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Abstract: We propose and demonstrate two designs of complementary spiral-shape meta-
materials (CSSM) with square and hexagonal meta-atom arrangements in the terahertz (THz)
frequency range. For convenience, they are denoted as CSSM-S and CSSM-H for CSSM with
square and hexagonal meta-atom arrangements, respectively. The electromagnetic responses
are investigated for CSSM with different spiral angle (θ). CSSM-S exhibits dual-, triple-, and
quad-resonance for θ = 360°, θ = 540° and θ = 720°, respectively in transverse electric (TE) mode
and exhibits single-, dual-, and triple-resonance for θ = 360°, θ = 540° and θ = 720°, respectively
in transverse magnetic (TM) mode. By applying a direct-current (dc) bias voltage on CSSM-S, it
shows the actively tunable resonance with a tuning range of 0.12 THz and switching polarization
characteristics. Furthermore, to facilitate the flexibility and applicability of CSSM, the unit
cell of CSSM with different θ is superimposed to form CSSM-H. CSSM-H possesses the
combination of electromagnetic behaviors generated by each unit cell of CSSM with different θ.
This study provides a design of complementary THz metamaterials to have electromagnetically
induced transparency (EIT) analog characteristics, which shows single-digital and multi-digital
signals for the programmable metamaterial application. It paves a way to the possibility of THz
metamaterials with great tunability and good polarization-dependence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Terahertz (THz) wave is the transition spectrum from microwave to infrared (IR) wavelength
which occupies the spectrum in the frequency range of 0.1 THz to 10 THz [1–3]. Among the
entire electromagnetic spectrum, THz optics in spectroscopy and imaging systems is imperative
to THz wave applications, such as quality control, security check, physics study, and molecule
identification [4–6]. Moreover, the integration of THz optics constituted by miniaturized optical
components is expected to express higher signal transportation [7]. It allows more compact
systems and enables the integration with other systems for increasing flexibility and applicability.
For instance, THz device can be compacted into semiconductor integrated circuits and integrated
photonic circuits [8,9]. Such miniaturized THz optical components are required new approaches
and techniques for the realization of active manipulation to possess multi-functionalities.

Over the past two decades, the artificially electromagnetic material, termed metamaterial, has
attracted a tremendous amount of attention for researchers owing to their exotic and extraordinary
optical properties to manipulate the amplitude, direction, polarization, wavelength, and phase of
electromagnetic waves [10–14]. By properly tailoring the geometrical dimension of metamaterial,
it can be realized electro-optic devices spanning the frequency range from microwave, THz,
IR, visible to ultraviolet caused from the transformation optics theory [15]. Therefore, many
literatures have been reported unique electromagetic metamaterials which have largely improved
many classic devices, such as switch, resonator, waveguide, filter and so on [16–23]. The
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unprecedented advantages of metamaterial come from its extreme scalability and ultrathin
feature. Metamaterial has led to the demonstration of even exotic THz properties such as
artificial magnetism, negative refractive index, wavelength perfect absorption, chirality, and
electromagnetically induced transparency (EIT) [24–29]. Recently, the EIT analog using planar
metamaterials have been demonstrated to enable the realization of slow light effect and high
nonlinearity in THz frequency range, which are reported and performed through near-field
coupling between the resonators at bright and dark modes by implanting extra materials into the
unit cell of metamaterial [30,31]. The controllable methods are through dynamic modulation
of resonator at dark mode [32] or the intercoupling distance [33], including optical pumping
of photoconductive materials [34], or thermally controlled superconducting materials as the
part of coupled resonator system [35]. Such tunability in coupled resonator system adds a new
dimension to the design and functionality of metamaterial and possible applications [36].
In this study, we propose a design to control the EIT analog without implanted any extra

material into the metamaterial structures. We design and utilize two types of THz complementary
spiral-shape metamaterial (CSSM) with square and hexagonal meta-atom arrangements, which
are denoted as CSSM-S and CSSM-H, respectively. The proposed devices possess EIT analog
characteristics by controlling bright and dark modes within resonators. CSSM-S with different
spiral angle (θ) exhibits dual-, triple-, and quad-resonance at transverse electric (TE) mode, while
that shows single-, dual-, and triple-resonance at transverse magnetic (TM) mode, respectively.
Furthermore, CSSM-H indicates the characteristics of tunable and switchable single-band and
dual-band EIT analog. These electromagnetic characteristics provide the possibilities for the
realization of programmable metamaterial in THz wave applications.

