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SHARING WITH NON-DRIVING TASKS IN AUTOMATED DRIVING 
 
 
 
 
Driver distraction is one of the leading causes of vehicle crashes. The introduction of higher levels of vehicle 
control automation is expected to alleviate the negative effects of distraction by delegating the driving task 
to automation, thus enabling drivers to engage in non-driving tasks more safely. However, before fully 
automated vehicles are realized, drivers are still expected to play a supervisory role and intervene with the 
driving task if necessary while potentially having more spare capacity for engaging in non-driving tasks. 
Traditional distraction mitigation perspectives need to be shifted for automated vehicles from mainly 
preventing the occurrence of non-driving tasks to dynamically coordinating time-sharing between driving 
and non-driving tasks. In this paper, we provide a revised and expanded taxonomy of driver distraction 
mitigation strategies, discuss how the different strategies can be used in an automated driving context, and 
propose directions for future research in supporting time-sharing in automated vehicles. 
 
 

INTRODUCTION 
 

Autonomous vehicles are advertised as an effective way 
to reduce travel time costs by allowing drivers to be 
productive while driving (Litman, 2018). However, before 
fully automated vehicles are realized, drivers will continue to 
play a role in the driving task: for example, SAE Level 2 and 
Level 3 (SAE International, 2014), the state-of-the-art vehicle 
automation technologies in the market, still require drivers to 
monitor the environment (SAE Level 2) and be ready to take 
over when necessary (SAE Levels 2 and 3). Although it is 
expected that delegating some parts of the driving task to 
automation would spare mental and physical resources, drivers 
are likely to use these spare resources to engage in non-driving 
tasks rather than utilizing them on the driving task (de Winter, 
Happee, Martens, & Stanton, 2014; He & Donmez, 2019). In 
general, engaging in non-driving tasks can lead to drivers 
getting out of the loop (Merat et al., 2018), losing both 
physical and cognitive control of the vehicle (Cunningham & 
Regan, 2018), and experiencing difficulty in regaining 
situation awareness when they have to take-over vehicle 
control (Louw et al., 2017; Zeeb, Buchner, & Schrauf, 2016). 
Simply trying to minimize driver engagement in non-driving 
tasks, a view adopted by most driver distraction mitigation 
research for non-automated vehicles, may not help solve these 
automated vehicle issues as drivers of automated vehicles 
have been shown to experience fatigue if they do not perform 
non-driving tasks (de Winter et al., 2014). With increasing 
automation levels, it can even be argued that resuming vehicle 
control may be an interruption to non-driving tasks. Thus, new 
approaches for supporting time-sharing between driving and 
non-driving tasks are needed for automated vehicles.  

Regan, Lee, & Young (2008, p. 34) defined driver 
distraction as the “diversion of attention away from activities 
critical for safe driving toward a competing activity”. This 
definition was created for non-automated vehicles but still fits 
well into the context of automated vehicles. However, 
“activities critical to safe driving” are different for automated 
vehicles as the role of the driver changes with the introduction 

of control automation. For example, while manually 
controlling the vehicle is less critical in automated vehicles 
(the automation controls the vehicle most of the time), 
monitoring the status of the automation would be an additional 
activity critical to safe driving under SAE Level 2 vehicle 
automation. Given that “activities critical for safe driving” are 
different in automated vehicles, the strategies that have been 
developed to mitigate distraction in non-automated vehicles, 
such as locking out drivers from non-driving tasks or 
providing feedback about driving performance and distraction 
levels, have to be revised for automated vehicles. These 
revised strategies should not only consider the demands of 
driving/non-driving tasks but also the state of the automation.   

Designing techniques to support time-sharing and 
keeping the driver in the loop in automated vehicles is an 
emerging research area. In this paper, we propose a taxonomy 
to describe strategies for supporting time-sharing in automated 
driving in order to help guide this rapidly expanding research 
area. We consider the levels of automation where drivers have 
to take over control of the vehicle (SAE Levels 2 to 4) and 
present examples from recent studies where available. We also 
discuss the potential advantages and disadvantages of different 
strategies and identify directions for future research. 
 
