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Abstract 
 
This chapter focuses on data collection methods for empirical data collection in the mixed traf-
fic domain, including driving simulation research, field studies, naturalistic driving research, 
and observational research. We will discuss the pros and cons of the methods and the basic 
steps for data preparation. Examples of the research with the above-mentioned approaches in 
the mixed traffic domain will also be discussed.  
 
2.1 Why Empirical Research 
 
The survey-based approach has been widely adopted for mixed traffic research in the past few 
years and has shown a great advantage in understanding users’ concerns and acceptance of 
autonomous driving before the technology matures. For example, T. Zhang et al., (2020) ex-
plored the factors influencing users’ acceptance of autonomous vehicles (AVs) through a sur-
vey study including 647 Chinese drivers. Similarly, based on a survey study with 451 valid 
samples, Wu et al., (2023) found that the level of automation can directly or indirectly (through 
trust) affect public acceptance of AV while demographic characteristics of respondents can 
only indirectly affect public acceptance of AV through trust. However, the survey data can 
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hardly facilitate an understanding of the micro and meso behaviors for several reasons. First, 
up until now, fully autonomous vehicles (AVs) have not been officially commercialized and a 
few people have experienced or even witnessed fully AVs running on public roads. Thus, their 
attitudes towards AVs were mostly based on their limited knowledge about AVs and thus their 
attitudes might be biased in such situations (Janatabadi & Ermagun, 2022). Second, data-driven, 
learning-based, or even model-based research all rely on users’ micro and meso behaviors in 
mixed traffic, which cannot be captured in survey studies. Thus, collecting empirical data in 
mixed traffic is vital for the optimization of AV control algorithms and mixed traffic manage-
ment. In this Chapter, we will mainly review the research that adopted empirical approaches, 
i.e., an approach that gains knowledge or obtains empirical evidence through direct and indirect 
observation or experience. Specifically, we will discuss four commonly used approaches in 
driving behavioral research, including driving simulation research, field studies, naturalistic 
driving research, and observational research. We will briefly discuss the pros and cons of the 
approaches, introduce the basic procedures for conducting research with these approaches, and 
discuss the findings generated from research adopting these research methods. 
 
2.2 Types of Empirical Data Collection Methods Adopted for Mixed Traffic Re-
search 
 

A. Driving Simulation Approach 

(1) Driving Simulator Studies 

The driving simulation is the most widely adopted approach in the driving behavior research 
domain. In driving simulator studies for mixed traffic, experimenters can design the traffic 
scenarios and have participants act as either drivers or other road agents (e.g., pedestrians or 
cyclists) in the scenarios. Given that AVs can be easily simulated in the simulator, drivers’ 
responses to the AVs in mixed traffic can be readily captured at a relatively low cost in a well-
controlled environment. For example, with the driving simulator, all participants in a study can 
experience the same scenarios and the experimenters can easily control the order of the exper-
imental conditions, which is especially beneficial for isolating the impacts from the factors of 
interest. The highly risky scenarios or tasks can also be tested in driving simulators. However, 
the pros of the driving simulator may also bring cons. For example, to isolate the influential 
factors in a driving simulator experiment, the complexity and thus the reality of the scenarios 
might be compromised. The lack of real risk and adverse consequences in driving simulator 
experiments may also bias users’ behaviors and raise questions on the validity of the experi-
ment outcomes, especially when quantitative data is needed.  
 

(2) Types of Driving Simulators 

The validity of the driving simulator studies highly depends on the fidelity of the simulator. 
Though no strict standards define the level of fidelity of a driving simulator and previous re-
search usually framed their simulators as low-, medium-, and high-fidelity ones. In general, 
this categorization is based on the hardware of the system, including the degrees of freedom 
(DoF), the cabin fidelity, and the display systems. For example, a computer system without 
motion functions (i.e., fixed-base) and non-cabin setup is usually considered a low-fidelity one 
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(Figure 2.2.1a). The fixed system, or the system with low DoF (i.e., ≤3) and with a cabin-like 
setup can be considered as a medium one (Figure 2.2.1b). While the high-fidelity simulators 
usually have a high DoF (≥6) motion platform, over 180-degree view angle, and at least a 
quarter-cabin (Figure 2.2.1c). However, the fidelity, by definition, should be more than hard-
ware-related and can also be related to the simulation software. For example, in a train simula-
tor study, (Olsson, 2023) found that the driving performance of train drivers in physically low-
fidelity but functionally high-fidelity simulators is comparable to real train driving performance. 
Functional fidelity, however, is rarely mentioned in the driving research, potentially because 
functions related to the specific research purposes usually work well, and hence can be regarded 
as with high fidelity in most cases; while the functions non-related to the specific research are 
either well-controlled (e.g., some driving simulators cannot turn the steering when lane center-
ing control works) or not being used in the research. Table 2.2.1 summarizes the description of 
the simulators in some of the mixed-traffic-related research. 
 