2. Designs and methods

The schematic drawing of CSSM-S is shown in Fig. 1(a). The unit cell and corresponding
denotations of CSSM-S are indicated in Fig. 1(b). They are spiral angle (θ) and spiral width (w).
Here, the spiral widths are 6 µm and the periods of devices are kept as constant as 100 × 100 µm2

and 160 × 160 µm2 for CSSM-S and CSSM-H, respectively. The proposed CSSM device was
fabricated using maskless photolithography and lift-off techniques. First, the lift-off resistance
was spin coated, which was polymethylmethacrylate (PMMA) spun on the device and baked
at 180 °C for 2 min. Second, the metamaterial pattern was defined on the resist layer using a
maskless photography technique. Third, the 10/200 nm thick Cr/Au layer was deposited on an

Fig. 1. Schematic drawing of CSSM-S. (b) The corresponding denotations of CSSM-S,
where w is spiral width and θ is spiral angle. (c-e) are optical microscopy images of CSSM-S
with θ = 360°, θ = 540°, and θ = 720°, respectively.
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unintentional doping Si substrate using a sputtering system. After development of the resist in 3:1
isopropyl alcohol (IPA)/deionized water (DI) solution for 5 min, the CSSM pattern was performed
by removing the resist. Figure 1(c-e) are optical microscopy images of spiral-shape array of
CSSM-S with θ = 360°, θ = 540°, and θ = 720°, respectively. The corresponding unit cells are
shown in the inserted images of Fig. 1(c-e), respectively. The patterns are easily fabricated, high
portability, applicability, and cost-effectiveness. The electromagnetic characteristics of CSSM-S
and CSSM-H are performed by using Lumerical Solution’s finite difference time-domain (FDTD)
based simulations to study the optical properties of devices. The propagation direction of
incident THz wave is perpendicular to the x-y plane in the numerical simulations. Periodic
boundary conditions are also adopted in the x and y directions and perfectly matched layer (PML)
boundaries conditions are assumed in the z direction. The mesh precision is 0.5 nm with the
minimum clearance size of 0.1 µm. The transmission THz wave is calculated by setting monitor
on the bottom side of device.

3. Results and discussions

Fig. 2 shows the transmission spectra of CSSM-S with different θ at TE and TM modes. In
Fig. 2(a), there is no any resonance in the frequency range of 0.1-0.5 THz at TM mode. It can be
seen there is a sharp transmission peak at 0.26 THz within the broad frequency range of 0.1-0.5
THz for CSSM-S with θ = 360°. This is a signature of the strong plasmonic hybridization in the
resonator system. It is the resonance of bright mode in EIT analog. It can be explained by the
strong E-field energy focused on the spiral-shape of CSSM-S as shown in Fig. 3(a). The induced
transmission intensity is switched from 0.11 to 0.65 by rotating incident polarization angle from
TM mode to TE mode. Simultaneously, there is a dark mode at 0.27 THz. The transmission
intensity could be switched from 0 (TM mode) to 0.11 (TE mode). Figure 2(b) shows the
transmission spectra of CSSM-S with θ = 540°. The transmission intensity of 0.28 at TM mode
can be switched to 0.65 at TE mode to form the bright mode in EIT analog. The resonance is at
0.30 THz. While it can be also switched to the dark mode at 0.33 THz. For the case of CSSM-S
with θ = 720° as shown in Fig. 2(c), there are bright modes at 0.17 THz (TE mode) and 0.45 THz
(TM mode). While there are dark modes at 0.18 THz (TE mode) and 0.44 THz (TE mode). That
can be switched between bright mode and dark mode by changing incident polarization light. To
better understand the interactions of THz wave to the proposed CSSM-S, the electromagnetic
field monitors are simulated and set into CSSM-S. The corresponding electric (E) field and
magnetic (H) field distributions are represented in Fig. 3(a-f). The resonant frequency of the
circuit model of CSSM-S can be expressed by [37]

