
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

From Brake Lights to Beyond - Assessing Rear eHMI Designs through a Video-Based 
Survey 

 

ANONYMOUS	AUTHOR(S)	

Rear-end	collisions	account	for	a	large	portion	of	road	crashes	and	are	closely	related	to	drivers'	car-following	
(CF)	behaviors.	Thus,	providing	additional	information,	especially	the	beyond-visual-range	information,	to	
support	CF	behaviors	may	reduce	the	rear-end	collision	risk.	As	a	preliminary	step,	novel	external	human-
machine	interfaces	(eHMIs)	have	been	proposed	to	provide	ego-drivers	with	the	information	of	the	indirect	
leading	vehicle	(DLV)	ahead	of	the	direct	leading	vehicle	(ILV),	We	evaluated	these	eHMIs	in	a	video-based	survey	
study.	The	results	from	165	valid	responses	showed	that	drivers	with	different	characteristics	had	different	
preferences	for	the	eHMIs	with	different	contents	(ILV	speed,	distance	between	ILV	and	DLV,	brake	of	ILV,	
collision	risk	between	ILV	and	DLV,	and	real-life	video	information)	and	communication	methods	(sign,	text,	
animation	and	real-life	video).		The	findings	indicate	the	potential	of	eHMIs	in	supporting	CF	behaviors	and	
highlight	the	importance	of	considering	user	heterogeneity	when	designing	eHMIs.		

CCS	CONCEPTS	•Human-centered	computing~	Human	computer	interaction	(HCI)~	Empirical	studies	in	HCI	
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1 INTRODUCTION 

Rear-end	collisions	remain	a	major	safety	concern,	accounting	for	approximately	28.9%	of	all	road	traffic	crashes	
in	the	United	States	reported	in	2023	[1],	which	can	result	in	injuries,	notably	whiplash-associated	disorders	[2],	
and	 considerable	 property	 damage	 [3].	 The	 rear-end	 crashes	 are	 closely	 related	 to	 the	 car-following	 (CF)	
behaviours	of	the	drivers,	which	are	traditionally	treated	as	being	strongly	associated	with	drivers’	responses	to	
the	motion	of	directly	leading	vehicles	(DLV)	[4].	However,	the	motion	cues	of	the	DLV	can	be	trivial	and	may	hardly	
be	perceived	effectively.	Thus,	as	a	mandatory	vehicular	device	since	the	last	century,	the	vehicles	are	equipped	
with	 brake	 lights	 and	 turn	 signals	 to	 inform	 the	 behaviour	 or	 intention	 of	 the	 ego-drivers	 [5].	However,	 these	
traditional	signals	offer	only	basic	information	about	the	DLV	and	may	fall	short	in	complex	traffic	situations.		
Recent	CF-related	research	and	research	on	connected	autonomous	vehicles	(CAVs)	may	provide	some	insights	

regarding	further	countermeasures	to	support	safer	CF	behaviours	of	human	drivers.		The	studies	in	the	context	of	
connected	vehicles	 found	 that	with	 the	 information	of	 the	road	agents	 (e.g.,	 vehicles	ahead	of	 the	 lead	vehicle)	
beyond	the	visual	range,	the	controllers	can	better	balance	the	safety	and	efficiency	of	the	traffic	flow	[6].	Further,	
a	driving	simulator	study	also	found	that	providing	the	ego	drivers	with	the	information	of	the	indirect	 leading	
vehicles	(ILV,	i.e.,	the	vehicles	ahead	of	the	lead	vehicle),	the	risk	of	rear-end	crashes	can	be	reduced,	especially	in	
emergent	braking	events	[7].	However,	the	beyond-visual-range	(BVR)	information	used	in	these	previous	studies	
was	 based	 on	 connected	 vehicle	 technologies;	 thus,	 the	 effectiveness	 of	 those	 solutions	 is	 restricted	 by	 the	
penetration	rate	of	the	vehicle-to-vehicle	communication	technologies,	which,	unfortunately,	is	still	low.	
Research	on	the	external	human-machine	interface	(eHMI)	of	autonomous	vehicles	(AVs)	may	provide	some	

