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A B S T R A C T   

Good quality packaging prevents contamination, secures preservation, and increases the ease of transportation in 
food and medical industries. One particular weakness of the package lies in the seal region where contents can be 
unintentionally incorporated, which disrupts the sealing process and compromises the structure and durability of 
the seal. To validate the seal quality effectively at high speed, a non-destructive high-resolution inspection 
approach combining enhanced sensors and reconstruction techniques is required. As the seal is flat and defects 
are minuscule, sensors have to be placed along the contour of the seal to achieve sufficient sensitivity. However, 
such conformal sensor placement poses new challenges to the ill-posed traditional tomography reconstruction. 
To overcome the limitation of sensing angle projections, imbalance in pixel representation and physical mea
surements, and asymmetric geometry of the sensed region, we propose a high-speed supervised autoencoder 
reconstruction approach. In this paper, our approach achieves high reconstruction image quality of irregular seal 
regions despite conformal sensor placement. While overcoming the limitations faced in traditional tomography, 
our model can be seamlessly integrated into the production line for real-time defect detection without affecting 
production speed and effectively minimizing manufacturing wastage and downtime.   

1. Introduction 

The food safety report published by the World Health Organization 
(WHO) in 2022 estimates that 600 million people, approximately 10% of 
the global population, fall ill after consuming contaminated food. 
Approximately 420,000 lives were taken every year due to diarrhea 
diseases induced by contaminated food and water (WHO, 2022). With a 
growing global population, the increase in demand for food has exac
erbated the problems in food safety and poses new challenges in auto
mated, clean, and high throughput packaging and preservation 
methods. Beyond the screening of poisonous substances in food products 
such as melamine in Sanlu milk powder (Jia, Huang, Luan, Rozelle, & 
Swinnen, 2012), poisonous starch found in Taiwan (Zuo, Wu, Gu, & 
Zhang, 2017), toxic fluorescent whitening agents as approved food ad
ditives in China, USA, and European Union (Poiger, Kari, & Giger, 1999; 
Wu et al., 2018), and heavy metal residues in chewable candies (Luiz 
et al., 2021), reliable packaging is the last line of defense to ensure 

consumers’ safety (Graves, Smith, & Batchelor, 1998; Morita, Dobroiu, 
Otani, & Kawase, 2007; Reinas, Oliveira, Pereira, Mahajan, & Poças, 
2016). However, the seal area, in particular, is prone to defects and 
contaminations introduced during high-throughput machine loading of 
flexible packaging of powder or liquid, thus compromising the structure 
and durability of the seal (Pan et al., 2020). 

In high-throughput advanced manufacturing facilities, testing pro
cedures are split into offline and online. Traditionally, offline testing 
relies on periodic random sampling, where manual labor inspection is 
adopted to recognize visually obvious defects. However, it is often too 
late when defects are identified since the high production rate could 
incur substantial product wastage. In contrast, online testing is more 
effective, reliable, and can perform accurate detection automatically 
and non-destructively at high speed. However, this is achieved at the 
expense of high complexity and high operating/development cost. 
Beyond the limitations of both online and offline testing procedures, 
determining weakened seals that do not lead to an obvious break is still a 
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significant challenge. Existing test methods such as vacuum, pressure 
decay, differential force measurement, bubble test, and helium leak 
detection test, suffer from poor sensitivity and require offline destructive 
screening at low throughput (Kirsch, 2007; Sand, 2019). Non-invasive 
methods like acoustic, ultrasound, and X-ray imaging techniques are 
costly, slow, and package materials dependent (Ayhan, Zhang, Far
ahbakhsh, & Kneller, 2001; Schoeman, Williams, du Plessis, & Manley, 
2016). Table 1 lists the advantages and disadvantages of different seal 
detection methods (Charles, 2013; Raum, Ozguler, Morris, & O’Brien, 
1998; Sand, 2019; Whittaker, 1972). To ensure the quality of every 
package leaving the manufacturing plant, a non-destructive and fast seal 
integrity detection method needs to be integrated seamlessly onto the 
production line. 