Table 2.2.1 Descriptions of the simulators used in mixed-traffic-related research up to 2023 
Research Description of the simulator Self-identified 

level of fidelity 
Manual drivers’ experience and 
driving behavior in repeated in-
teractions with automated Level 
3 vehicles in mixed traffic on the 
highway (Stange et al., 2022a) 

“The driving simulation was pro-
grammed using SILAB 6.0 and con-
sists of a physical mock-up seat box 
with driver and passenger seats. The 
three LCD projectors (1920 × 1080 
pixels each) projected the scenery 
onto an array of three screens (2 m × 
2 m each) covering a field of view of 
180°”  

Medium-fidel-
ity simulator 

Safety at first sight? – Manual 
drivers’ experience and driving 
behavior at first contact with 
Level 3 vehicles in mixed traffic 
on the highway (Stange et al., 
2022b) 
The impact of expectations about 
automated and manual vehicles 
on drivers’ behavior: Insights 
from a mixed traffic driving sim-
ulator study (Miller et al., 2022) 

“Consisted of a vehicle mockup with 
an adjustable seat, FanaTech steering 
wheel, and pedals with force feed-
back…Run with SILAB 6.5 on an 
RTX3070 PC and three 55-inch 4K 
displays with a field of view of about 
160 degrees” 

Not mentioned 

Driver-automated vehicle inter-
action in mixed traffic: Types of 
interaction and drivers’ driving 
Styles (Ma & Zhang, 2024)  

“Each simulator consisted of a vehicle 
mockup with an adjustable seat, 
FanaTech steering wheel, and pedals 
with force feedback ... The simulation 
was run with SILAB 6.5 on an 
RTX3070 PC and three 55-inch 4K 
displays with a field of view of about 
160 degrees.”  

Not mentioned 

Effects of marking automated ve-
hicles on human drivers on high-
ways (Fuest et al., 2020) 

“The basis of the static driving simu-
lator was a BMW 6 series mockup. A 
6-channel projection system provided 

Medium-fidel-
ity simulator 
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a realistic driving environment, with a 
refresh rate of 60 Hz. Three projectors 
were used for the 180° front view, and 
three projectors for the rear view (side 
and rear mirrors). We used the driving 
simulation software SILAB 6.5 of the 
Würzburg Institute for Traffic Sci-
ences GmbH [29] and logged the 
driving data with 240 Hz. A 6-channel 
noise simulation completed the driv-
ing simulation. A freely programma-
ble instrument cluster was used as hu-
man-machine interface. A tachometer 
and a speedometer were implemented 
for displaying driving-relevant infor-
mation in this study.” 

Risk modeling and quantification 
of a platoon in mixed traffic 
based on the mass-spring-damper 
model (Jiang et al., 2020) 

 “mainly includes a Logitech G29 ve-
hicle controller (steering wheel, pe-
dal, and gear lever) and two sorts of 
simulation software (PreScan and 
Matlab/Simulink). ” 

Not mentioned 

Driver behavior at a freeway 
merge to mixed traffic of conven-
tional and connected autonomous 
vehicles (Chityala et al., 2020) 

“DriveSafety Model CDS-250 Driv-
ing Simulato. the drivers sit in a par-
tial cab based on a Ford Focus sedan. 
the simulator consists of various com-
puting units, with most on the auto-
motive frame containing the sedan, 
and a separate station for authoring 
scenarios for the simulations.”	

Not mentioned 

Effect of cognitive distraction on 
physiological measures and driv-
ing performance in traditional 
and mixed traffic environments 
(Hua et al., 2021) 

“The driving environment was estab-
lished using the simulation software 
UC-win/Road and displayed on three 
32-in LED displays. The horizontal 
viewing angle of the scenario display 
system was 120°, The sampling fre-
quency was 100 Hz.” 

Low-fidelity 
simulator 

Learning in mixed traffic: Driv-
ers’ adaptation to ambiguous 
communication depending on 
their expectations toward auto-
mated and manual vehicles (Mil-
ler et al., 2023) 

“a vehicle mockup featuring an ad-
justable seat, force-feedback racing 
wheel (FanaTec Base V2), and pedals 
(Fanatec CSL Elite). 17-inch 
touchscreen mounted in the position 
of the vehicle’s center console. vehi-
cle’s front view was simulated on 
three 55-inch 4K UHD LED TVs, 
which were placed in front of the 
mockup, and created a driver’s view 

Medium-fidel-
ity simulator 
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of around 120 degrees.” 
Cooperative driving in mixed 
traffic of manned and unmanned 
vehicles based on human driving 
behavior understanding (J. Lu et 
al., 2023) 

“The driving simulator has 3 con-
nected monitors for in-vehicle view, 
an extra monitor for control and data 
display, and a Logitech G290 driving 
force suit (a steering wheel, pedals, 
and a shifter).” 

Not mentioned 

Development of a research 
testbed for cooperative driving in 
mixed traffic of human-driven 
and autonomous vehicles (J. Lu 
et al., 2022) 
The effect of visual advanced 
driver assistance systems on a 
following human driver in a 
mixed-traffic condition (Arian-
syah et al., 2023) 

“The simulator consisted of three 
screens combined providing 36 de-
grees and 175 degrees on the vertical 
and horizontal field of view (FoV), re-
spectively. It was also equipped with 
the steering wheel, pedals, and adjust-
able driver seat, while the control of 
the vehicle was implemented with au-
tomatic transmission.” 

Low-fidelity 
simulator 

 

    
                  (a)                                          (b)                                               (c) 
Figure 2.2.1. Driving simulation systems at the Hong Kong University of Science and Tech-
nology (Guangzhou): a) low-fidelity simulator; b) medium-fidelity simulator; c) high-fidelity 
simulator. 
 