fLC =
1

2πP√εc

√
w
l

(1)

where c0 is the velocity of light in vacuum, εc is the relative permittivity of materials in the spiral
shape (i.e. air in this study), P is the spiral period, w is the spiral width, and l is the spiral length.
This complementary spiral-shape resonator is designed by the E-field energy strongly coupling
into complementary spiral-shape microstructures, while the inductive element (the frames or
the loops) does not interact with E- and H-field energies. It can be clearly observed that E-field
energies are focused along the spiral-shape of CSSM-S to generate different resonances.

To further enhance the flexibility of proposed CSSM, it is designed to be controlled by applying
a direct-current (dc) bias voltage to heating up the temperature of surrounding ambient. CSSM-S
with θ = 720° is chosen to be an example for the realization of tunable CSSM. The schematic
drawing of proposed tunable CSSM-S is shown in Fig. 4(a). The experimental results are shown
in Fig. 4(b). The electromagnetic responses of CSSM-S at TM and TE modes without applying a
dc bias voltage are identical to the results of Fig. 2. By increasing the dc bias voltage from 0V to
30V, the resonance is red-shift from 0.46 THz to 0.34 THz with a tuning range of 0.12 THz.
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Fig. 2. Transmission spectra of CSSM-S with (a) θ = 360°, (b) θ = 540°, and (c) θ = 720° at
TE and TM modes.

Fig. 3. (a-c) E-field and (d-f) H-field distributions of CSSM-S with different θ at TE mode,
respectively. (g-i) E-field and (j-l) H-field distributions of CSSM-S with different θ at TM
mode, respectively. The inserted denotations on top images are monitored frequencies for
CSSM-S with different θ.
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The surrounding temperature is increased by applying a dc bias voltage on device, which can be
expressed by [38]

T − T0 = P × Rs =
V2

Rt
× Rs =

V2

R0[1 + α(T − T0)]
× Rs (2)

where T0 is the initial room-temperature, R0 is the resistance at initial room-temperature, Rs
is the thermal resistance from substrate to ambient environment, Rt is the resistance at heating
temperature, α is the linear temperature coefficient of resistance. Owing to the variation of
heating temperature can make the surrounding refraction index (ns) changed, it can be obtained
by [39]

1
ns

dn
dT
= −

(n2s − 1)Eg

(n2s )E2
g − (hγ)2

−
3βn2s − 1

2n2s
(3)

where γ is the frequency of the illumination light, h is Planck’s constant, β is the thermal
expansion coefficient for material, and Eg is the bandgap energy of material. Furthermore, the
ambient refraction index is a key role parameter to determine the Fano-resonance of CSSM
referred to the equation of ns =

√
εrµr, where εr and µr are the equivalent permittivity and

permeability of CSSM, respectively. Such designed tuning approach indicates the possibility of
CSSM to be used for filter, polarizer, switch, and sensor with active tuning characteristic in THz
frequency range.

Fig. 4. (a) Schematic drawing of tunable CSSM-S applied a dc bias voltage. (b) Transmission
spectra of CSSM-S applied a dc bias voltage from 0V to 30V at TE mode.