The capacitive sensor is a passive device (Li, Alian et al., 2019; Xiong, 
Li, Thean, & Heng, 2019) that is capable of proximity sensing (Pan et al., 
2021; Ye et al., 2020), displacement sensing (Li & Luo, 2019; Luo, Li, 
Thean, & Heng, 2020; Ye et al., 2020), material sensing (Hamanaka, 
Segundo, & Silva, 2017; Yap et al., 2022; Zhang, Zeng, Teng, & Zhang, 
2017), and humidity sensing (Xu, Weber, & Kasper, 2000). Apart from 
the fast sensing speed, the capacitive sensor is non-destructive and 
scalable, allowing it to be placed closely around the target to maximize 
sensor sensitivity. Together with the advancement in analog sensing 
circuits, capacitive sensors can be seamlessly integrated into the pro
duction line for real-time inspection. Additionally, reconstruction al
gorithms such as Electrical Capacitance Tomography (ECT) (Marashdeh, 
Fan, Du, & Warsito, 2008; Smith et al., 1998; Tiefenbacher, 2018; Yang, 
Lu, & Zhou, 2018) can be adapted to further increase the sensor reso
lution for more accurate defect detection. 

As the seal is flat and defects are minuscule, capacitive sensors have 
to be placed along the contour of the seal to maximize sensor sensitivity. 
The conformal placement, however, introduces new challenges to the ill- 
posed traditional tomography approaches that are limited by the sensing 
angle projections, the asymmetric number of pixels and measurements, 
and the geometry of the sensed region to produce a high-resolution re
constructions. Here, we designed an efficient machine learning model 
based on a supervised autoencoder to ensure high-quality reconstruction 
even with conformal sensor placement. Each successfully reconstructed 
relative permittivity distribution image contains an accurate 

representation of the defects within the seal both visually and quanti
tatively for extensive spatial analysis and it can be produced in just 1.1 
ms on a regular computer. In addition to overcoming the limitations 
faced in traditional tomography approaches, our model can be seam
lessly integrated into the production line for real-time defect detection 
without affecting production speed and minimizing wastage and 
downtime. 

2. Materials and methods 

2.1. Non-destructive capacitive sensing 

The capacitive sensing mechanism is based on measuring the 
changes in the capacitance due to the surrounding dielectric perturba
tion (Gallagher & Moussa, 2014; Li et al., 2019; Pillai, 1970). In the 
simplest parallel plate capacitive sensing setup shown in Fig. 1, the 
capacitance between two electrodes with a flat electrode area A and a 
perpendicular separation of d can be expressed in its closed form as: 

Table 1 
Comparison of existing test methods in ensuring quality assurance of product packaging.  

Test method 

Criteria Ultrasonics X-ray Eddy current Magnetic 
particle 

Vacuum / Burst Liquid penetrant Our Work 

Time of results Immediate Delayed Immediate Short delay Short delay Short delay Immediate 
Effect of 

geometry 
Important Important Important Not too 

important 
Not too important Not too important Not too important 

Type of defect Most Most External External Breaking 
Leaking 

Breaking 
Leaking 

Most 

Relative 
sensitivity 

Minimum 
10 µm diameter 
channel defect 

Minimum 
length 1.5 mm 
metalic fragments 

Minimum 
length 0.8 mm 
depth 0.125–1.75 
on the surface of 
metalic 
packaging 

Minimum 
length 7 mm on 
the surface of 
metalic 
packaging 

Only when leaking 
or breaking 

Only when leaking 
or breaking 

120 µm micro- 
particles within the 
package 

Portability of 
equipment 

High Low High to medium High to medium High to medium High High to medium 

Dependent on 
material 
composition 

Difficult to use on 
thin and relatively 
rough materials 

Changes in 
thickness, density, 
and/or elemental 
composition 

Material must be 
electrically 
conductive or 
magnetic 

Magnetic only Little dependency Little dependency Little dependency 

Ability to 
automate 

Easy to integrate 
onto the 
production line 

Able to integrate on 
production line with 
additional setup and 
delay 

Easy to integrate 
onto the 
production line 

Easy to integrate 
onto the 
production line 

Able to integrate on 
production line with 
additional setup and 
delay 

Able to integrate on 
production line with 
additional setup and 
delay 

Easy to integrate 
onto the production 
line 

Capabilities Thickness gaging: 
some composition 
testing 

Thickness gaging Thickness gaging; 
grade sorting 

Defects only Breach, leakage, 
defects 

Breach, leakage, 
defects 

Thickness, gaps, 
breach, defects, 
contaminant, grade 
sorting  

Fig. 1. Illustrations of a parallel plate electrode with electrodes A and B 
covering an area of A with a separation of d. 
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Cparallel = εrε0
A
d