In addition to research with a single driving simulator, in recent years, to better understand 
users’ behaviors in mixed traffic, researchers also started to conduct research with multiple 
driving simulators, or the combination of driving simulators and walking simulators. For ex-
ample, Kalantari et al., (2023) replicated vehicle-pedestrian interaction in a safe and controlla-
ble virtual environment (32 pairs, one driver and one pedestrian interacting with each other in 
different scenarios). The results show that kinematic cues play a greater role than psychological 
characteristics such as sensory seeking and social value orientation in determining who passes 
an unmarked intersection first. In Miller et al., (2022), multi-agent simulators were also used 
to investigate how the role of expectations shapes drivers’ reactions to AVs and human-driven 
vehicles and found that human driving behavior can be improved when AVs match one’s ex-
pectations. These types of research can provide insights into the more complex gaming pro-
cesses in human-AV or AV-pedestrian interactions. 
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B. Field Studies and On-Road Studies 

Given that the relatively low validity of the driving simulation might be a concern for specific 
research questions, field studies can be an alternative option, which has relatively low risk (as 
compared to experiments on open public roads) and high validity but still reserves some levels 
of experiment controllability. In general, the field studies are conducted in closed tracks or test 
fields without public traffic. In the experiment, participants are usually required to conduct 
specific tasks in instrumented vehicles provided by the experimenters. Different sensors are 
installed onto the instrumented vehicles, for example, eye tracking devices, physiological sen-
sors, radars, and on-board vehicle data collection devices. A. Zhou et al., (2023) collected eye-
tracking data to investigate different Connected and Autonomous Vehicle (CAV) control set-
tings on users’ acceptance of CAV and their distraction behaviors. However, it should be noted 
that, as the experiment was still conducted in a contrived environment, the participants’ behav-
iors may still be skewed to some extent. Specifically, the participants would be accompanied 
by the experimenters and irrelevant traffic would be removed. Hence, the participants would 
experience lower than usual risks. 
 
To simulate the risk more realistically, researchers may also conduct on-road studies using 
instrumented vehicles. Being different from field studies, the participants may drive the vehi-
cles equipped with data collection devices on public roads, while accompanied by experiment-
ers. As can be imagined, the fidelity of the scenarios will be higher compared to field studies 
and participants may experience higher levels of risk on public roads. However, with such an 
approach, the controllability of the scenarios will the lower compared to the field experiments, 
as although the experimenters can control some static factors related to the scenario (e.g., the 
time of day, the weather, and the experimental areas), they have little to no control over the 
traffic scenarios surrounding the instrument vehicles. 
 
At the same time, given that fully AVs are not mature enough, to understand drivers’ or pedes-
trians’ responses to the AVs, the Wizard-of-Oz (Dahlbäck et al., 1993) technique was com-
monly adopted. With this approach, the system was simulated (e.g., by having an experimenter 
driving a non-autonomous vehicle) but the participants were not informed of such setup. Hence, 
participants may perceive the vehicle as fully autonomous. With this approach, previous re-
searchers have successfully simulated the operation of AVs on the road. For example, Detjen 
et al., (2020) used the Wizard-of-Oz method to simulate an autonomous driving system. All 
participants were told that the vehicle was controlled by the driving automation, but it was 
actually controlled by an experimenter. Users’ feedback and behavioral data were collected. 
Given that some (4 out of 12) participants perceived the system as human-operated, the authors 
compared how the trust in the AV varied across the two groups of participants and it was found 
that participants trusted the human driver more. 
 

C. Naturalistic Driving Research 

The naturalistic driving study is a powerful tool for obtaining realistic driving behaviors among 
drivers. Being different from field studies, sensors, and equipment are installed in a vehicle 
that can run on public roads. The vehicle can either be the participants’ own vehicle (Liu et al., 
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2023) or the vehicle that is rented to the participants (e.g., Advanced Vehicle Technology Con-
sortium, (Hong et al., 2021)). With such a setup, in naturalistic driving studies, the experiment-
ers can observe realistic driving behaviors with minimum interference from the experimenters 
or the context of the research. However, the disadvantage is also obvious. Given that the study 
is usually conducted on public roads, the experimenters had little to no control over the traffic 
scenarios and states of the drivers. Thus, the density of the meaningful data points for a specific 
research question might be sparse and data cleaning would be time-consuming. This type of 
research also has high requirements for data storage and transfer. For example, the largest and 
the most commonly used naturalistic driving dataset, the SHRP2 contains over 2 PB data for 
nearly 2360 participants, leading to 3700 participant-years data in total (Hallmark et al., 2015). 
The following table summarizes some of the existing public datasets from naturalistic driving 
studies. 
 

Table 2.2.2 Available public naturalistic driving studies up to 2023 
Dataset Vehicle type Total length 

of data dura-
tion 

Locations of 
data collec-
tion 

Types of col-
lected data 

Research 

UDRIVE 
Cars, trucks 
and powered 
two-wheelers 

88,000 
hours of ve-
hicle data 

Six European 
Unions Mem-
ber States 

Video & Vehicle 
Sensors Data 

(Eenink et 
al., 2014) 

CNDS Conventional 
vehicle 

Over 53,000 
vehicle 
hours 

Canada 
Video of Driver, 
Video & Vehicle 
Sensors Data 

(Klauer et 
al., 2018) 

ANDS Private vehicle 
360 volun-
teer drivers 
for 4 months 

NSW and 
Victoria of 
Australian 

Video of driver 
& other road us-
ers’ behaviour, 
video & sensors 
data of vehicle 

(William-
son et al., 
2015) 

IVBSS Light vehicles 

Over 
213,000 
miles accu-
mulated 

Parts of 
southeast 
Michigan, US 

Video & Sensors 
Data of Drivers 
& Vehicles; As-
sessment of 
Drivers 

(Steve, 
2011) 

SHNDS Cars 

Over 5,000 
hours of 
continuous 
driving data 
from 60 
drivers 

Shanghai city 
of China 

Video of driver, 
video & sensors 
data of vehicle, 
assessment 

(Guo et al., 
2022) 

NTDS Private vehicle 

nearly 
102,000 
trips over 
800,000 km 
(500,000 
miles). 