SUPPORTING TIME-SHARING WITH NON-DRIVING 
TASKS IN AUTOMATED DRIVING: A TAXONOMY 

 
 Our proposed taxonomy of strategies that support time-
sharing in automated vehicles (Table 1) is based on a 
taxonomy of driver distraction mitigation strategies proposed 
by Donmez, Boyle, & Lee (2008, 2003). Donmez et al. (2003) 
proposed three dimensions, which we also adopted: the degree 
of the intervention (framed in the original taxonomy as level of 
automation), the source of the strategy’s initiation (driver or 
automation), and the type of task targeted by the strategy 
(driving or non-driving related). The strategies proposed 
within this original taxonomy mainly targeted pre-drive or 
driving periods. 



Table 1: Taxonomy of strategies for supporting time-sharing in automated driving 
 Driving-Related Non-Driving-Related 
 Automation-initiated Driver-initiated Automation-initiated Driver-initiated 

Pre-Drive/  
Drive 

High intervention Intervening Delegating Locking & interrupting Controls presetting 
Moderate intervention Warning Warning tailoring Prioritizing & filtering Place keeping 
Low intervention Informing Perception augmenting Advising Demand minimizing 

Post-Drive (Retrospective) Risk evaluation Engagement assessment 
Cumulative Education Informing social norms 

 Donmez et al. (2008) later introduced the idea of strategy 
timing and its relation to strategy effectiveness; they proposed 
that strategies can focus on changing driver behavior through 
presenting feedback post-drive as well as cumulatively over 
time. We have also incorporated this timing view to our 
taxonomy. Overall, the taxonomy that we are proposing in this 
paper is based on the views of Donmez et al. (2008, 2003) and 
on a comprehensive review of research conducted to date on 
non-driving task engagement in and interface design for 
automated vehicles. 
 
Pre-drive/Drive Strategies: Driving-Related, Automation-
Initiated 
 

Automation-initiated strategies that are driving related 
focus on driving safety and aim to enhance safety by 
informing or warning the driver, or by intervening when the 
driver is unable to perform the activities that they need to 
perform that are critical to safe driving.  

Intervening may stop the vehicle or increase the level of 
vehicle automation when it is detected (e.g. using eye tracking 
systems or steering wheel sensors) that drivers are engaged in 
non-driving tasks at a level that degrades their monitoring or 
take-over ability. For example, when using the “ProPILOT 
Assist” feature in the 2018 Nissan Leaf, if drivers keep their 
hands off the steering wheel for an extended period and ignore 
warnings, the vehicle stops (Nissan, 2017). A simulator study 
by Benloucif, Sentouh, Floris, Simon, and Popieul (2017) 
showed that an adaptive lane keeping assist system that 
changes the control authority between the automation and the 
driver based on driver state (fatigue or distraction) resulted in 
better steering performance in the presence of a secondary 
task, compared to a non-adaptive lane-keeping assist system 
and to no assistance. While this study explored the benefits of 
adaptive automation in SAE Level 1, similar strategies can 
also be investigated in higher SAE Levels. However, although 
some form of intervening may be necessary to ensure safety, 
this strategy may also cause mode confusion (Sarter & Woods, 
1995) if drivers fail to notice a change in the automation level. 

Warning can alert the driver to changes in roadway 
demands, automation malfunctions, and when the limits of 
automation are exceeded. Takeover requests (TORs) are 
warnings that indicate an upcoming handover of vehicle 
control to the driver (Gold, Damböck, Lorenz, & Bengler, 
2013) and are investigated widely in automated driving 
research. Different design parameters for TORs have been 
studied, such as their modality (Bazilinskyy, Petermeijer, 
Petrovych, Dodou, & de Winter, 2018), timing (Gold et al., 
2013), and location (Politis, Brewster, & Pollick, 2017). 
However, TORs only provide information about the 
automation and road state in a discrete manner when a 

warning threshold is reached, and hence drivers’ situational 
awareness may be too low to properly takeover vehicle control 
in the limited time available for them to do so. TORs may also 
lead to over-reliance on the automation if they are highly 
reliable, or lead to “cry-wolf effects” (Breznitz, 1984) if the 
rate of false alarms is high. Further research is needed to 
improve the design of TORs or combine TORs with other 
strategies (e.g. informing) to support time-sharing in 
automated vehicles. 