+ Cfringe (1)  

where εr is the relative permittivity of the material between the elec
trode separation and ε0 is the permittivity of free space, assuming the 
effect of the fringe field is negligible (Dimitrov et al., 2020). Eq. (1) 
suggests that the change in the materials between the sensing electrodes 
has a direct impact on the measured capacitance if the area of each 
electrode and the distance between opposing electrodes are kept con
stant. However, the detection sensitivity in this setup is also influenced 
by the sensing area and the distance separating the electrodes. For 
instance, as the electrode area increases and the electrode separation 
decreases, the measured capacitance increases drastically which reduces 
the significance of capacitance change due to the effect of dielectric 
perturbation. This consequence becomes more severe for materials with 
a low relative permittivity. Furthermore, as the measured capacitance is 
contributed by the sum of the electric field of the sensing area, it is not 
feasible to identify the exact location of the introduced particles. To 
overcome the obvious tradeoff between the effective sensing area and 
sensitivity, an array of electrodes is used simultaneously to expand the 
sensing area and increase the spatial information captured without 
compromising sensitivity (Pan et al., 2020). 

2.2. Sensor design and verification 

While the parallel plate capacitive sensors can directly detect 
anomalies and particles in the packages non-destructively, the sensi
tivity and location capability are still limited. To overcome this limita
tion, an array of 14 smaller electrodes is designed to increase the sensing 
resolution and provide valuable position information of the particles as 
shown in Fig. 3. The full-wave simulation of the 14 electrode pairs 
sensor array is created using COMSOL Multiphysics software and the 
detailed parameters used are shown in Supplementary S1 and Supple
mentary S2 respectively. The sensing capability is first evaluated with 
COMSOL simulation followed by experimental verification. The replica 
of the simulated sensor array is fabricated using the Printed Circuit 

Board (PCB) prototyping machine LPKF ProtoMat S63 as shown in 
Fig. 2b & 2c. The electrical properties are measured using the Keysight 
E4980AL LCR meter at 100 kHz to avoid the 50 Hz powerline noise. For 
the sensor array, the top electrodes are labeled from 1 to 14 and the 
bottom electrodes are labeled from A to N as shown in Fig. 2a, forming 
groups of opposing electrodes in pairs 1A, 2B, …, 14N, respectively. The 
defect particles are colored in brown, and their exact locations are 
shown in Fig. 3a. 

The simulation results presented as the heat map in Fig. 3b show a 
significantly higher capacitance value when particles are located be
tween the testing electrodes. Evidently, the perpendicular electrode 
pairs 1A, 4D, 5E, 9I, and 11K have a much higher capacitance value as 
compared to other electrode pairs that are away from the particles. 
Apart from the significant increase in capacitance in 4D, 9I, and 11K, the 
neighboring and diagonal electrode pairs 2A, 1B, 6E, and 5F also indi
cated a substantial increase since the particles are located between the 
adjacent electrodes. Given the capacitance of all combinations of elec
trode pairs, the exact location and even the material of the particle can 
then be calculated directly. 

Experimentally, both the profile of the packaging and the location of 
particles can be effectively identified through corresponding capaci
tance measurement as shown in Fig. 3c. For instance, the fold in the 
middle of the seal located around positions 3C and 4D causes a 0.587e-13 

F increase in capacitance as compared to the average increase of 0.243e- 

13 F at the remaining seal area. The capacitance increase experienced at 
the fold is almost double (blue boxes) that at the remaining seal area, 
which interestingly coincides with the 2:1 ratio between the number of 
plastic layers at each location shown in Fig. 3c & 3e. The location of the 
particles can be verified by comparing the capacitance between elec
trode pairs and the image of the plastic package with 20 mg of particles 
incorporated as shown in Fig. 3c & 3d. The smallest capacitance changes 
of 8.0e-15 F, 6.8e-15 F, and 9.6e-15 F are captured at electrode positions 
1A, 8H, and 10J respectively (green boxes). The largest capacitance 
changes of 4.18e-14 F, 3.64e-14 F, and 4.87e-14 F are captured at electrode 
positions 7G, 9I, and 14N respectively (red boxes). The image of the 