The electromagnetic responses of CSSM-H with θ = 360°, θ = 540°, θ = 720°, and correspond-
ing superimposed conditions are shown in Fig. 5. The simulated results of CSSM-Hwith θ = 360°,
θ = 540°, and θ = 720° are shown in Fig. 5(a-c), respectively. In Fig. 5(a), CSSM-H with θ = 360°
exhibits the bright-mode at 0.26 THz and dark-mode at 0.27 THz. The corresponding E-field and
H-field distributions are shown in the inserted images of Fig. 5(a). In the design of CSSM-H
with θ = 540°, it exhibits the bright-mode at 0.30 THz and dark-mode at 0.33 THz as shown in
Fig. 5(b). The corresponding E- and H-fields distributions are shown in the inserted images of
Fig. 5(b). Moreover, CSSM-H with θ = 540° exhibits a polarization switch at 0.55 THz, which
can be switched the transmission intensity from 0.05 at TM mode to 0.60 at TE mode. Figure 5(c)
shows the results for the case of CSSM-H with θ = 720°, which exhibits the bright-mode at 0.17
THz and dark-mode at 0.18 THz. The corresponding E-field and H-field distributions are shown
in the inserted images of Fig. 5(c). For the cases of CSSM-H with superimposed different θ,
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the transmission spectra of CSSM-H with θ = 360°+540°, θ = 360°+720°, and θ = 540°+720°
are shown in Fig. 5(d-f), respectively. Figure 5(d) shows the resonances of CSSM-H with
θ = 360°+540° at 0.26 THz and 0.30 THz for bright-modes while at 0.27 THz and 0.32 THz
for dark-modes, which are the superimposed results of Fig. 5(a) and Fig. 5(b). There is a
little variation of 0.01 THz for dark-mode resonance caused from the continuous superimposed
spectra. It is worth to noted that there are two polarization switching functions at 0.52 THz
and 0.55 THz, respectively. In Fig. 5(e), there are two bright-modes at 0.17 THz and 0.26 THz
and two dark-modes at 0.18 THz and 0.27 THz, respectively for the case of CSSM-H with
θ = 360°+720°. The corresponding E-field and H-field distributions are shown in the inserted
images of Fig. 5(e). Figure 5(f) shows the transmission spectra of CSSM-H with θ = 540°+720°.
There are two bright-modes at 0.17 THz and 0.30 THz and two dark-modes at 0.18 THz and 0.33
THz, respectively. The corresponding E-field and H-field distributions are shown in the inserted
images of Fig. 5(f). These results indicate that the EIT analog can be controlled by hexagonal
meta-atom arrangement of CSSM to possess single-digital and multi-digital signals to increase
the flexibility and capability for the realization of programmable metamaterials in THz frequency
range.

Fig. 5. Transmission spectra of CSSM-H with (a) θ = 360°, (b) θ = 540°, (c) θ = 720°, (d)
θ = 360°+540°, (e) θ = 360°+720°, and (f) θ = 540°+720° at TE and TM modes.

4. Conclusion

In conclusion, we present two CSSM designs with square and hexagonal meta-atom arrangements
(CSSM-S and CSSM-H) which exhibit EIT analog characteristics. CSSM-S shows dual-, triple-,
and quad-resonance for θ = 360°, θ = 540°, and θ = 720°, respectively at TE mode and shows
single-, dual-, and triple-resonance for θ = 360°, θ = 540° and θ = 720°, respectively at TM
mode. These electromagnetic behaviors are polarization-dependence and EIT switch at different
polarization state. CSSM-H indicates single-digital and multi-digital signals to lay the foundation
for the realization of programmable metamaterials in THz frequency range. CSSM-S performs
the tunable THz filter by applying a dc bias voltage on device. The tuning range is 0.12 THz
compared to that without and with a dc bias voltage of 30V. With the investigation of CSSM
being fully understood, the design of CSSM exhibits the multi-functionalities of single-band
and dual-band switch and polarization switch. It potentially provides a new direction for future
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THz device applications and a flexible platform for developing the next generation randomly
accessible, digital and programmable metamaterials for precise tailoring of electromagnetic
properties and multi-channel data processing at higher bit rates.
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