insights.	In	recent	years,	a	number	of	studies	have	been	conducted	to	facilitate	communication	between	AVs	and	
other	 road	users	 [8].	 Findings	 from	 this	 body	 of	work	have	 shown	 that	 eHMIs	 can	 facilitate	 better	 interaction	
between	AV	and	 road	users.	For	example,	 a	 field	 study	 found	 that	eHMIs	 showing	deceleration	or	acceleration	
intention	of	the	AV	can	support	more	efficient	yielding	behaviour	of	the	human	drivers	in	bottleneck	scenarios	[8].	
However,	the	effectiveness	of	displaying	BVR	information	on	the	rear	of	the	vehicle	to	enhance	CF	safety	has	not	yet	
been	 investigated.	 Specifically,	 to	date,	no	 research	has	been	conducted	 to	explore	 if	 the	eHMIs	can	be	used	 to	
provide	additional	BVR	information	(e.g.,	the	states	of	the	ILV	in	a	CF	event),	in	CF	scenarios,	in	order	to	facilitate	
safer	 CF	 behaviours.	 Such	 CF-oriented	 eHMIs	 have	 been	made	 possible	with	 the	 rapid	 advancement	 of	 sensor	
technologies	in	vehicles[9],	enabling	them	to	detect	and	interpret	the	surrounding	environment	accurately.		
Thus,	we	envision	an	alternative	approach:	what	if	BVR	information	detected	by	the	ego-vehicle	could	be	shared	

via	an	eHMI	located	on	the	back	of	the	vehicle,	so	that	the	following	vehicles	(FVs)	in	the	CF	scenario	can	have	access	
to	the	information	of	the	traffic	flow	or	ILV	ahead	(Figure	1)?	Compared	with	the	BVR	information	shared	through	
V2V	technology,	eHMIs	offer	a	more	accessible	and	low-cost	solution	to	convey	the	detected	BVR	information	to	
following	vehicles	in	CF	events,	especially	in	light	of	the	increasing	penetration	of	intelligent	vehicles	on	the	road.	
As	an	innovative	human-machine	interface	designed	for	drivers,	it	is	important	to	evaluate	drivers’	perception	

of	the	eHMI,	given	that	additional	information	may	overload	drivers	in	the	already-complex	scenarios	[10].	Thus,	
as	 a	 preliminary	 study,	we	 designed	 several	 eHMIs	 display	 concepts	 to	 convey	 BVR	 information	 in	 CF	 events,	
following	basic	design	principles.	These	 eHMIs	have	different	 contents	 (e.g.,	 risk	of	 rear-end	 collision	vs	brake	
behaviour	of	indirect	leading	vehicles),	and	communication	methods	(e.g.,	text	vs	animation).	As	a	first	step	in	the	
user-centric	design	process,	to	enhance	the	usability	through	iterative	redesigns	informed	by	user	feedback	[11]	
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and	to	gain	a	holistic	understanding	of	drivers’	needs,	a	video-based	survey	study	was	conducted	to	obtain	users’	
perceived	usability	of	different	eHMIs,	from	a	large	population	with	heterogeneous	needs	and	characteristics.	
	

	

Figure 1: A typical car-following scenario with ILV, DLV and ego-vehicle, with the states of the ILV conveyed by the eHMI of the 
DLV. 