Fig. 2. Illustrations of (a) 14 electrodes sensor array model with electrode labeling, and (b) the schematic of sensor array electrodes. (c) Image of the fabricated 
capacitive sensor array on the Printed Circuit Board (PCB). 
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transparent package provides visual verification of the relationship be
tween measured capacitance and the incorporated particles at various 
locations. However, due to gaps between the neighboring electrodes, the 
relative permittivity distribution in the sensed region is discontinuous, 
and pinpointing the exact location of the particle remains challenging. 
Reconstruction techniques are hence required to achieve a continuous 
relative permittivity distribution map, which is crucial in determining 
the quality of the package as well as providing valuable insights into 
reasons for such defects and thus improving maintenance and ensuring 
product quality and yield. 

2.3. Electrical capacitance tomography with linear back projection 

Electrical Capacitance Tomography (ECT), first proposed in 1980, is 
the most common and popular technique to reconstruct the relative 
permittivity distribution from a set of capacitance measurements 
(Buzug, 2011; Herman, 2009). This technique requires an array of 
electrodes placed around the imaging domain to measure the capaci
tance change and a reconstruction algorithm to compute the relative 
permittivity distribution of the internal structure. Some examples of 
classical reconstruction algorithms include Linear Back Projection (LBP) 
algorithm (Sun, Yue, Cui, & Wang, 2015), Algebraic Reconstruction 
Technology (ART) (Andersen & Kak, 1984; Raparia, Alessi, & Kponou, 
1997), Singular Value Decomposition (SVD) (Van Loan, 1976; Wall, 

Rechtsteiner, & Rocha, 2003), and Extreme Learning Machine (ELM) 
(Huang, Zhu, & Siew, 2006). These algorithms usually have a fast 
reconstruction speed but poor image resolution. Meanwhile, other al
gorithms such as Landweber iterative method (Hanke, Neubauer, & 
Scherzer, 1995) and the Tikhonov regularization algorithm (Calvetti & 
Reichel, 2003; Golub, Hansen, & O’Leary, 1999) offer better imaging 
accuracy by increasing the stability and controlling the noise in the 
reconstruction. With the recent advancements in artificial intelligence, 
neural network approaches have also been incorporated and achieved 
significant success (Wang, Liu, Chen, Yang, & Wang, 2020; Zheng & 
Peng, 2018). 

The basic principle of these approaches is to approximate the non- 
linear relationship between the measured capacitance and the permit
tivity distribution. Derived from Maxwell’s first equation, the relation
ship between the relative permittivity ε(x, y), the potential distribution 
of the electrical field ϕ(x, y), and the charge density ρ(x, y) in a two- 
dimensional space follows 

∇ • ε(x, y)∇ϕ(x, y) = − ρ(x, y) (2) 

In the forward problem, the capacitance value Cn,k of the electrode 
pair n and k are obtained by integrating (2): 

Fig. 3. (a) COMSOL simulation of 14 electrode pairs and the respective particle location. (b) Heat map of all combinations of pairwise capacitance difference 
measurement with defect particles. (c) Cross-validation of change in capacitance measurement across all electrode pairs with, (d) image of the package with 
incorporated particles distribution, and (e) the profile of a PVC package with respect to electrode positions. 
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Cn,k = −
1
V

∫∫

Γ

ε(x, y)∇ϕ(x, y)dΓ (3)  

where Γ represents the enclosed imaging area and V is the potential 
difference between the two electrodes. In a common ECT setup, the 
electrode pairs are placed uniformly around a circular imaging area to 
ensure equal sensing distance. The linearization technique based on the 
superposition theorem subdivides the imaging area into pixels and the 
solution to the forward problem becomes the sum of responses due to 
change of permittivity at individual pixels. With linearization, the 
relation between the capacitance matrix of electrode pairs and relative 
permittivity distribution in the imaging area can be approximated by the 
matrix expression: 

C = SG (4)  

where C is the capacitance matrix of various electrode pairs, G is the 
image vector of Γ, S is approximated sensitivity matrix similar to the 
first-order series expansion of the electric field in Γ. 