  Common-
wealth of Vir-
ginia in the 
United States 

Video of driver, 
video & sensors 
data of vehicle 

(Lee et al., 
2011) 
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SHRP2 Conventional 
vehicle 

3700 partic-
ipant-years 

Several cities 
in US 

Video & Vehicle 
Sensors Data 

(National 
Research 
Council 
(U.S.), 
2001) 

 
Another major limitation of the naturalistic driving approach when applied to mixed traffic 
research is that, so far, existing naturalistic driving research has all focused on drivers’ behav-
iors in the ego-vehicle. Although some research has used vehicles with some levels of driving 
automation (Wen et al., 2023), they provide limited knowledge on how human drivers respond 
to other AVs or vehicles controlled by driving automation in mixed traffic. Such kind of re-
search is limited by two constraints at this stage. On the one hand, to collect the interactions 
with other road agents on the road, the ego-vehicle will need to be equipped with appropriate 
external sensors (e.g., LiDAR and cameras), which are expensive and may lead to privacy con-
cerns. On the other hand, even when the instrumented vehicles with necessary sensors are 
available, collecting data regarding mixed traffic is still difficult, given that only a small portion 
of vehicles are equipped with advanced driving assistant systems (ADASs) or autonomous 
driving systems. However, it should be pointed out that knowing how human drivers respond 
to automated road agents and evaluate users’ cognitive and decision-making processes would 
facilitate more efficient and explainable AV control algorithms. With more AVs being availa-
ble on public roads, future naturalistic driving research may better capture human-AV interac-
tions from an ego-vehicle-driver behavioral perspective of view. 
 

D. Observational Approach 

Though capturing human-AV interactions through a naturalistic driving research approach is 
difficult due to the sparsity of the AVs on public roads at this stage, observational studies can 
be a feasible option at this stage and have been widely adopted in previous research, given that 
certain cities or areas have allowed the AVs to test and operate commercially on public roads. 
Depending on the resolution of the datasets, the observational datasets can be categorized into 
two types: the trajectory-oriented one and the safety-oriented one. The former focuses more on 
the micro trajectories of human-AV interactions on public roads while the latter focuses more 
on the safety records of mixed traffic.  
 
In traditional traffic research, the trajectory-oriented data can be collected through roadside 
units (e.g., (U.S. Department of Transportation Federal Highway Administration, n.d.)), on-
road data collection vehicles (e.g., (K. Chen et al., 2024)), and unmanned aerial vehicles ( e.g., 
(Krajewski et al., 2018)). The Next Generation Simulation (NGSIM) Open Data used cameras 
mounted on highways to collect vehicle trajectories on highways. However, given the sparsity 
of the AVs on the road, collecting mixed traffic data with fixed sensors or cameras is inefficient 
at this stage. Thus, they may not be suitable for mixed traffic research until AVs start to saturate 
the market. 
 
To date, existing trajectory-oriented mixed traffic datasets were mostly collected using AV-
mounted sensors. The three most representative ones are the Waymo Open Dataset, the Lyft 
Level-5 Dataset, and the nuScenes dataset. All of them provided perceived speed and location 
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information of the road agents surrounding the AVs at a relatively high sampling frequency 
(e.g., 10Hz in Waymo Open Dataset). Thanks to the perception capabilities of the AVs, the 
datasets contain information regarding the road agents that are hundreds of meters away from 
the AV. Thus, representative traffic scenarios such as car-following behaviors and lane-chang-
ing behaviors can be extracted. Specifically, the Waymo Open Dataset consists of two parts: 
perception and motion. The perception part contains 1,000 20-second video clips, each of 
which is composed of well-synchronized and calibrated high-resolution LiDAR and camera 
data recorded in urban and suburban areas. The motion part consists of 103,354 20-second 
video clips representing 574 hours of driving data collected over 1,750 km of roadways. The 
Lyft Level-5 Dataset contains information collected by 7 cameras and 3 lidars on a fleet of 25 
SAE Level-5 AVs operated by Lyft, which includes map information covering more than 4,000 
roads, 197 crosswalks, 60 stop signs, and 54 parking areas. Visible traffic participants, includ-
ing vehicles, pedestrians, and cyclists within each scene were also detected, and their motions 
such as velocity, acceleration, and yaw rate were provided. In total, the dataset also includes 
more than 55,000 3D human-annotated frames. The nuScenes dataset was collected by auton-
omous vehicles equipped with LiDARs, radars, and cameras in four cities around the world 
and it contains 1200 hours of driving. 
 
To date, many studies have been conducted with the Waymo Open Dataset and the Lyft Level-
5 dataset. For example, Wen et al explored the strategies human drivers took when following 
AVs versus human-driven vehicles based on the trajectory data from the Waymo dataset. Sim-
ilarly, Li et al extracted human-following AV and human-following human events in the Lyft 
Level-5 dataset. However, it should be noted that the original objectives of the three datasets 
were for AV control algorithm development and were not designed for mixed-traffic behavioral 
research. For certain reasons, all these datasets chose to cut the video clips into 20-second-long 
discrete segments and the information other than the location of the surrounding road agents 
has been removed. As a result, these datasets are not suitable for long-duration driver behavior 
extraction or complex scenarios that may exceed 20 seconds. Similarly, due to the sparsity of 
the crashes on the road, the trajectory-oriented datasets are not suitable for research that aims 
to understand the impact of AVs on traffic safety and analyze the patterns of AV-involved 
crashes. Thus, local authorities and governments have also initiated plans to collect information 
regarding AV-involved crashes. The two most widely used datasets include the NHTSA dataset 
(by the National Highway Traffic Safety Administration) and the CA-DMV dataset (by the 
California Department of Motor Vehicle), both involved data regarding AV-involved crashes.  
Detailed information on these two datasets and other available datasets are listed in Table 2.2.3. 
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Table 2.2.3 Available public crash/trajectory datasets involving driving automation. 
Datasets Data collec-

tion duration 
Types of involved 
road agents 

Locations of 
data collection 

Total length of data Type of data Related research 

CA DMV 2014-2019 
Conventional & 
High-Level Autono-
mous Vehicles 

California 
712 autonomous 
vehicle collision re-
ports received 

AV collision & disen-
gagement records (Sinha et al., 2021) 

