separately) 
2) For each eye, calculate average BD and PERCLOS within a 
window size of 10 sec and step size of 1/60 sec (i.e., 60 Hz) 
3) For each eye, calculate the inter-blink intervals (intervals 
between two eye closures) and convert them into BF within a 
window size of 10 sec and step size of 1/60 sec 
4) Average each feature across the two eyes 

Pupil diameter (left and right) 1 feature at 60 Hz: 
PD: pupil diameter (mm) 

1) Calculate average PD across the two eyes 

 Gaze rotation angle (left and 
right): The orientation change 
of eyeball with respect to the 
world coordinate system, 
horizontally and vertically 
(rad) 

1 feature at 60 Hz: 
eyeRS: eyeball rotation 
speed (rad/sec) 

1) For each eye, calculate the eyeball rotation angle for each data 
point, i.e., the root-sum square of the horizontal and the vertical 
gaze rotation angles 
2) Calculate average eyeRS (sum of eyeball rotation angles over 
the 10 sec time window / 10 sec) with a window size of 10 sec 
and a step size of 1/60 sec 
3) Average the feature across the two eyes 

Physiological 
Sampling frequency: 
240 Hz 

ECG  1 feature at 60 Hz: 
HR (/min) 

1) Remove polynomial trend of raw ECG data using the polyval 
function in MATLAB and identify R-peaks of de-trended ECG 
using the findpeaks function (31) 
2) Calculate the average inter-beat interval (ibi) with a window 
size of 5 sec with a step size of 1/60 sec 
3) Convert ibi to HR 

GSR 
 

1 feature at 60 Hz: 
GSR (μSiemens) 

1) Calculate the average GSR every 1/60 sec (i.e., 60 Hz) 

 2 



   
 

   
 

All features were extracted at 60 Hz leading to 594,000 rows of data (sampling frequency of 60 1 
Hz * 25-seconds of data for each n-back task * 4 n-back tasks in each drive * 3 drives per participant * 33 2 
participants). We built five datasets to train and evaluate our machine learning models:  3 

• eyeSet: with eye-tracking features only;  4 
• physioSet: with HR and GSR;  5 
• eyeHRset: with eye-tracking features and HR;  6 
• eyeGSRset: with eye-tracking features and GSR;  7 
• eyePhysioSet: with all features.  8 

 9 
Data Partition 10 

As shown in Figure 3, a within-driver data partition approach was adopted, aiming to represent all 11 
participants in the training, validation, and test datasets. This data partition is selected over a between-12 
drivers data partition method (which allocates some participants to the test dataset and the remaining to 13 
the training dataset), as we do not have a large enough sample to capture individual differences across 14 
participants that would be required for a between-drivers data partition. Hyperparameters were tuned 15 
using a 10-fold cross-validation on 90% of the data from each cognitive load level from each participant. 16 
The last 10% of the data from each level of cognitive load from each participant was used as the test 17 
dataset. Ten different splits (see Figure 3) were generated for the 10-fold cross-validation, each for one 18 
fold, with the training conducted on 81% of the data and the validation on 9%. A random split of training 19 
and test datasets was not appropriate for this data given its temporal nature and the resulting correlation 20 
over time.  21 

 22 

	23 

Figure 3 Visualization of data splits for cross validation and testing. Note that the boxes are 24 
arranged to fall on a timeline for each cognitive load level and represent 10 sec of data (with 100 sec 25 
for each level of cognitive load and 300 sec in total for each participant). Each blue and orange box 26 
represents 9% (i.e., 540 consecutive samples) and each green box represents 10% (i.e., 600 27 
consecutive samples) of the total samples for each cognitive load level for each participant. 28 
 29 
Data Preparation 30 

Previous work has shown that individual differences among drivers influence the accuracy of 31 
driver state classification when eye-tracking and physiological data is used (32, 33). To minimize this 32 
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effect, each participant’s data was normalized with respect to their no-task responses in the training 1 
dataset as in Equation 1: 2 

𝑋!"#$% =
&!"#	( 𝑋)𝑛𝑜𝑡𝑎𝑠𝑘

*$%&"'(
                                                                                        (1) 3 

where, 𝑋"#$%& is the normalized feature value, 𝑋%'( is the raw feature value, and 𝑋")$*'"+ and 4 
𝑆)$*'"+ are the mean and standard deviation of that feature for the no-task condition in the training 5 
dataset. 6 

Further, each feature was also standardized using the scale of the features from the training 7 
dataset. Data standardization can control for scale differences across features and has been shown to 8 
improve the overall model accuracy in models such as KNN (34) and neural networks (35). Feature 9 
standardization was performed as in Equation 2: 10 