G = STC (5) 

To reconstruct the image vector G from the measured capacitance 
matrix C, we can solve the inverse of the sensitivities matrix S which is 
represented as the transpose ST as shown in Eq. (5). However, the total 
pixels of the reconstructed image is often much larger than the number 
of measured capacitance values causing the problem to be ill-posed. 
Through back projection, the measured capacitance data can be sum
med into the image vector. However, the final output suffers from a 
smoothing effect, giving a rough estimation of the relative permittivity 
distribution in the imaging domain. 

C′ = SG (6) 

To solve this issue, iterative methods such as Landweber are 
commonly used to iteratively improve the reconstructed image stability 
and control image noise by minimizing the error between the measured 
C to the estimated C′ as shown in Eq. (6). 

While existing approaches have shown promising results in multi
phase flow, medical imaging (Bach et al., 2012), non-destructive testing 

(De Schryver et al., 2016; Schoeman et al., 2016), and security (Shi
khaliev, 2018) domains, such reconstruction techniques are limited by 
the need for the symmetrical placement of electrodes. In seal quality 
assurance, the seal area in packages is often small, irregular, and flat, 
and the relative permittivity of defects is low. Instead of the symmetrical 
placement of electrodes in a circle, conformal placement along the 
contour of the seal is necessary to capture the minute capacitance dif
ferences between a good and defective seal as shown in Fig. 4a & 4b. 
However, the new placement introduces additional non-linearity in the 
system which adversely affects the reconstruction quality of 
projection-based algorithms. This is illustrated in Fig. 4d(ii) & 4c(ii), 
where the quality of reconstructed relative permittivity distribution 
images based on different electrode placements is compared. Using the 
same LBP algorithm, the reconstructed image based on symmetrically 
placed electrodes reveals the clear location and size of the introduced 
defect (blue cylinder) but fails to do so with the conformal placement. 
This is because the non-uniform distance between different electrode 
pairs becomes an additional component contributing to measured 
capacitance which significantly increases the system complexity for 
reconstruction. Supplementary S3 presents the sensitivity matrix be
tween the electrode pairs in a conformal placement, which highlights 
significant non-linearity due to non-uniform separation between elec
trodes. In order to benefit from the enhanced sensor sensitivity 
conformal sensor placement offers, the aforementioned constraint can 
be minimized by implementing a new data-driven approach to recon
struct the relative permittivity distribution of the sensed region 
successfully. 

2.4. Autoencoder neural network 

Along with the success of its predecessors, the Generative Adversa
rial Networks (GAN) (Goodfellow et al., 2014) introduced in 2014 has 
achieved excellent performance in estimation tasks. Briefly, Artificial 
Neural Network (ANN) mimics the human brain and learns to model a 
specific task for predictions and classifications, Convolutional Neural 
Network (CNN) uses filters capable of extracting the spatial information 
in the data and is exceptional with image data, and Recurrent Neural 
Network (RNN) adopts the concept of states which acts as a form of 

Fig. 4. (a) Cross-sectional view of the symmetrical placement of electrodes. (b) Cross-sectional view of the conformal placement of electrodes. (c)(i) Simulation of 
conformal placement with a single particle and the (c)(ii) LBP reconstructed image. (d)(i) Simulation of symmetrical placement with a single particle and the (d)(ii) 
LBP reconstructed image. 
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memory designed to understand temporal information in sequential 
datasets (Alzubaidi et al., 2021). GAN, on the other hand, introduces 
competition between the generative model and the discriminative 
model through the adversarial process to improve the models’ accuracy 
simultaneously. Using a compression and reconstruction process, GANs 
have achieved significant success in super-resolution (Gupta et al., 
2021) image processing which makes the supervised autoencoder neural 
network an ideal candidate for image reconstruction. Similar to to
mography, the supervised autoencoder neural network learns the rela
tionship between the sensed signals and the ground truth of the scanned 
region to create an accurate replica of the relative permittivity 
distribution. 