Informing provides a continual stream of information to 
the driver about the state of the road and the automation (e.g. 
reliability, capability), which can help keep drivers in the loop 
so that they can react faster when a takeover is needed, and 
contribute to improving their mental model of the automation. 
Continual information about automation may also help reduce 
mode confusion and improve driver understanding of TORs 
(Naujoks, Purucker, et al., 2017). Similar to warning design, 
the modality, timing, and location of the provided information 
are factors that need to be investigated. Information should be 
presented in a manner that prevents information overload; 
otherwise, the information itself may become a source of 
distraction (Naujoks, Forster, Wiedemann, & Neukum, 2017). 
 
Pre-drive/Drive Strategies: Driving-Related, Driver-
Initiated 
 

Driver-initiated strategies that are driving related 
facilitate time-sharing by having the driver activate or adjust 
system controls that relate to the driving task.  

Delegating involves drivers delegating vehicle control to 
the automation by increasing the level of automation in order 
to engage in non-driving tasks. However, the motivation for 
delegating would highly depend on drivers’ trust and reliance 
on automation, as well as their understanding of their own 
limits.  

Warning tailoring involves drivers adjusting features of 
the automation to improve their ability to time-share between 
driving and non-driving tasks. For example, if drivers intend 
to perform a particularly engaging non-driving task (e.g. a 
conference call), they might choose to receive warnings issued 
by the system (e.g. TORs) further in advance or in a more 
salient manner (e.g. higher volume). Drivers may also choose 
to tailor the sensitivity of warnings, for example, by changing 
the time to collision threshold that would trigger a TOR. 
However, drivers’ choices might not be optimal and previous 
experience with warning systems may bias their decisions. 

Perception augmenting describes strategies where 
information about the environment and the automation is 
provided upon the driver’s request. For example, drivers can 
have the option to display information about the driving task 
or the status of automation while they are performing a non-



driving task, and not display this information when they are 
focusing on driving. However, the effectiveness of such 
strategies would depend on drivers’ mental models of the 
automation and of relevant informational systems. 
  
Pre-drive/Drive Strategies: Non-Driving-Related, 
Automation-Initiated 
 

The strategies in this category aim to modulate drivers’ 
non-driving task engagement automatically based on the 
demands of the driving task and the driver’s state. 

Locking and interrupting completely locks out the driver 
from non-driving tasks or interrupts non-driving tasks when 
drivers need to redirect their attention to the driving task. For 
example, the system can block or interrupt non-driving tasks 
in highly uncertain driving environments (e.g. city driving, 
inclement weather). Although locking and interrupting 
strategies can improve driving performance in non-automated 
vehicles (Donmez, Boyle, & Lee, 2006; Jung, Kaß, Zapf, & 
Hecht, 2019), they can suffer from low user acceptance. These 
strategies might be even less accepted in automated vehicles. 

Prioritizing and filtering limits the number of non-
driving related system functions that the driver can interact 
with. For example, if an increase in road demand is detected, 
the automation can allow the user to receive urgent text 
messages on their phone but filter out the rest. With increasing 
vehicle control automation, drivers’ acceptance of this strategy 
may also be questionable. 

Advising provides feedback to the drivers regarding their 
engagement in non-driving tasks, which can be modulated 
according to road demands. Such strategies have been 
investigated in non-automated vehicles and have been found 
to be effective (Donmez et al., 2006; Merrikhpour & Donmez, 
2017). This type of feedback might be particularly useful for 
drivers to assess their own distraction levels and utilize driver-
initiated strategies, such as warning tailoring, more effectively 
(e.g. drivers may choose to tailor the sensitivity of TOR 
warnings if they are advised that they might be experiencing 
high levels of non-driving task demands). This type of 
feedback might also lead to annoyance if drivers do not find it 
useful, or to information overload depending on how it is 
presented to the driver (Donmez et al., 2003). Further, in 
critical takeover situations, merely providing feedback about 
drivers’ level of engagement with non-driving tasks would not 
be sufficient to help drivers return to the control loop. 
 
Pre-drive/Drive Strategies: Non-Driving-Related, Driver-
Initiated 
 

This category includes strategies that facilitate drivers in 
adjusting their non-driving task engagement.  

Controls presetting involves allowing the drivers to 
choose which non-driving related system function would be 
active during an entire drive or a portion of a drive. For 
example, a cellphone can allow users to activate a “Do Not 
Disturb” mode. Further, controls presetting may also be 
considered as an option that allows drivers to select what kind 
of non-driving tasks would trigger lockouts or warnings. 
However, the adoption of this category of strategies would 

depend on drivers’ motivations and understanding of 
automation and their own capabilities. 