2 EXTERNAL HUMAN-MACHINE INTERFACE DESIGN 

Given	that	providing	the	information	regarding	the	behavior	of	ILV	on	an	in-vehicle	display	was	found	to	benefit	CF	
performance	[7],we	chose	to	focus	on	conveying	the	ILV	information	on	eHMI	in	this	preliminary	study.	Inspired	
by	previous	research,	we	selected	five	types	of	information	regarding	the	ILV	and	the	relationship	between	the	DLV	
and	ILV.	They	were	visualized	in	8	different	designs	as	follows	(see	Table	1):	
(a)	The	speed	of	the	ILV.	Similar	to	how	a	speedometer	shows	the	speed	of	the	ego-vehicle,	the	speed	of	the	ILV	

is	displayed	in	a	numeric	format	(Design	No.	1).	
(b)	The	distance	between	the	DLV	and	ILV	[7].	Although	numerical	values	can	show	the	distance	between	the	

DLV	and	ILV,	it	may	not	be	intuitive	for	drivers.	To	address	this,	an	animation	with	two	vehicle	icons	was	used	to	
represent	the	distance	between	the	DLV	and	ILV	visually	(Design	No.	2).	
(c)	The	braking	behaviour	of	the	ILV,	as	inspired	by	[7].	The	braking	behaviour	was	represented	using	text	(No.	

3)	and	icons	(No.	4)	in	two	separate	design	concepts.	In	Design	No.	3,	textual	information	explicitly	stated	that	the	
ILV	is	braking.	In	Design	No.	4,	two	red	circles	indicate	a	braking	action.		
(d)	The	 rear-end	collision	 risk	between	 the	DLV	and	 ILV,	as	materialized	by	 the	 time	headway	 (THW	[12]).	

According	 to	 NASA	 Colour	 Guidelines	 [13],	 we	 selected	 red,	 yellow,	 and	 green	 to	 represent	 high	 (THW<	 1	 s),	
moderate	(THW:	1	–	2	s),	and	low	levels	of	risk	(THW	>	2	s)	[14],	respectively.	Based	on	this	scheme,	we	designed	
three	eHMI	concepts	to	convey	crash	risk	information.	Design	No.	5	featured	flowing	lights	with	a	vertical	gradient	
-	from	green	at	the	top	to	red	at	the	bottom	-	visually	representing	a	transition	from	low	to	high	risk.	Design	No.	6	
utilized	a	static	symbol	that	changed	colour	to	indicate	the	corresponding	risk	level.	Design	No.	7	visualizes	the	
crash	risk	using	the	size	of	a	vehicle	icon.	A	dashed-line	circle	marked	the	2-second	time	headway	threshold;	if	the	
vehicle	icon	extends	beyond	the	circle,	it	indicates	a	high-risk	situation.	
(e)	Real-time	scenario	from	the	perspective	of	DLV	[7].	Such	information	was	captured	from	the	perspective	of	

the	 DLV	 and	 is	 believed	 to	 provide	 the	 richest	 information,	 as	 drivers	 should	 be	 able	 to	 extract	 all	 kinds	 of	
information	mentioned	above	from	the	video	stream	(Design	No.	8).	
In	addition,	to	better	capture	the	characteristics	of	the	designs,	we	further	classified	these	eHMI	designs	into	

distinct	categories	based	on	their	communication	methods	(CM,	text	vs.	video	stream	vs.	animation),	as	presented	
in	Table	1.		
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Table 1: Overview of eHMI designs in the survey 

No.	 eHMI	Design	 Screenshot	of	the	video	in	the	survey	 Categorization	
1	

	
Note:	The	text	meaning	the	
speed	of	IDV	is	24	km/h.	

	

CM:	Text	
Content:	Speed	of	the	ILV	

2	

	

	

CM:	Animation	
Content:	Distance	from	the	ILV	to	DLV	

3	

	
Note:	The	text	meaning	the	
speed	of	IDV	is	24	km/h.	

	

CM:	Text	
Content:	Braking	behavior	of	the	ILV	

4	

	

	

CM:	Sign	
CS:	Implicit	
Content:	Braking	behavior	of	the	ILV	

5	

	

	

CM:	Animation	
Content:	 Rear-end	 collision	 risk	
between	the	ILV	and	DLV	

6	

	 	

CM:	Sign	
Content:	 Rear-end	 collision	 risk	
between	the	ILV	and	DLV	

7	

	
	

CM:	Animation	
Content:	 Rear-end	 collision	 risk	
between	the	ILV	and	DLV	

8	

	 	