Based on physics theory, traditional tomography approaches use 
inverse models and iterative optimization to derive the relative 
permittivity distribution of the imaging domain. However, these ap
proaches are ill-posed and limited by the sensing angle projections, the 
asymmetric number of pixels and physical measurements, and the ge
ometry of the sensed region. Neural networks, on the other hand, learn 
patterns and solutions from a set of training data and generalize it to 
extended unseen test data. Such approaches have been widely adopted 
in Computed Tomography (CT) of medical imaging (Arridge, 1999) and 
ECT of the multi-phase flow process (Yao & Takei, 2017). The proposed 
autoencoder neural network reconstruction approach composed of the 
encoder and decoder, as shown in Fig. 5, is a supervised learning model 
that functions as a general estimator to map complex relationships be
tween the measured capacitance to the relative permittivity distribution 
of the imaging domain. The input data is first compressed onto a latent 
space by the encoder and decompressed by the decoder back into the 
reconstructed form of the input. The objective of the autoencoder is to 
learn a function that reconstructs accurate input data from a latent 
representation. In a single hidden layer autoencoder, the latent variable 
yeis the function of the input xi and the reconstructed output x̂i is a 
function of the latent variable ye as shown in Eq. (7) & (8). 

ye = fe(Wexi + be) (7)  

x̂i = fd(Wdye+ bd) (8)  

where, fe is the non-linear activation function applied to the input layer, 
We and Wd are the encoder and decoder weights respectively, be and bd 
are the encoder and decoder biases respectively. Physically, the relative 
permittivity distribution xi directly influence the capacitance between 
different pairs of electrodes. By adding an addition loss function be
tween the capacitance matrix and latent variable ye, the autoencoder can 
learn this relationship in a supervised manner, as shown in Fig. 5b. In 
our model, Mean Square Error (MSE) is used as the loss function for 
learning. 

Ltotal = Lxαx + Lyαy (9)  

Lx =
1
mn

∑m− 1

i=0

∑n− 1

j=0
[X(i, j) − X̂(i, j)]2 (10)  

Ly =
1
mn

∑m− 1

i=0

∑n− 1

j=0
[Y(i, j) − Ŷ (i, j)]2 (11)  

where Ltotal is the total loss function used in the autoencoder training 
process, Lx is MSE loss between the input image X and the decoded 
output image X̂, Ly is the MSE loss between the input capacitance matrix 
Ŷ and the latent space matrix Y, αx is the weight for Lx, αy is the weight 
for Ly. During training, the autoencoder will adjust the weights We and 
Wd at each layer to minimize the losses highlighted in Eqs. (9), (10), 
and (11). 

Fig. 5. System flow of the autoencoder neural network reconstruction approach from (a) the conformal placement of electrode for capacitance measurement to (b) 
providing relative permittivity distribution and the measured capacitance matrix as the inputs and eventually (c) reconstruction output from the decoder. 
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2.5. COMSOL simulation and experiment verification 

To obtain a training dataset that captures the nonlinear relationship 
between the measured capacitance value and the internal relative 
permittivity distribution, a three-dimensional (3D) 16 electrode pairs 
conformal ECT sensor model is developed using the finite element 
analysis simulation in COMSOL Multiphysics. The two additional elec
trodes on each plate ensure better coverage of the entire package. Using 
electrostatic physics in the AC/DC module, five types of defects are 
introduced at varying locations within the sensing region as shown in 
Supplementary S4. They are categorized as round, spot, scatter, through, 
and mix shown in Fig. 6. In each simulation, we extract the relative 
permittivity distribution of the seal center X and the capacitance matrix 
Ŷ of all combinations of electrode pairs (i, j). 

A total of 313 defect distribution samples and their respective 
capacitance matrices are generated for autoencoder network training. 
The dataset is split into 12 unseen test samples, consisting of two or three 
randomly selected defect distributions from each category, and a 
training set of 301 samples. Each data sample pair contains a normalized 
permittivity distribution vector, xi, of 12 by 56 pixels with a total of 672 
elements. As such, each pixel covers an area of 0.536 mm2 within the 
10 mm by 36 mm seal region without significantly increasing the 

computational cost of the autoencoder model shown in Supplementary 
S5. The corresponding normalized capacitance vector of the 16 elec
trode pairs ECT sensor array, ye, consists of 1024 elements and is ob
tained through a thorough scan between all combinations of the 32 
electrodes. The materials of the sensor, seal package, and defect particles 
are set to be copper with relative permittivity of 6.0, PVC with relative 
permittivity of 3.2, and food particles with relative permittivity of 80 
respectively. 