Place keeping minimizes the demand of switching 
between non-driving and driving tasks by providing the driver 
the tools to place “bookmarks” or “cues for resumption” when 
their non-driving task is interrupted by the driving task. 
Extensive research available on interruption management in a 
variety of domains (e.g. Altmann & Trafton, 2002; Borojeni, 
Ali, Heuten, & Boll, 2016) can inform the design of place 
keeping strategies for automated driving.  

Demand minimizing involves providing the driver with 
alternative methods for non-driving task engagement. 
Depending on the driving demands, drivers may choose to 
switch the method of interaction that they utilize. Engagement 
in an auditory-vocal non-driving task was found to improve 
takeover performance compared to a visual-manual one 
(Wandtner, Schömig, & Schmidt, 2018). Thus, drivers may 
choose to use voice-control over visual-manual interactions 
when they have to allocate more visual attention to the road 
and to the automation. The adoption of this strategy also 
depends on drivers’ motivations, but also their understanding 
of the demands associated with the use of different interfaces.   
 
Post-drive (Retrospective) Strategies 
 

Post-drive or retrospective strategies provide feedback to 
drivers about their non-driving and driving task performance 
as well as how well they manage their attention allocation 
between the two.  
 Risk evaluation provides post-drive information on 
driving-related performance in automated vehicles, including 
actions in critical situations and takeover scenarios, such as 
takeover quality and response time, as well as monitoring 
performance, such as the amount of visual attention allocated 
to the road or automation-relevant displays. Post-drive 
feedback can be provided within the vehicle or through online 
or mobile applications that the drivers can easily access. The 
aim of this type of feedback is to help drivers form a better 
mental model of automation, and in turn calibrate their trust 
and reliance on automation in future drives.  

Engagement assessment provides post-drive information 
on drivers’ engagement in non-driving tasks. Post-drive 
feedback on distraction engagement was found to be effective 
in mitigating distracted driving in non-automated vehicles 
(Donmez, Boyle, & Lee, 2008b), and was suggested to be 
more accepted by drivers compared to real-time feedback 
(Roberts, Ghazizadeh, & Lee, 2012).  

In practice, risk evaluation and engagement assessment 
can be integrated to help drivers learn better timesharing skills 
with non-driving tasks in automated driving. For example, 
Donmez et al. (2008b) found in a simulator study for non-
automated vehicles that post-drive feedback on distraction 
engagement and driving performance resulted in faster 
responses to lead vehicle braking events and shorter glances to 
an in-vehicle display compared to no feedback. Given that 
post-drive strategies are by definition not implemented during 
a drive, they cannot help at the time that the driver fails to 
properly split his/her attention between driving and non-
driving tasks. Further, their effect heavily depends on drivers’ 



initiative to access feedback. To encourage engagement with 
feedback, post-drive feedback can be reinforced with other 
strategies, such as gamification (Xie, Chen, & Donmez, 2016) 
or insurance-based incentives.  

 
Cumulative Strategies 
 

Cumulative strategies aim to continually shape drivers’ 
behaviours, mental models, and automation reliance, through 
education and social normative interventions. 

Education aims to influence how drivers engage in non-
driving tasks by helping them develop appropriate mental 
models about automation (Beggiato & Krems, 2013), through 
informing them of automation capabilities and limits or 
exposing them to automation failures in simulated settings, 
thus calibrating their trust in and reliance on automation. 
Either over-trust or under-trust may have negative effects on 
operators’ reliance on automated systems (Lee & See, 2004): 
the former can result in over-reliance on automation and 
inappropriate non-driving task engagement, and the latter may 
lead to decreased use of automation when it can actually help. 
Thus, well-calibrated trust in vehicle automation can reduce 
automation-induced complacency (Parasuraman, Molloy, & 
Singh, 1993), and insufficient monitoring of automation. 
Bahner, Hüper, and Manzey (2008) found that exposing 
operators to automation failures during training can decrease 
automation complacency in process control. The benefits of 
training have also been observed in the automated driving 
domain: Payre, Cestac, Dang, Vienne, and Delhomme (2017) 
found that drivers who received extensive training on vehicle 
automation showed improved response times when 
automation failed, but fewer glances to the road, suggesting a 
more optimized trust in automation, compared to drivers who 
received a more restricted training. However, despite a 
preliminary proposal by the National Highway Traffic Safety 
Administration (2013), there are currently no standards for 
educating automated vehicle drivers. 