NHTSA AV 
crash data 
archive 

2008-2009 
Conventional & 
High-Level Autono-
mous Vehicles 

Several cities 
in US 

Over 1100 autono-
mous vehicle crash 
records 

Accidents records (National Highway 
Traffic Safety Ad-
ministration, 2013) 

AV crash 
dataset 2014-2024 

Conventional & Au-
tonomous Vehicles 
(with ADAS) 

Several cities 
in US 

Total of 2236 
pieces of data 

Crash data from CA 
DMV, NHTSA, news & 
land use, weather, and 
geometry information 

(Transport research 
center, 2024) 

NGSIM 2016 Conventional vehicle 
Emeryville, 
Los Angeles, 
and Atlanta 

2 hours 30 minutes Video Data 

(U.S. Department of 
Transportation Fed-
eral Highway Ad-
ministration, n.d.) 

HighD 2018 Conventional vehicle German High-
ways 147 hours Video Data (Krajewski et al., 

2018) 

Lyft Level 5 2019 Autonomous vehicle Palo Alto, Cal-
ifornia 1,000 hours Video & Radar Data (Kesten et al., n.d.) 

Waymo 2021-2024 Autonomous vehicle 25 Cities in US 10 hours 50 minutes Video & Radar Data (K. Chen et al., 2024) 

nuScenes 2018-2023 Autonomous vehicle Boston and 
Singapore 5 hours 33 minutes Video & Radar Data (motional, 2023) 
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However, although the data from the observational studies can maintain the highest level of 
validity, it is not omnipotent. Specifically, given that the researchers usually have no access to 
the road users involved in certain traffic events, it is usually unlikely to collect information 
regarding the road users’ psychological states or processes. Hence, the data from this type of 
research can hardly support the analysis of psychological or cognitive factors of human behav-
iors (e.g., how users may allocate their attention differently when interacting with AVs). Fur-
ther, as the data was reported by the AV fleet operators, drivers, or police, the quality of the 
data might be compromised, and minor events (without leading to large property or injuries) 
may be under-reported. 
 

E. Choice of Approaches for Mixed Traffic Research 

In general, no single research method so far can support research on all types of research ques-
tions in mixed traffic. It is vital to understand the pros and cons of the research approaches 
when they are used for specific research questions. In addition to the monetary and time costs 
and constraints of the available resources, we may select the research approaches by consider-
ing the factors in the following three dimensions.  
 
First, the validity of the data for specific research questions. For example, given that the data 
from the driving simulators have lower ecological validity compared to the data from the on-
road studies, the data collected from on-road studies may be more suitable for developing quan-
titative models to inform the design of the AV algorithms.  
 
Second, the availability of the data. Not all approaches can provide all the necessary infor-
mation for all research questions. For example, although observational studies may provide 
more realistic data, the collection of demographic information and psychological states of road 
users would be difficult. While naturalistic driving studies can capture both realistic driving 
behaviors and demographic information of the drivers, the human-AV interaction samples 
might be too sparse at this stage, given that only a few regions or states have allowed the AVs 
to be operated on public roads. Hence, simulator studies or field experiments may better reveal 
how psychological factors may be associated with drivers’ behaviors in mixed traffic. 
 
Third, the controllability of the experimental conditions. For example, in both naturalistic and 
observational studies, experimenters can hardly control the traffic scenarios. Hence, large da-
tasets are needed to extract rare events that may meet their criteria. In this case, the simulator 
or field study approach can be a better option to obtain data in a relatively short period of time, 
given that a higher level of experiment control can be guaranteed. Experimental control is also 
vital to identify the influential factors of certain behaviors, as consistent scenarios can reduce 
the variations uncounted by the factors of interest. 
 
Regarding the research approaches that can be used for mixed traffic research, we can summa-
rize their pros and cons in these three dimensions in Table 2.2.4. It should be noted that the 
pros and cons of the research methods may vary with the progress of time. For example, when 
more AVs are operating on public roads, it is possible to collect enough data with naturalistic 
driving studies. 
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Table 2.2.4 Comparisons of the research approaches for mixed traffic research. 

Approaches Data validity Data availability Experimental control 
Driving simulation Low to medium Depends on the 

needs of the re-
search questions 

High 
Field study Medium Medium to high 
On-road study Medium to high Low to medium 
Naturalistic driving research High Low 
Observational approach High Low 

 
2.3 Data Type and Data Processing in Empirical Research 
 
One of the basic questions one may ask when selecting the approaches is the types of data that 
can be collected with the approach. In general, for mixed traffic research, the following types 
of data were used in previous research, i.e., trajectory data, behavioral data, subjective data, 
and eye-tracking data. 
 