3. Results and discussion 

3.1. Reconstructed image evaluation matrix 

To evaluate the reconstruction quality, the mean square error and 
correlation coefficient between actual permittivity distribution and 
reconstructed permittivity distribution are taken as the criteria of 
autoencoder performance. They are commonly used in ECT image 
reconstruction to evaluate reconstruction quality quantitatively (Zheng 
& Peng, 2018). The Correlation Coefficient (COR) (Yang & Peng, 2002) 
indicates the similarity between the reconstructed permittivity distri
bution and the original permittivity distribution, which is defined as Eq. 
(12) and denoted by cor, 

Fig. 6. The five categories of defect particles distribution: (a) round, (b) spot, (c) scatter, (d) through, and (e) mix.  

Table 2 
The 10-fold cross-validation correlation coefficient score and mean square error.  

Correlation Coefficient Score of 10 Fold Cross-validation Mean Square Error of 10 Fold Cross-validation 

Fold Number Average Std Min Max Fold Number Average Std Min Max 
1 0.6852 0.1875 0.2707 0.9606 1 0.0195 0.0172 0.0027 0.075 
2 0.6435 0.2035 0.1287 0.8694 2 0.0408 0.0455 0.0087 0.1924 
3 0.6782 0.1859 0.3051 0.8913 3 0.0288 0.0349 0.0036 0.1711 
4 0.7162 0.1329 0.3503 0.9549 4 0.0345 0.0413 0.007 0.1735 
5 0.6875 0.1704 0.3051 0.8779 5 0.023 0.0188 0.0041 0.0744 
6 0.6419 0.2106 0.2663 0.9057 6 0.0346 0.0497 0.0038 0.194 
7 0.719 0.1517 0.3341 0.9116 7 0.0417 0.0471 0.0097 0.1762 
8 0.6183 0.1982 0.2406 0.8481 8 0.042 0.0543 0.0053 0.2235 
9 0.7098 0.1385 0.3224 0.8396 9 0.0235 0.0198 0.0035 0.0982 

10 0.6036 0.1985 0.2618 0.8696 10 0.0306 0.0336 0.0042 0.1689 
Average 0.6703    Average 0.0319     
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Fig. 7. The reconstructed images of particles distribution in each fold of the 10-fold cross-validation process.  
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cor(X, X̂) =

∑n− 1

i=0
[xi − E(X)][x̂i̇ − E(X̂)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n− 1

i=0
[xi − E(X)]2

∑n− 1

i=0
[x̂i̇ − E(X̂)]2

√ (12)  

where X and X̂ are two matrices with the same dimensions, xi and 
x̂i̇ are the ith element and E(X) and E(X̂) are the expected values of X 
and X̂ respectively. 

3.2. Model evaluation and testing results 

A simple single hidden layer supervised autoencoder is implemented 
in Python with Tensorflow to reconstruct the relative permittivity dis
tribution within the seal area. The decoder of the autoencoder model is 
used to generate the reconstructed image for evaluation. The optimized 
model is trained with a batch size of 32, a learning rate of 0.0001, 8000 
epochs, and the weights αx and αy are set as 0.45 and 0.85 respectively. 
The 10-fold cross-validation results are shown in Table 2. The average 
MSE and COR scores are 0.0319 and 0.6703 respectively. Corresponding 
to the results presented in Table 2, Fig. 7 shows the reconstruction 
quality of the particle distribution visually in each fold. In general, the 
autoencoder performs well to distributions with larger particles such as 
the round, through, and mix, but experiences significant reconstruction 
noise when the particles are smaller in the scatter and spot categories. 
The contrast between regions with and without particles reduces as the 
particles decrease in size and become isolated, as shown by the cloudy 
images in Fig. 7. To reduce the reconstruction noise, additional data 
samples with noise integration can be collected to further optimize the 

supervised autoencoder model. While some of the cross-validated im
ages have a low COR score and high MSE, the visual effect of these image 
reconstructions is still very close to the actual permittivity distribution, 
which is sufficient to serve as a guide for online quality assurance. 