CM:	Video	stream	of	the	traffic	ahead	
Content:	Real-life	information	
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3 MEYHOD 

3.1 Survey Design 

We	developed	a	video-based	survey	hosted	on	Tencent	Survey	to	evaluate	our	proposed	eHMIs.	A	one-minute	video	
depicting	a	CF	scenario	was	recorded	on	a	real	urban	road	in	Nansha	District,	Guangzhou,	China.	This	video	served	
as	the	background	onto	which	we	digitally	overlaid	the	eHMIs	designs	on	the	rear	of	the	DLV	using	Adobe	After	
Effects.	The	information	conveyed	on	the	eHMI	was	consistent	with	the	actual	behavior	of	the	ILV.		
In	 the	 survey,	we	 first	 collected	participants’	 age,	 gender,	 affinity	 for	 technology	 interaction	 (ATI)	 [15],	 and	

driving	 experience	 (DE,	 as	 measured	 by	 the	 number	 of	 years	 they	 have	 regularly	 driven	 a	 vehicle).	 Next,	 we	
presented	an	image	(Figure	1)	to	explain	the	CF	scenario	and	how	the	eHMIs	work.	Then,	for	each	eHMI	design,	
keyframes	of	 the	eHMI	were	presented	along	with	detailed	 text	 explanations.	 Finally,	 the	 same	CF	videos	with	
different	eHMIs	were	presented	in	random	sequences.	The	participants	watched	the	video	and	then	answered	the	
eHMI-related	questions.	The	eHMI-related	questions	consisted	of	the	Systems	Usability	Scale	(SUS)	[16].	Following	
[16],	 the	perceived	usability	and	learnability	of	the	eHMIs	were	extracted	from	the	SUS.	The	UEQ	measures	the	
emotional	 response	 and	 enjoyment	 as	 a	 result	 of	 using	 the	 eHMIs.	 To	 eliminate	 noisy	 answers,	 we	 set	 seven	
attentional	 check	 questions	 in	 the	 survey.	 Participants	 who	 failed	 to	 follow	 the	 instructions	 by	 selecting	 the	
specified	answers	were	excluded	from	the	analysis	(e.g.,	“please	choose	strongly	agree	for	this	question”).	

3.2 Participants  

We	recruited	558	participants	from	the	online	social	media	WeChat	and	Little	Red	Book.	The	inclusion	criteria	are:	
(1)	holding	a	valid	Chinese	driver’s	license;	(2)	being	18	years	or	older;	(3)	being	a	native/fluent	Chinese	speaker.	
We	used	the	G*Power	software	to	perform	power	analysis	for	linear	mixed	model,	and	the	result	indicated	that	a	
sample	size	of	146	participants	would	be	necessary	to	reach	a	power	of	0.9,	an	effect	size	of	0.15,	and	an	error	
probability	of	0.01.	A	total	of	165	participants	(112	males,	53	females)	passed	seven	attention	check	questions	and	
received	a	payment	of	10	RMB.	Their	average	age	was	28.4	(standard	deviation	=5.8,	range	=	[19,	47]).	

3.3 Data Analysis 

Using	 RStudio	 software,	 given	 the	 imbalanced	 number	 of	 combinations	 of	 eHMIs	 with	 different	 content	 and	
communication	method,	two	types	of	linear	mixed	models	were	built,	with	either	eHMI	content	or	communication	
method	as	the	independent	variable	and	gender,	age,	DE,	and	ATI	as	covariates.	The	dependent	variables	included	
usability	 and	 learnability.	 In	 all	 models,	 a	 random	 intercept	 was	 set	 for	 each	 participant.	 A	 backward	 model	
selection	process	was	conducted	 for	 the	covariates.	Pairwise	comparisons	were	performed	 for	significant	main	
effects	(p	<	.05),	with	Bonferroni	corrections	applied	to	control	for	multiple	comparisons.		