A. Trajectory Data 

(1) Application of the Trajectory Data 

The trajectory data can capture the dynamic processes of interactions among road agents in 
mixed traffic. In general, previous research used the trajectory data in two ways. The raw and 
cleaned trajectory data was more commonly used for research that focused on AV algorithm 
designs (e.g., motion planning). For example, Gu et al., (2020) used Waymo trajectory data to 
design a car following an algorithm based on a modified Long-Short-Term-Memory (LSTM). 
At the same time, some other studies relied more on the metrics extracted from the trajectory 
data. For example, in Wen et al., (2023), the headway distance and vehicle speed extracted 
from the trajectories of the leading and following vehicles were used to model the car-following 
behaviors of human drivers in mixed traffic. In another study, again, using the Waymo dataset, 
T. Li et al., (2023) analyzed and compared how drivers responded to human-driven vehicles 
versus AVs differently, by modeling the effect of road agent types (AV or human-driven vehi-
cles) on drivers’ selection of headways in car-following and overtaking events. The trajectory 
data can also be used to evaluate the safety of mixed traffic. Given the sparsity of the AV-
involved crashes, previous research also extracted surrogate safety metrics from the trajectory 
data. For example, Q.-L. Lu et al., (2021) compared the performance of different algorithms 
for collision prediction in mixed traffic based on the estimated TTC in the lane-changing event. 
 

(2) Data Processing for Trajectory Data 

As mentioned previously, the trajectory data was mostly collected on the road (either public or 
closed-track), for example, from field studies (Huang et al., 2020), on-road studies (Y. Chen et 
al., 2020), naturalistic studies (G. Li et al., 2023), and observational studies (Basu & Saha, 
2022). Thus, the data may contain lots of noise and if used inappropriately, may lead to inac-
curate model training or behavioral predictions in follow-up studies (M. Zhou et al., 2017). 
Hence, the raw trajectory data needs to be processed before being used. The main purpose of 
data processing for trajectory data is as follows. 
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• Data format conversion: Data collected by different sensors may have different data for-

mats, so they need to be converted into a unified format for subsequent data processing 
and analysis. Special techniques may be required to obtain the necessary data. For exam-
ple, computer visions (e.g., image resizing (Khajeh Hosseini et al., 2022), color space con-
version (Baskaran et al., 2017) and feature extraction (Samanta et al., 2018)) may be re-
quired to extract road agents and identify their locations and movements from the video 
and image data. Similarly, pre-processing is also needed for the LiDAR data before tra-
jectories can be extracted (Llorca et al., 2010; Yan et al., 2011). 

• Data annotation: The data collected by some sensors may need to be annotated for train-
ing and testing purposes. For example, for image or video data, the objects and road signs 
may need to be annotated manually or semi-automatically before the trajectory can be 
extracted; for LIDAR data, it is also necessary to annotate the position and size of the 
objects. Yan et al., (2011) explores how to semantically annotate different types of trajec-
tory data, this includes annotating image, video or LiDAR data for training and testing 
purposes. It introduces a framework or methodology to semantically annotate these heter-
ogeneous trajectory data in order to provide a basis for subsequent data processing and 
analysis. Llorca et al., (2010) deals with methods for the collection and processing of traf-
fic data in V2I networks. This includes the annotation of sensor data to facilitate the en-
hancement and analysis of floating vehicle data. C. Chen et al., (2020) proposed a frame-
work for representing and compressing vehicle trajectory data, in which the data collected 
by the sensors will be labeled to facilitate the efficient representation and compression of 
vehicle trajectory data. 

• Outlier detection and handling: Abnormal situations (e.g., sensor failure or extreme en-
vironmental conditions) may lead to errors or strong noise in the collected data. In such 
cases, outlier detection and processing of data may be required to eliminate the strong 
influence of the outliers. Typical outlier detection methods include: 
o Z-score method (Hodge & Austin, 2004): This method identifies outliers by calculat-

ing the z-score of each data point and flagging those that fall outside a certain thresh-
old. 

o Interquartile range (IQR) method (Yang et al., 2019): This method involves calculat-
ing the IQR of the data and identifying outliers as those that fall below the first quar-
tile minus 1.5 times the IQR or above the third quartile plus 1.5 times the IQR. 

o Modified z-score method (Sandbhor & Chaphalkar, 2019): Similar to the z-score 
method, but it is more robust to outliers and works better with skewed distributions. 

o Mahalanobis distance (Ghorbani, 2019): This method calculates the distance of each 
data point from the centroid of the data distribution and flags those that fall beyond a 
certain threshold. 

o Local outlier factor (LOF) (Breunig et al., 2000): This method compares the density 
of data points in their local neighborhood to identify outliers. 

• Data imputation: In data acquisition and transmission processes, some sensor data may 
be missing or removed due to errors. Thus, interpolation and other methods may be used 
to impute missing values. Typical interpolation methods include: 
o Linear interpolation (Kuffel et al., 1997): This method estimates missing values by 

drawing a straight line between the two nearest known data points and using the po-
sition along that line to estimate the missing value. 
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o Polynomial interpolation (de Boor & Ron, 1990): This method fits a polynomial func-
tion to the known data points and uses it to estimate missing values. 

o Spline interpolation (De Boor, 1968): This method uses a piecewise polynomial func-
tion to interpolate between data points, providing a smooth estimate for missing val-
ues. 

o Kriging (van Beers & Kleijnen, 2004): This method is commonly used in geostatistics 
and spatial analysis to estimate unknown values based on the spatial correlation be-
tween known data points. 

o Moving average interpolation (Thompson, 1947): This method replaces missing val-
ues with the average of neighboring data points, which can help to smooth out fluc-
tuations in the data. 
 