The unseen test dataset contains two sample images from each 
category and both the actual and reconstructed relative permittivity 
distributions of the twelve samples are shown in Fig. 8. With a super
vised autoencoder, the reconstructed image reflects the true relative 
permittivity distribution within the seal region accurately even in 
conformal sensor placement, which significantly improves the sensing 
resolution. The reconstructed relative permittivity distribution images 
have shown an accurate representation of materials within the seal both 
visually and quantitatively. Most importantly, the supervised approach 
learns the underlying physics process and captures the relevant rela
tionship between the capacitance matrix and the real permittivity dis
tribution, ensuring the strong relevance of the reconstruction model. 
Lastly, the reconstruction speed is extremely fast using only 1.1 ms on a 
regular workstation computer with an Intel Core i5 CPU for each relative 
permittivity distribution image. This is due to the facile autoencoder 
architecture used. We expect the performance of the reconstruction 
model to be enhanced with more complex neural network architecture 
and additional data. The model can then be seamlessly integrated into 
the production line for real-time defect detection, ensuring maximum 
production speed at minimum wastage and downtime. The same tech
nique can also be extended to other types of sensor placement based on 
the application to satisfy the sensor resolution requirements. 

Fig. 8. The ground truth versus reconstructed image of the 12 unseen dataset samples showed excellent reconstruction capability of our proposed supervised 
autoencoder reconstruction algorithm. 
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4. Conclusion 

In this paper, an electric field sensing system for package quality 
assurance is introduced. As the quality of defect detection depends 
heavily on both the sensor sensitivity and data representation, a 
conformal placement of electrodes coupled with a supervised autoen
coder neural network reconstruction technique is proposed. Leveraging 
on the enhanced sensor sensitivity derived from the conformal place
ment of electrodes, the high-quality reconstructed relative permittivity 
distribution of the sensed region unveils valuable spatial information for 
defect detection. By using a simple network structure, the optimized 
autoencoder model achieved an average 10-fold cross-validation MSE 
and COR scores of 0.0319 and 0.6703, respectively. Furthermore, the 
reconstruction takes only 1.1 ms on commodity hardware and is ideal 
for real-time defect detection on the production line, ensuring maximum 
production speed with minimum wastage and downtime. 

However, there are still several drawbacks that stand in the way of 
successful real-life implementation. Firstly, it is time-consuming and 
difficult to acquire a substantial well-labeled dataset for the develop
ment of an accurate reconstruction model. Secondly, the actual packages 
and contents vary significantly in shape, size, material, and sealing 
process that requires meticulous data preparation to ensure the quality 
of the developed model. Lastly, the measured electrical properties and 
the ground truth must be carefully defined and enforced throughout the 
data preparation stage. It is also crucial for the dataset to contain suf
ficient defect cases in different environments to improve the generaliz
ability of the trained model. To overcome these limitations, we propose 
an automatic data collection and labeling system that provides an 
improved reference for calibration and evaluation. The proposed system 
acquires X-ray images with a commercial X-ray inspection machine, 
photo images with high-resolution cameras, and reconstructed capaci
tive images with our autoencoder-enabled capacitive sensor array. 
Firstly, the X-ray and camera images can be used directly as the refer
ence for capacitive sensing calibration to ensure hardware quality and 
precision. Secondly, the X-ray, camera, and reconstructed images are 
cross-referenced and combined through physics-guided data fusion to 
capture more precise ground truth and establish dependable evaluation 
metrics. Finally, the newly introduced data not only improves the ac
curacy and robustness of the trained autoencoder model but also pro
vides valuable feedback to enhance our simulation model. The improved 
simulation model can subsequently generate a more comprehensive 
dataset with a more elaborate distribution of defects on command to 
complement the limited experimental dataset. 

Despite the above-mentioned limitations, the COMSOL simulation 
and generated dataset not only provide a strong physics-based verifi
cation of the feasibility of the system but also act as a guideline for 
experimental data preparation, thus bringing the aforementioned sys
tem a step closer to industrial implementation. 
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