Informing social norms refers to informing drivers of 
socially acceptable behaviors about non-driving task 
engagement in automated vehicles. Given that automated 
vehicles are not widely used yet, these norms have not yet 
been established. Through policy design, enforcement, and 
feedback, these norms can be shaped in a controlled and an 
evidence-driven manner. In general, social norms significantly 
affect how people behave on the road, but not all drivers are 
affected in the same way. Chen and Donmez (2016) have 
shown that younger drivers’ (ages 18-30) self-reported 
distraction engagement behaviors are more strongly related to 
perceived social norms than those who are 30+. Merrikhpour 
and Donmez (2017) demonstrated that revealing their parents’ 
driver distraction engagement behaviors (i.e. descriptive 
norms) to teenagers leads to a decrease in teenagers’ 
distraction engagement.  

 
DISCUSSION 

 
The changing role of drivers in automated vehicles 

requires new perspectives on driver distraction and distraction 
mitigation. A major change lies in the attitude toward non-

driving tasks: with increasing vehicle automation, it may be 
safer and more acceptable to engage with non-driving tasks, 
making strategies that aim to block non-driving activities less 
accepted. This change brings about a basic, but essential 
question: what would be considered as “safe distraction” in 
automated vehicles? To the best of our knowledge, so far, 
there are no commonly accepted standards to assess the risks 
associated with different driving behaviors in automated 
vehicles, nor metrics to define the appropriateness of non-
driving task engagement under specific conditions. For 
example, two seconds is the threshold adopted by government 
agencies for risky off-road glances (National Highway Traffic 
Safety Administration, 2013b, 2016), but this threshold is 
based on research conducted in non-automated vehicles 
(Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006). No 
similar threshold has been set for automated vehicles. The lack 
of a threshold that identifies risky enagement in non-driving 
tasks in automated vehicles makes implementing the 
automation-initiated, post-drive, and cumulative strategies 
presented in this paper difficult, as many of them depend on 
an understanding of the relationship between driver behaviors 
and risk levels in automated vehicles. Future research efforts, 
such as naturalistic studies (e.g. Dingus et al. 2006), are 
needed to systematically assess the riskiness of specific 
behaviors that can be observed in automated vehicles. 

Driver-initiated strategies in general rely on drivers’ 
awareness of potentially risky engagements in non-driving 
tasks. This awareness can be generated through informing 
social norms and through regulation and education. But before 
these interventions can be put in place, the riskiness of 
different non-driving task engagement behaviors should be 
assessed. A lack of proper understanding of these risks may 
lead drivers to underestimate risks and overly rely on 
automation. This can render driver-initiated strategies less 
effective. Future research needs to provide guidance on 
liability, safety, and public acceptance of non-driving task 
engagement in automated vehicles. 
 Another challenge lies in the feasibility of driver state 
detection technologies in automated vehicles. As drivers no 
longer need to continuously control the vehicle or put their 
hands on the steering wheel, distraction measures that rely on 
driving performance would be less effective in automated 
vehicles. Non-invasive techniques like eye tracking may play 
a more important role in driver state detection in automated 
vehicles, but more development is needed to improve the 
accuracy of such techniques. 

As mentioned in several places in the description of 
different strategies, some strategies can become more effective 
if combined with others. Further, strategies may need to be 
combined to support different phases of vehicle operation. For 
example, providing both TORs (warning) and continual 
information (informing) can help drivers better allocate their 
attention in both normal monitoring (via informing) and 
critical takeover (via warning) situations. 

Lastly, although driving-related strategies for supporting 
time-sharing in automated driving has become an active area 
of research, more research is still needed. The taxonomy in 
general highlights areas of future research. There are no 
studies on how education and informing social norms can be 



leveraged to calibrate drivers’ trust and reliance on automated 
vehicles and to support time-sharing between non-driving and 
driving tasks. Also, there is little focus on using non-driving-
related strategies in automated vehicles. Future studies should 
explore the theoretical and practical issues for these areas. 
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