B. Behavioral Data 

(1) Application of the Behavioral Data 

Although the trajectory data can reveal the interactions among the road agents, it may only 
provide superficial information regarding the outcome of road agents’ decisions, but not how 
and why human road agents adopted the strategy. As a direct measure of how human road 
agents respond to AVs or other human-operated road agents on the road, the behavioral data 
may provide more insights into the impact of AVs on traffic safety and efficiency. For example, 
when investigating how pedestrians may interact with AVs, in addition to deep learning ap-
proaches that focused on trajectory prediction (Bhujel & Yau, 2023), researchers also focused 
on the pedestrians’ hesitation time and body movements when encountering an AV (Rodríguez 
Palmeiro et al., 2018). In combination with questionnaire data, theoretical models regarding 
the relationships between the psychological states and demographic features of road users and 
their behaviors could be established. For example, Papadimitriou et al., (2016) delves into the 
impact of various psychological variables on pedestrian decision-making and interactions with 
traffic signals. This study can provide valuable insights into understanding how psychological 
factors influence pedestrians' behavior in urban environments, which can guide future endeav-
ors to guide road users in mixed traffic. 
 

(2) Data Processing for Behavioral Data 

Similar to the trajectory data, the behavioral data can be highly noisy. The first step in extract-
ing behavioral data is the clear definition of the specific behaviors. Usually, this includes the 
pre-conditions for an action (e.g., only after the AV reaches 50 meters, a leg movement can be 
considered as a street crossing intention, (Pillai, 2017)), the definition of the action (e.g., the 
movement of any leg or the forward-leaning of the upper body), and the time frame that an 
action can be counted (e.g., only the actions happened between the first glance to the cue and 
the event onset can be regarded as a pre-event action (He et al., 2021)). 
 
Though we would try to clearly define the behaviors of interest, subjectivity inevitably has to 
be involved in the definition of certain behaviors. For example, in He et al., (2021), pre-event 
actions can be defined as any movement that is deemed as preparation for an upcoming event. 
Though the pre-conditions and the time frame can be strictly defined, the actions are subject to 
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raters’ judgment. Thus, to reduce the subjectivity in the behavior extraction, multiple raters 
would be involved. Preliminary extraction would be conducted to refine the criteria for behav-
iors, followed by discussions to reach a consensus and then independent judges by each rater.  
 
However, still, given that the judgment of the behavioral data from each rater can be subjective, 
a common standard for evaluating the quantification of the behavior identification is inter-rater 
reliability (IRB). Typical IRB metrics include Cohen’s Kappa (Ihejirika et al., 2015) and the 
intra-class correlation coefficient (Bobak et al., 2018). If the IRB metrics are lower than ac-
ceptable, then a refinement of the criteria is needed, and a re-extraction of behaviors based on 
the new standard may need to be conducted unless the metrics reach the threshold. 
 

C. Subjective Data 

(1) Application of the Subjective Data 

With behavioral data, although we can look into one’s decisions in specific scenarios, it is still 
difficult to answer why the behavior differs and how we can shape one’s behaviors. Further, 
the behavioral data can still hardly inform one’s cognitive procedures leading to actions. Thus, 
to better model road users’ behaviors, subjective data can be collected. For example, with the 
trajectory data only, we can rebuild their behavioral patterns, but we can hardly answer why 
human drivers took different strategies when following AVs versus following human-driven 
vehicles. Thus, it is difficult for us to design countermeasures to guide road users’ behaviors in 
mixed traffic. To resolve this issue, a previous study (Zhao et al., 2020) rebuilt car-following 
scenarios in closed tracks; in addition, they also evaluated users’ trust in AVs using a subjective 
questionnaire. With such an approach, the relationship between a psychological state (i.e., trust) 
and the car-following behaviors can be established. 
 
However, so far, a gap between the psychological findings and the data-driven approach still 
exists. More specifically, although we can identify how subjective metrics can affect road users’ 
behaviors, or even build theoretical models explaining the variance accounted by some psy-
chological factors, these qualitative findings are not well utilized in the data-driven approach 
and can hardly guide the design of the AV control algorithms. Future research is still needed 
to bridge the gap between the psychology-based approach and the trajectory-/behavior-related 
approach. 
  

(2) Data Processing for Subjective Data 

In most cases, the subjective data can be collected through questionnaires, interviews, and fo-
cus groups. The subjective data can be collected before, during, and after an experiment. Given 
that subjective data is related to what the participants feel or subjectively perceive the scenarios, 
the validity and reliability of the data might be questioned and need to be evaluated, especially 
if a self-designed questionnaire is used. Here, the validity reflects whether the subjective meas-
ure can accurately measure what it is supposed to measure, which includes three dimensions 
(i.e., construct validity, content validity, and criterion validity); while the reliability evaluates 
to what extent the measure can collect the same data in repeated observations, which also has 
three dimensions (i.e., test-retest reliability, interrater reliability, and internal reliability). Some 
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typical metrics regarding validity and reliability include Cronbach α (Tavakol & Dennick, 2011) 
and KMO (Prato et al., 2005). The readers could refer to the reference for more information 
regarding evaluating the validity and reliability. For the design of the questionnaire, interview, 
or focus group, the readers could refer to (Gubrium & Holstein, 2002; Stanton et al., 2017) for 
more information.   
 

D. Physiological Data and Eye-Tracking Data 

(1) Application of the Physiological Data and Eye-tracking Data 

As the subjective data is sensitive to users’ bias and the validity can sometimes be questionable, 
more objective data that can reflect road users’ psychological states is sometimes preferred. It 
is widely acknowledged that the changes in some psychological states can lead to variations in 
physiological indices. For example, stress is associated with variations in the galvanic skin 
responses (Fernandes et al., 2014), heart rate, and heart rate variability (Kim et al., 2018; Tael-
man et al., 2009). Hence, previous research also adopted physiological measures to evaluate 
users’ acceptance of external human-machine interface (eHMI) in mixed traffic (e.g., (Tan et 
al., 2022)). The electroencephalogram (EEG) has also been widely used in previous research. 
By monitoring the electrical activity of the brain, researchers can infer a driver's or pedestrian's 
emotional state and cognitive load when they are faced with stress, emergencies, or changes in 
comfort, which can further be used to infer road users’ capability to respond to traffic incidents 
(P. Li et al., 2022; Luque et al., 2024). Physiological signals can also be combined with other 
sensor data for comprehensive analysis (Rao et al., 2023).  
 