𝑋!"#$%& =
'')%!*	) '*&!"+$+$,

+&!"+$+$,
                                                                                    (2) 11 

where, 𝑋"#',&- is the standardized feature score, 𝑋"#$%& is the normalized feature score in 12 
Equation 1, and  𝑋"*%'.).)/ and 𝑆*%'.).)/ are the mean and the standard deviation of the feature in the 13 
training dataset. 14 

 15 
Model Training 16 

All machine learning models were built in Python. Modules from the Scikit-Learn library (36) 17 
were used to train and test SVM, FNN, KNN, and RF, whereas Keras (37) was used for RNN. The 18 
specific functions used are documented in Table 3. Hyperparameters were tuned through a grid-search 19 
approach using cross-validation (i.e., iterating over combinations of parameters and selecting those that 20 
resulted in the highest average accuracy on validation datasets). All models were trained on an Apple 21 
MacBook Pro (16-inch, 2019) with 2.6GHz 6-Core Intel i7 CPU and 16 GB 2667 MHz DDR4 RAM. 22 
Graphical Processing Units were not used in the training of the neural network models. 23 

Table 3 summarizes the candidate hyperparameters we tested and the best ones for each dataset 24 
and for each machine learning model. For KNN, the number of neighbours specifies the number of 25 
training data samples that can vote for the prediction of a given test data point. The weight function 26 
dictates how the voting samples are weighted. The distance metric dictates how the distances between the 27 
unknown sample and the voting samples are calculated. For SVM, a Radial Basis Function (RBF) kernel 28 
was used, as it yielded the best performance in most of the previous attempts in classifying levels of 29 
cognitive load with SVM (e.g., 15, 22, 26). Two additional hyperparameters were tuned for SVM. The 30 
regularization parameter defines “how far the influence of a single training example reaches” and the 31 
kernel coefficient defines “how far the influence of a single training example reaches” (36). For FNN, the 32 
activation function defines the (non-linear) output of the neuron in the network given a set of inputs, the 33 
learning rate controls how quickly the model is adapted to the problem and the L2 regularization rate 34 
decides how much the model is regularized to reduce the likelihood of overfitting.  35 

Traditional RNNs may suffer from the exploding or vanishing gradient problems, i.e., if the input 36 
sequence is too long, the RNN model might be unstable (38, 39). A Long Short Term Memory (LSTM) 37 
architecture solves this problem by adding three gates to the network (40, 41), and has been found to 38 
perform well in time-sequence classification (42). For this reason, we used LSTM in our RNN 39 
architecture. Further, the use of a sliding window has been shown to improve the performance of neural 40 
networks for time-series prediction (43). Thus, we explored several combinations of moving window size 41 
and step size. Our RNN consisted of two LSTM layers, each followed by a dropout layer, which prevents 42 
the model from overfitting by randomly setting the input units to 0. The dropout rate defines the 43 
frequency of the input units being ignored (i.e., set to 0). Then, 1 to 5 layers of fully-connected layers 44 
were used, each followed by a dropout layer as well. The last fully-connected layer outputs the 45 
classification of the estimated cognitive load into one of the three classes. For RF, if bootstrap is true, the 46 
whole dataset is used to build each tree; otherwise, bootstrap samples are used when building trees, which 47 
means a subset of the samples was used for the training of each tree. 48 
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 1 

TABLE 3: Overview of model fitting and hyperparameters explored. The best combinations of 2 
hyperparameters for each model are indicated with the following superscripts: eeyeSet, pphysioSet, 3 
eheyeHRset, egeyeGSRset, epeyePhysioSet. 4 

Model Functions and candidate hyperparameters 
KNN Function: KNeighborsClassifier from Scikit-Learn library 

Number of neighbours: 1, 2[e, p, eh, ep], 3, 4[eg], 5, 6, 7, 8, 9, 10 
Weight function: uniform, distance [e, p, eh, eg, ep] 
Distance metric: Euclidean, Manhattan [e, p, eh, eg, ep] 

SVM Function: svm.SVC from Scikit-Learn library 
Kernel (fixed): RBF [e, p, eh, eg, ep] 
Regularization parameter: 50.0[eh], 100.0[e, p, eg, ep]h 
Kernel coefficient:1[e, p, eh, eg, ep], 0.1 

FNN Function: MLPClassifier from Scikit-Learn library 
Architecture (number of neurons in each hidden layer): 2-8, 8-32, 16-64, 2-4-2, 8-16-8, 32-64-32, 2-
4-8-4, 8-16-32-16, 16-32-64-32[e, p, eh, eg, ep] 
Minibatch size (fixed): 50[e, p, eh, eg, ep] 
Activation function: tanh [e, p, eh, eg, ep], ReLU 
Learning rate: constant at 0.001 [eh, eg], adaptive (initialized at 0.001) [e, p, ep] 
Regularization rate for L2 penalty: 0.001, 0.01[e, p, eh, eg, ep] 