3.4 Results 

Results	of	the	models	regarding	usability	are	summarized	in	Table	2.	The	post-hoc	analyses	of	the	significant	
continuous	 variables	 are	 summarized	 in	 Table	 3	 and	 Table	 4	 and	 visualized	 in	 Figure	 4.	 Perceived	 usability	
increased	with	greater	driving	experience,	as	indicated	by	Model	1	and	Model	2	(estimate	=	0.62,	t(161)	=	2.57,	p	
=	.01).	
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Table 2: Statistical results for usability 

DV	 IVs	 F-value	 p-value	
Model	1	
Perceived	 usability	 ~	
Communication	
Method	

Communication	method	 F	(3,	1146)	=	2.85	 .03	
DE	 F	(1,	161)	=	7.20	 .008	
ATI	 F	(1,	174)	=	97.12	 <	.001	
Gender	 F	(1,	174)	=	0.89	 .3	
Communication	method:	Gender	 F	(3,	1146)	=	0.19	 .7	
Communication	method:	ATI		 F	(3,	1146)	=	2.68	 .04	

Model	2	
Perceived	 usability	 ~	
Content	of	eHMI	

Content	of	eHMI	 F	(4,	1139)	=	2.85	 .02	
DE	 F	(1,	178)	=	7.65	 .006	
ATI	 F	(1,	178)	=	94.00	 <	.001	
Gender	 F	(1,	178)	=	0.90	 .3		
Content	of	eHMI:	Gender	 F	(4,	1139)	=	0.81	 .5	
Content	of	eHMI:	ATI	 F	(4,	1139)	=	2.49	 .04	
Content	of	eHMI:	DE	 F	(4,	1139)	=	0.31	 .9	

Model	3	
Perceived	 Learnability	
~	 Communication	
Method	

Communication	Method	 F	(3,	1314)	=	1.11	 .3	
ATI	 F	(1,	172)	=	1.01	 .3	
Communication	Method:	ATI		 F	(3,	1314)	=	3.24	 .5	

Model	4	
Perceived	 learnability	
~	Content	of	eHMI	

Content	of	eHMI F	(4,	1312)	=	2.85	 .02	
ATI F	(1,	170)	=	2.17	 .1	
Content	of	eHMI:	ATI	 F	(4,	1312)	=	2.66	 .03	

 
Table 3: Post hoc analysis of the interaction effect of communication method and ATI on perceived usability. 

DV	 Perceived	usability	
	 Slope	of	ATI	 95%	CI	 p	value	

Text	 8.57	 [6.13,	11.0]	 <.0001	
Animation	 8.28	 [6.06,	10.5]	 <.0001	

Sign	 8.23	 [5.79,	10.7]	 <.0001	
Real-life	Video	 12.19	 [9.17,	15.2]	 <.0001	

 
Table 4: Post hoc analysis of the interaction effects of content of eHMI and ATI on perceived usability and perceived learnability. 

DV	 Perceived	usability	 Perceived	learnability	
	 Slope	of	ATI	 95%	CI	 p	value	 Slope	of	ATI	 95%	CI	 	 p	value	

Speed	of	ILV	 8.22	 [5.20,	11.2]	 <.0001	 4.06	 [-1.72,	9.84]	 	 .2	
Distance	between	
ILV	and	DLV	

9.43	 [6.40,	12.4]	 <.0001	 3.37	 [-2.41,	9.15]	 	 .3	

Brake	behavior	of	
ILV	

8.72	 [6.27,	11.2]	 <.0001	 2.06	 [-3.19,	7.32]	 	 .4	

Rear-end	collision	
risk	

7.78	 [5.56,	10.0]	 <.0001	 1.20	 [-3.87,	6.26]	 	 .6	

Real-life	
information	

12.19	 [9.17,	15.2]	 <.0001	 7.24	 [1.45,	13.02]	 	 .01	
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Figure 4: Significant interaction effects; (a) the effect of ATI on perceived usability with different contents; (b) the effect of ATI on 

perceived usability with different CMs; (c) the effect of ATI on perceived learnability with different contents. 