As for the eye-tracking measures, it is estimated that around 90% of needed information in 
driving is visual information (Sivak, 1998). Thus, understanding road users’ road behaviors 
can provide insights into their attention allocation strategies. Eye trackers are widely adopted 
to collect road users’ visual behaviors. With eye trackers, experimenters can identify the gaze 
movements of human road agents and reveal their attention allocation and perception patterns, 
thus enabling a deep understanding of their behaviors. For example, eye-tracking technologies 
have been widely used in pedestrian-AV interaction studies to understand how the eHMI de-
sign can influence the pedestrian’s perception of the AVs and hence behaviors when encoun-
tering AVs. In addition, the shared attention between human road users and AVs may facilitate 
more efficient and safe interactions among them, given that the computer vision domain has 
already emphasized the importance of directing attention to areas of importance in traffic sce-
narios (e.g.,(Makrigiorgos et al., 2019)). 
 

(2) Data Processing for Physiological Data and Eye-tracking Data 

The physiological data is subjective to noises in the environment. Thus, filtering noise is usu-
ally required as the first step in processing physiological data. For example, the electrocardio-
gram (ECG) may have some baseline drift, which would downgrade the detection of the R 
peaks in the signal. Thus, as common practice, the raw signal would be detrended before being 
fed into the following steps. The EEG signal is also sensitive to the artifacts and the background 
noise in the environment. Thus, in addition to collecting data in the magnetic shielding room, 
the bandpass filter is usually used to filter out the utility frequency (e.g., 50 Hz in China and 
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60 Hz in the U.S.) in the EEG signals. After pre-processing, depending on the way the signals 
are used, specific metrics can be extracted from the raw signal, or the cleaned signals can be 
fed into some algorithms directly. For example, the inter-beat-intervals (iBi) can be extracted 
from the ECG signal, and be further processed into the heart rate and the heart rate variability 
(HRV). The HRV can then be transformed into the frequency domain and metrics such as the 
LF (power of the low-frequency) and HF (power of the power of the how-frequency) can be 
extracted. Alternatively, the raw ECG data can be fed into the algorithms directly without ex-
tracting handcrafted metrics; this is especially common in the deep learning domain so that the 
models might be able to learn the high-level features in the raw data (Xu et al., 2019). 

 
Figure 2.3.1 Typical ECG data. 

 
The eye-tracking data include two categories, gaze-related data and non-gaze-related data. As 
can be inferred from the name, the gaze-related data is about the location where the road agents 
are looking. This category of data is directly related to users’ attention allocation. A number of 
metrics can be extracted from the gaze-related data, including but not limited to glance duration, 
fixation duration, frequency of the glances, percentage of time looking at a specific area of 
interest, and spatial density. For more information regarding the definition of gaze-related data 
in the driving domain, the readers could refer to the ISO standards (e.g., ISO_PRF_15007-1_(E) 
and ISO_TS_15007-2_(E)). At the same time, the non-gaze-related data also contains rich in-
formation regarding users’ states. For example, the percentage time of eye closure (PERCLOS) 
has been found to be closely related to one’s fatigue levels (J. Zhang et al., 2021); and the size 
of the pupil is sensitive to the workload one is experiencing (Klingner et al., 2008). 
 
2.4 Experiment Design Basics for Empirical Research 
 
After deciding the types of data to be collected, another key task in conducting empirical stud-
ies is the experiment design. In general, when designing an empirical study, the experimenters 
need to consider three aspects of techniques, i.e., how to measure the variables of interest, how 
to manipulate some property of an actor-behavior-context (i.e., making a variable have a par-
ticular predetermined value or level for certain scenarios to be studied, and other specific values 
or levels for certain other scenarios so that the effect of the variable can be assessed by com-
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paring those two sets of scenarios), and how to control the impact of variables that are im-
portant but irrelevant in a particular study. 
  
In general, the experiment design can be regarded as balancing the pros and cons of different 
techniques. For example, to understand the influence of two eHMI designs on pedestrians’ 
street crossing behavior, we can either let one participant experience multiple eHMIs (a within-
subject design, see Table 2.4a), or have multiple participants experiencing different eHMIs 
respectively (a between-subjects design, see Table 2.4b). If a between-subjects design is 
adopted, then we may need to worry if there are individual differences between participants in 
different groups that may shadow the effect of eHMI so that the matching technique will need 
to be considered (i.e., making sure specific features of the participants across groups to be 
similar). However, in some scenarios, we may not know which features would influence their 
behaviors and thus it is difficult to match the participants across groups. Alternatively, if a 
within-subject design is adopted, we may need to worry about the learning effect and the fa-
tigue effect (i.e., participants might learn to perform better or become tired with the progress 
of the experiment), if multiple trials were conducted for each participant. Thus, the counterbal-
ancing technique will need to be used. However, this will increase the number of required 
participants, as a full counterbalance would significantly increase the required number of par-
ticipants (e.g., a minimum of 6 participants for 3 levels, 24 orders for 4 levels, and 120 orders 
for 5 levels). In summary, the experiment design is more than an art rather than a technique, 
and that is also why multiple empirical studies may be needed for researchers to draw relatively 
solid conclusions on a research question. For more information regarding the experiment de-
sign and the following data analysis, especially the choice of the statistical models, the readers 
could refer to other books (e.g., Experimental Design: Procedures for the Behavioral Sciences 
by (Maydeu-Olivares & Millsap, 2009)). 
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