RNN Function: Sequential from Keras library 
Batch size: 32, 64[e, p, eh, eg, ep], 128 
Sliding window (window-overlap): 6-3, 8-4[e, p, eh, eg, ep], 10-5, 20-10   
Learning rate: 0.01, 0.001[e, p, ep], 0.0001 [eh, eg] 
Architecture: 

1st LSTM layer:  
• Dimensionality of the output space: 32-512 
• Activation function (fixed): tanh [e, p, eh, eg, ep] 
• Whether to return the last state in addition to the output: True [e, p, eh, eg, ep] 

Dropout layer:  
• Drop rate: 0-0.3 

2nd LSTM layer:  
• Dimensionality of output space: 32-512 
• Activation function (fixed): tanh [e, p, eh, eg, ep] 
• Whether to return the last state in addition to the output: False [e, p, eh, eg, ep] 

Dropout layer:  
• Input units to drop: optimal value between 0-0.3 

1st to nth (n: 1[p, eh], 2[eg], 3[ep], 4[e], 5) dense layer, each followed with one dropout layer: 
• Dimensionality of output space: 32-512 
• Activation function: ReLU, tanh, Sigmoid 
• Drop rate: 0-0.3 

Last dense layer:  
• Activation function (fixed): Softmax [e, p, eh, eg, ep] 

RF Function: RandomForestClassifier from Scikit-Learn library 
Number of trees in the forest: 5, 10, 20, 30, 50, 100 [e, p, eh, eg, ep] 
Function to measure the quality of a split (fixed): Gini impurity [e, p, eh, eg, ep] 
Bootstrap or not: True [e, p, eh, eg, ep], False 

 5 
 6 
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RESULTS 1 
Figure 4 shows the classification accuracy on the test dataset for each machine learning model for 2 

the different combinations of features. Figure 5 provides confusion matrices on the test dataset. The 3 
average accuracies on cross-validation were comparable to the test accuracies and thus are not reported; 4 
this indicates that overfitting or underfitting are unlikely to have occurred.  5 

 6 
 7 
 8 

 9 
Figure 4 Classification accuracies in identifying three levels of cognitive load on test dataset  10 
 11 

  It can be observed that RF generated the highest prediction accuracy (97.8%) when all eye-12 
tracking and physiological features were used (eyePhysioSet data). Although using physiological features 13 
alone (physioSet) generated worse prediction accuracy (1-15%) compared to using eye-tracking features 14 
alone (eyeSet), adding physiological features in addition to eye-tracking features increased the model 15 
prediction accuracies. Among the physiological features, GSR seems to have provided more predictive 16 
power compared to HR. When comparisons are made across machine learning models, it can be seen that 17 
the discrepancies between different models decreased with the expansion of the feature set. The confusion 18 
matrices indicate that different models may be good at identifying different levels of cognitive load, even 19 
if the models may be comparable in terms of their overall accuracy. For example, with all features 20 
utilized, RF was better at differentiating no task from 1-back task (i.e., lower level of cognitive load) 21 
compared to KNN, but KNN was better at differntiating 1-back task from 2-back task (i.e., higher level of 22 
cognitive load).  23 



   
 

   
 

 1 
Figure 5 Confusion matrices for classification performance on the test dataset 2 



   
 

   
 

DISCUSSION 1 
This paper revealed the potential for improving cognitive load estimation through combining eye-2 

tracking and physiological measures. Eye-tracking measures are being adopted in production vehicles for 3 
distraction (e.g., 17) and drowsiness (e.g., 18) detection, but also hold promise for cognitive load 4 
detection (e.g., 2, 6, 7). Further, physiological measures are also promising for cognitive load detection: 5 
earlier studies that used physiological predictors to classify drivers’ cognitive load reported classification 6 
accuracies of 85-96% (14, 22, 26, 44). However, not all physiological measures are suitable for driver 7 
state estimation due to the intrusiveness of associated sensors (e.g., Electroencephalography). Further, 8 
although the fusion of eye-tracking and physiological measures seems to be more promising for real-time 9 
assessment of driver cognitive load, research is lacking in this area. 10 