4 DISCUSSION 

In	this	study,	we	proposed	eight	windshield-displayed	eHMI	prototypes	to	display	the	BVR	information	in	CF	events.	
We	 investigated	how	the	BVR	 information	content	and	communication	method	affected	participants’	perceived	
usability	of	the	eHMI.	This	study	served	as	a	preliminary	exploration	regarding	how	to	support	drivers	with	BVR	
information	in	CF	events	to	improve	traffic	safety	and	efficiency.	
First,	we	found	that	driving	experience	was	positively	associated	with	users’	perceived	usability	of	the	eHMI.	

This	effect	may	be	attributed	 to	experienced	drivers’	more	active	efforts	 to	 seek	anticipatory	 information	 [17],	
which	can	be	provided	by	the	eHMIs.	In	contrast,	novice	drivers	may	be	less	aware	of	the	importance	of	anticipatory	
information,	and	thus	they	have	less	expectation	of	BVR	information.	Future	research	may	validate	whether	novice	
drivers	who	receive	additional	hazard	perception	training	would	prefer	more	BVR	information.			
At	the	same	time,	as	expected,	eHMI,	as	a	novel	interaction	method,	was	perceived	as	more	useful	by	drivers	

with	a	higher	affinity	 for	 technology	 interaction	(ATI).	Such	a	phenomenon	has	also	been	observed	when	an	e-
learning	platform	is	introduced	to	students	[18],	where	those	who	had	higher	ATI	also	perceived	the	e-learning	
platform	as	more	useful.	At	 the	 same	 time,	we	 found	 that	 the	 relationship	between	 the	ATI	 and	 the	perceived	
usability	can	be	moderated	by	the	communication	method	and	content	of	the	eHMI.	Specifically,	the	ATI	had	the	
strongest	 influence	 on	 users’	 perceived	 usability	 for	 the	 real-life	 video	 eHMI.	 As	 a	 result,	 the	 population	with	
different	characteristics	holds	different	attitudes	toward	different	eHMIs.	Especially,	the	real-life	information	was	
least	preferred	among	the	users	with	lower	ATI	but	most	preferred	among	users	with	high	ATI.	It	is	likely	that	the	
real-life	 video	 in	 the	 eHMI	 is	 very	 different	 from	 the	 traditional	 taillights	 or	 symbolic	 displays	 that	 are	widely	
adopted.	Thus,	the	potential	users’	ATI	would	have	a	stronger	influence	on	users’	perception	of	the	real-life	video	
eHMI.	These	results	underscore	the	importance	of	boosting	potential	users’	ATI	if	new	technologies	are	introduced.	
However,	the	perceived	learnability	of	the	eHMI	was	not	influenced	by	the	communication	method	of	the	eHMI,	

and	users’	perceived	learnability	of	the	eHMI	was	only	sensitive	to	the	ATI	when	the	content	was	real-life	animation.	
It	is	likely	that	we	provided	a	detailed	introduction	of	the	eHMIs	before	the	survey,	and	the	users	had	no	difficulty	
understanding	different	communication	methods,	though	drivers	with	higher	ATI	would	still	be	familiar	with	new	
technologies	and	perceive	the	real-life	animation	as	easier	to	learn	compared	to	those	with	lower	ATI.	Similarly,	as	
a	result,	the	real-life	information	was	rated	as	the	least	learnable	among	the	users	with	lower	ATI,	but	the	most	
learnable	among	users	with	high	ATI.	

Finally,	although	this	survey	study	suggests	 that	eHMI	designs	should	consider	user	heterogeneity	and	may	
consider	an	adaptive	interface	to	improve	user	experience,	it	should	be	noted	that,	as	a	preliminary	step	to	explore	
novel	design	ideas	in	the	vehicle,	the	study	focused	only	on	subjective	perceptions	without	measuring	objective	
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behavioural	 responses.	 Future	 research	 should	 test	 these	 eHMIs	 and	 validate	 our	 findings	with	 diverse	 driver	
population	in	simulation	or	field	experiments.	
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