In this paper, two physiological measures that are available in consumer-grade wearable devices, 11 
i.e., HR and GSR, were fused with eye-tracking measures, leading to 97.8% accuracy with a random 12 
forest (RF) model in classifying three levels of cognitive load (no task, lower difficulty 1-back task, and 13 
higher difficulty 2-back task). This result is promising when compared with the accuracies reached in 14 
previous research that combined driving performance with eye-tracking measures (e.g., 81.1% in (15)), 15 
and also with the accuracies reached in previous research that combined driving performance measures 16 
with physiological measures (e.g., 89% in (14)), especially considering that our 3-class classification 17 
problem is more challenging than the 2-class problems tackled in these earlier studies. GSR contributed 18 
more to the performance of the models compared to HR: when HR was added to eye-tracking data, the 19 
model accuracies increased from 3.2% (with RF) to 17.9% (with SVM), whereas with HR, the increases 20 
ranged from 9.7% (with RF) to 29.3% (with SVM). Although adding both HR and GSR to eye-tracking 21 
data yielded the highest accuracies for most models, the benefit of adding HR on top of GSR was 22 
relatively small, with changes in model accuracies ranging from -1.2% (with RNN) to 5.2% (with SVM). 23 
Collecting and processing more features may come with monetary and computational costs, and if a 24 
choice is to be made, GSR may be preferred over HR.  25 
 Our findings reveal that, with the increased number of features, the advantage of using a specific 26 
machine learning model becomes less obvious. With only eye-tracking measures, RF yielded the highest 27 
accuracy (86.7%) and SVM the lowest (58.8%). When both eye-tracking and physiological measures 28 
were used, all models reached over 91% accuracy. It is possible that with more features, the classification 29 
problem became easy enough for most models to handle. At the same time, we also note that KNN, which 30 
yielded the second highest accuracy (97.2%) on the combined eye-tracking/physiological dataset, took the 31 
shortest to train with 7.6 seconds, and RF, which resulted in the highest accuracy (97.8%), took slightly 32 
longer with 61.6 seconds. The training time for FNN, RNN and SVM were two orders of magnitude 33 
longer (all over 5,000 seconds) than that of KNN and RF. Thus, even with the computation cost of model 34 
training considered, RF and KNN are preferred over other models for the cognitive load detection 35 
problem explored in our study. 36 

Although overall accuracies across models were comparable when all features were utilized, the 37 
confusion matrices reveal that different models may be good at identifying different levels of cognitive 38 
load. For example, when all features were utilized, RF reached the overall highest accuracy, but KNN 39 
performed better than RF in differentiating 2-back from 1-back. Thus, the choice of models may not be 40 
based solely on overall accuracies, but also on the specific purpose of the in-vehicle applications, for 41 
example, which level of cognitive load is most critical to differentiate from other levels for an alert to be 42 
issued. 43 
 Individual differences among drivers have been shown to impact the accuracy of driver state 44 
classification based on physiological data (32), and thus we used a normalization strategy, which would 45 
require the system to have prior data from each driver, or learn from the driver over time. This is a 46 
reasonable expectation but prior data may not always be available for each driver. Future research should 47 
utilize a larger sample with a more diverse set of drivers to test the generalization of our models by 48 
training the models based on a group of participants and predicting the cognitive load of a different group 49 
of participants (i.e., between-drivers data partition). It should however be noted that if model 50 
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training/testing is based on a between-drivers data partition, individual differences can have a significant 1 
impact on model performance. 2 

Further, although we utilized a validated secondary task to impose cognitive workload on our 3 
participants, the task is artificial and there is a need to study more the tasks that drivers normally perform 4 
in their vehicles (e.g., talking on a cellphone). Additionally, in this paper, we focused on physiological 5 
measures (i.e., HR and GSR) that can be collected through wearable devices, but our data came from a 6 
research-grade system utilized in a driving simulator study. Further, the eye-tracking measures were 7 
collected using an eye-tracker built for the laboratory environment. There are bound to be additional 8 
signal noise issues when these measures are collected through wearable devices and cameras, and in a real 9 
vehicle. Although our study provided evidence that HR and GSR have the potential to be fused with eye-10 
tracking data to improve driver cognitive load estimation, more research is needed to develop signal 11 
processing algorithms for relevant data collected through consumer-grade wearable devices in motion and 12 
through in-vehicle eye-tracking systems under varying lighting conditions. As in (45-47), there is indeed 13 
significant research activity to improve these devices and accompanying algorithms. Future work needs to 14 
be conducted to train the models based on larger sample size collected from real-world driving 15 
environment, instead of from driving simulator experiments, to improve the feasibility of the models. 16 
Finally, the time window sizes used for feature extraction may affect the performance of the models. 17 
Future research should explore different time window sizes appropriate for this application. 18 

In summary, physiological and eye-tracking features that can be collected through in-vehicle or 19 
wearable devices combined with the algorithms developed in our paper have the potential to support less 20 
intrusive driver state detection. Given that our approach excluded driving performance measures, it can 21 
also inform driver state detection for automated vehicles where driving performance data may not be 22 
indicative of driver state.  23 
 24 
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